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Neutrophils sense and migrate towards chemotactic factors released at sites of infection/
inflammation and contain the affected area using a variety of effector mechanisms. Aside
from these established immune defense functions, neutrophils are emerging as one of the
key tumor-infiltrating immune cells that influence cancer progression and metastasis.
Neutrophil recruitment to the tumor microenvironment (TME) is mediated by multiple
mediators including cytokines, chemokines, lipids, and growth factors that are secreted
from cancer cells and cancer-associated stromal cells. However, the molecular
mechanisms that underlie the expression and secretion of the different mediators from
cancer cells and how neutrophils integrate these signals to reach and invade tumors remain
unclear. Here, we discuss the possible role of the epithelial to mesenchymal transition (EMT)
program, which is a well-established promoter of malignant potential in cancer, in regulating
the expression and secretion of these key mediators. We also summarize and review our
current understanding of the machineries that potentially control the secretion of the
mediators from cancer cells, including the exocytic trafficking pathways, secretory
autophagy, and extracellular vesicle-mediated secretion. We further reflect on possible
mechanisms by which different mediators collaborate by integrating their signaling network,
and particularly focus on TGF-b, a cytokine that is highly expressed in invasive tumors, and
CXCR2 ligands, which are crucial neutrophil recruiting chemokines. Finally, we highlight
gaps in the field and the need to expand current knowledge of the secretory machineries
and cross-talks among mediators to develop novel neutrophil targeting strategies as
effective therapeutic options in the treatment of cancer.

Keywords: neutrophils, tumor-associated neutrophils (TANs), chemokines, TGF-b, EMT, secretory pathways,
secretory autophagy, EVs
INTRODUCTION

Neutrophils are the body’s first responders to injury or infection. They have an unparalleled ability
to migrate toward gradients of chemoattractants, which are released at sites of inflammation, and to
clear pathogens or cell debris by using a plethora of functions including phagocytosis, the release of
cytotoxic enzymes or reactive oxygen species (ROS), and the release of neutrophil extracellular traps
org September 2021 | Volume 12 | Article 7341881
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(NETs) (1). In addition, neutrophils have been reported in the
tumor microenvironment (TME) (2), which has been described
as a site of persistent inflammation similar to “wounds that do
not heal” (3). The TME harbors a wide variety of diffusible
mediators released from both tumor and stromal cells. These
mediators induce neutrophil migration toward tumors and alter
neutrophil function to promote or limit cancer progression.
While studies have focused on understanding the tumor
promoting or impairing properties of neutrophils, many
questions remain unanswered about the identity of the
mediators that control neutrophil recruitment to tumor sites
and the function of tumor-associated neutrophils, referred to as
TANs. In this perspective, we present an overview of the
functions of TANs and the different classes of mediators that
have been linked to neutrophil recruitment to tumors, discuss
how cancer-associated changes such as the epithelial to
mesenchymal transition (EMT) upregulate the expression of
the mediators, and review the secretory mechanisms that
potentially underlie the release of the mediators in the TME.
Finally, we discuss our current understanding of the crosstalk
between mediators, with a special focus on TGF-b and
chemokines, to provide insights into the integrated mechanisms
underlying neutrophil recruitment to the tumor niche and suggest
gaps in knowledge that need to be filled for the development of
anti-cancer therapeutic interventions.
PLASTICITY OF NEUTROPHILS IN CANCER

To phenotypically classify TANs and their wide range of
functions that impact the outcomes of tumors, several
categories have emerged: high-density/low-density, immature/
mature, and anti-tumor/pro-tumor/pro-metastatic. Evidence is
now suggesting that neutrophils exhibit phenotypic plasticity
and can exist on a spectrum within any of these overlapping
categories (4–7). For example, neutrophils are often described as
“N1” (anti-tumor) or “N2” (pro-tumor) (8), but Zilionis et al.
recently described a range of five neutrophil subsets in human
lung cancer based on transcriptome analysis, with gene
expression ranging from canonical neutrophil genes (N1
subset) to genes that were tumor-specific (N5 subset) (4).
These seemingly different phenotypes are mostly generated due
to exposure to specific mediator(s), either systemically in the
bone marrow/blood or locally at the tumor sites. Studies using
murine tumor models report that the immunosuppressive
cytokine TGF-b is responsible for promoting the generation of
neutrophils with a pro-tumoral “N2” phenotype (8), while the
type I interferon IFN-b gives rise to an anti-tumoral “N1”
phenotype (9). Further, the enzyme protease cathepsin c,
secreted by breast cancer cells, has been reported to initiate a
signaling cascade in mouse models that recruits neutrophils to
the lung metastatic niche and promotes a pro-metastatic
phenotype, and its secretion is correlated with shortened
metastasis-free survival in humans (10).

Several neutrophil effector functions that support tumor
progression have been identified, including immunosuppression,
remodeling of the extracellular matrix (ECM), and promoting
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angiogenesis (11). For example, it has been demonstrated in
mouse models that immunosuppressive neutrophils promote
metastasis by releasing high levels of inducible nitric oxide
synthase (iNOS), which inhibits proliferation of cytotoxic T cells
(12). Additionally, the release of NETs from neutrophils, which
are mesh-like structures of DNA fibers studded with granule
proteins, is associated with metastatic progression (13–16). In
particular, granule proteins such as neutrophil elastase (NE) and
matrix metalloproteinase 9 (MMP9) released with NETs have
been shown to awaken dormant cancer cells by remodeling the
ECM and inducing cancer cell proliferation in mouse models (17).

Although most studies have reported a pro-tumor effect of
neutrophils, some contexts exist where neutrophils exhibit anti-
tumor effects, seemingly maintaining their canonical role to
protect the body from harm. These anti-tumor actions of
neutrophils in mouse models include the direct killing of
cancer cells through the release of cytotoxic ROS (including
hydrogen peroxide) and the restriction of tumor growth by
stimulating cancer cell detachment from the basement
membrane by the release of MMP9 (18–20). Additionally, the
neutrophil-dependent stimulation of T cell responses can
indirectly contribute to anti-tumor activity, shown both in
mouse models and in cells isolated from human tissue samples
(11, 21). While it has been reported that specific mediators
contribute to the pro- or anti-tumoral actions of neutrophils,
the mechanisms underlying how the mediators are expressed and
secreted by cancer cells and the interplay among the different
mediators in regulating neutrophil function remain unknown.
DIFFUSIBLE MEDIATORS IN
THE TUMOR NICHE

Cancer cells and stromal cells, including cancer-associated
fibroblasts (CAFs), T cells, monocytes, tumor-associated
macrophages, and TANs, can secrete diverse mediators that
diffuse through tissues, potentially signaling to circulating or
tissue-patrolling neutrophils to recruit them to the tumor niche.
Table 1 provides a list of recently identified neutrophil mediators
released in various mouse and human tissue or cell line models of
cancer and their sources. These mediators primarily consist of
chemokines, growth factors, and cytokines. The chemokines
CXCL1, 2, 5, 6 and 8, which induce neutrophil chemotaxis
through CXCR2/1 chemokine receptors, have been reported to
be important for neutrophil recruitment in many cancer types
(22, 25–28, 30–38). Chemokines are critical to recruit
neutrophils not only to primary tumor sites but also to pre-
metastatic niches and metastatic sites. For example, CXCL1, 2,
and 5 released from tumor-associated mesenchymal stromal cells
in a mouse model of breast cancer resulted in increased neutrophil
recruitment to primary tumor sites (22). Additionally, CXCL5 and
7 released from tumor-activated platelets were reported to be
crucial for neutrophil recruitment to the pre-metastatic niche and
subsequent tumor cell seeding in the mouse lung (26). G-CSF and
GM-CSF are important growth factors commonly upregulated in
cancer, and their primary functions are to regulate the release of
mature neutrophils from the bone marrow into the blood and to
September 2021 | Volume 12 | Article 734188
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extend the survival of neutrophils (38, 39). In addition, cytokines,
including interleukins (IL-17A, IL-6) (10, 12, 25, 40), interferons
(IFN-b) (9), TNF-a (25), and TGF-b (5, 8, 24, 28), have been
linked to neutrophil recruitment and extended neutrophil survival,
as well as regulating neutrophil function. While a growing number
of studies report the effect of individual mediators on neutrophil
recruitment and function, it is likely that antagonistic, additive, or
synergistic effects of different classes of mediators are crucial for
neutrophil recruitment and function in the context of cancer.
Frontiers in Immunology | www.frontiersin.org 3
MECHANISMS REGULATING THE
SECRETION OF DIFFUSIBLE MEDIATORS
FROM CANCER CELLS

Cancer cells are known to upregulate the transcription of many
diffusible mediators due to the constitutive activation or
overexpression of oncoproteins (41). In many cases, the higher
expression of the mediators correlates with poor clinical
progression (42, 43). However, little is known about the
TABLE 1 | List of diffusible mediators along with their cellular origin, potential impact on neutrophils and tumor progression, and the study models.

Cancer Type Source of diffusible mediators in
the TME

Diffusible Mediators Potential impact on neutrophils Model Ref

breast cancer tumor-associated mesenchymal
stromal cells

CXCL1, CXCL2, CXCL5 increased migration to tumor site mouse (22)

gd T cells at tumor site IL-17 increased migration to tumor site,
change to pro-tumor phenotype,
increased metastasis

mouse (12)
origin unclear G-CSF (induced by IL-17)

cancer cells G-CSF recruitment to metastatic sites mouse (23)
cancer cells chemokines active via CXCR2,

TGF-b
increased migration human (C) (24)

cancer cells IL-6, CCL3 (induced by cathepsin
c)

increased migration to tumor site, NET
formation, ROS production; pro-
metastasis (cathepsin c works via the
PR3-IL-1b-NF-kB axis of neutrophils to
upregulate secretion of IL-6 and CCL3)

mouse (10)

colorectal
cancer

gd T cells at tumor site CXCL8 (IL-8), GM-CSF increased migration human (T) (25)
IL-17A, GM-CSF expansion of the PMN-MDSC

population
CXCL8 (IL-8), IL-17A, TNFa extended survival

platelets interacting with tumor cells in
pre-metastatic niche

CXCL5, CXCL7 increased recruitment to early pre-
metastatic niche

mouse (26)

cancer cells CXCL1 increased recruitment to tumor site and
tumor progression

mouse (27)

cancer cells CXCL5 increased recruitment to tumor site and
increased metastasis

mouse (28)

origin unclear TGF-b increased recruitment to metastatic site
Th17 cells CXCL8 (IL-8) increased migration human (T) (29)

hepato-cellular
carcinoma

tumor-associated monocytes CXCL2, CXCL8 increased migration and extended
survival

human (T) (30)

cancer cells CXCL5 increased migration mouse; human (C) (31, 32)

lung cancer tumor-associated monocytes,
macrophages, neutrophils, and DCs

CXCL1 these migration-inducing chemokines
are shown to have elevated levels of
mRNA

mouse (33)

TANs CXCL2
cancer cells CXCL5

melanoma TANs CXCL1, CXCL2 increased migration to tumor site and
angiogenesis

mouse (34)

ovarian cancer tumor cells CXCL8 (most impact) and other
chemokines active via CXCR2

increased migration human (T) (35)

pancreatic
cancer

cancer cells CXCL5 increased migration to tumor site via
CXCR2

mouse (36)
stromal cells CXCL2
PDAC tumors GM-CSF, G-CSF these migration-inducing chemokines

are shown to have elevated levels of
mRNA

human (T) (37)
neoplastic ductal cells CXCL1, CXCL2, CXCL5, CXCL8 human (T)

tumor cells GM-CSF, G-CSF, CXCL1, CXCL2,
CXCL5

increased migration to tumor site via
CXCR2

mouse

thyroid cancer cancer cells chemokines active via CXCR1/2 increased migration human (C) (38)
GM-CSF increased survival
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secretory mechanisms that regulate the release of the mediators
from cancer cells into the tumor niche and how the process of
secretion may be altered due to cancer-associated changes
compared to the mechanisms observed in non/early malignant
cells. Here, we suggest that EMT induction is a key process that
alters the tumor secretome and highlight the mechanisms and
molecular players known to regulate the secretion of the
mediators. We envision that similar mechanisms underlie the
secretion of neutrophil recruiting mediators from cancer
cells (Figure 1).

Epithelial to Mesenchymal Transition
EMT is classified into three subtypes based on the biological
context. Type I EMT is associated with embryonic development
and multiple organ formation. Type 2 EMT is involved in wound
healing through tissue repair and regeneration, which if
unrestrained, could lead to tissue fibrosis, and organ damage.
Type 3 EMT is exclusively associated with malignancy and
Frontiers in Immunology | www.frontiersin.org 4
metastatic spread, where cancer cells acquire the ability to
invade locally and disseminate systemically (44). Epithelial cells
undergoing all three types of EMT tend to lose their epithelial
characteristics and acquire migratory mesenchymal cell-like
properties. However, EMT is emerging as a dynamic process
where cells adopt partial EMT or intermediate/hybrid states
featuring a combination of phenotypes of both cell types (45–
47). Type 3 EMT (subsequently referred to as EMT) triggers
cytoskeletal remodeling, loss of cell-cell adhesion and cell
polarity, and gain of migratory and invasive properties, which
are proposed to be required for metastasis. A wide range of
diffusible mediators released from transformed or non-
transformed cells in the tumor niche are known to induce
EMT, including growth factors (EGF), cytokines (TGF-b, TNF-
a), chemokines (CXCL8, CXCL6), and lipid mediators
(leukotriene B4 (LTB4)) (48, 49). Interestingly, EMT has been
associated with altered secretory profiles of cancer cells (50–54).
For instance, secreted factors from EMT-positive breast cancer
FIGURE 1 | Cartoon depicting the proposed mechanisms that regulate the cancer secretome and favor neutrophil trafficking to tumors. Cancer associated EMT
program activation alters cancer cell secretome by inducing the expression of neutrophil recruiting mediators. Three machineries, namely exocytic trafficking, secretory
autophagy, and extracellular vesicles are proposed to enhance the release of neutrophil recruiting mediators from cancer cells. The secreted mediators promote EMT
using a feed forward mechanism and initiate a chronic cycle of inflammation that supports cancer cell dissemination. TFs, transcription factors; RE, recycling endosome.
September 2021 | Volume 12 | Article 734188
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cell lines have been reported to induce the in vivo recruitment of
granulocytic myeloid derived suppressor cells (G-MDSC), which
phenotypically resemble murine neutrophils and share
immunosuppressive functions with “N2” neutrophils (50, 55).
EMT-induced altered secretome of breast cancer cell lines also
favors a tumor-permissive niche by activating tumor-associated
macrophages, which further support EMT induction of cancer
cells (54).

EMT inducing signals mediate their effects by stimulating a
transcription program via the activation or enhanced expression
of key EMT transcription factors: SNAIL, Twist and Zeb family
proteins, and the T-box transcription factor Brachyury (56, 57).
The role of these transcription factors in suppressing epithelial
cell-cell adhesion proteins and inducing mesenchymal adhesion
molecules has been widely studied (58, 59). Interestingly, the
same transcription factors are also emerging as key regulators for
the expression of mediators such as cytokines (TNF-a),
chemokines (CCL2, CXCL6, GRO, CXCL8, CXCL11), and
growth factors (GM-CSF) in cancer cells (50, 52, 53, 60–63).
For example, chemokines, including CXCL6 and CXCL8, are one
of the many secreted mediators that are upregulated in a Snail-
dependent manner when EMT pathways are activated in cancer
cells by EGF or TGF-b treatment (50). As many of the secreted
mediators from EMT-activated tumors are established
chemoattractants of neutrophils (GRO, CXCL8, GM-CSF) and
monocytes (CCL2), the release of these mediators upon EMT
induction is poised to regulate the immune landscape of the
tumor niche.

Exocytic Trafficking Pathways
Conventional mechanisms that underlie the secretion of
diffusible mediators, such as cytokines and chemokines, involve
constitutive and regulated exocytosis pathways, depending on
the cellular and inflammatory context (64–66). Much of our
current knowledge comes from characterization in immune cells,
particularly macrophages and dendritic cells (DCs) for
constitutive secretion, and granulocytes for regulated secretion.
In general, cytokines and chemokines carry a leader peptide
sequence for secretion that facilitates their trafficking through the
ER-Golgi network. Newly synthesized proteins are continuously
exocytosed through trafficking from the Golgi network to the
plasma membrane via small transport vesicles or tubules, which
transport the cargo to the plasma membrane either directly or by
merging with recycling endosomes (67). In contrast, pre-formed
proteins after transiting through the Golgi network are
stockpiled in vesicles or granules, which undergo regulated
exocytosis in response to external inputs through receptor-
ligand interactions (65). Key molecular players of the
trafficking machinery include the evolutionary conserved
membrane fusion proteins of the soluble N-ethylmaleimide-
sensitive factor (NSF) attachment protein receptor (SNARE)
protein family (67). Fusion of the vesicle and target membrane
to form the core-SNARE complex is mediated by V (vesicle-
associated)-SNARE and t (target membrane)-SNARE members
for both constitutive and regulated exocytosis. For instance, the
V-SNARE member vesicle-associated membrane protein 3
(VAMP3) localized in recycling endosomes mediates the
Frontiers in Immunology | www.frontiersin.org 5
membrane fusion of CXCL6- and TNF-a-carrying vesicles
with the plasma membrane that leads to their constitutive
secretion from macrophages and DCs (68–70). In granulocytes,
such as eosinophils, however, CXCL6 is released through
receptor mediated degranulation or regulated exocytosis, where
the function of late endosomal V-SNARE members such as
VAMP2 and VAMP7 have been implicated (71–74). VAMP7
is also reported to control the release of CXCL12 from VAMP7-
positive late endosomal compartments in DCs, suggesting that
the trafficking machinery varies greatly depending on cell types
and mediators. Further, both V-SNAREs and t-SNAREs may
play a rate-limiting role as their upregulation has been noted in
stimulated macrophages and DCs with concomitant increase in
mediator secretion (70, 75, 76). In addition, other molecular
players such as Rho GTPases, including Rac1 and Cdc42, play
important roles in TNF secretion in macrophage by delivering
TNF-carrying recycling endosomes to the cell surface (77).

While cytokine trafficking in epithelial cells most likely
utilizes the constitutive pathway (64), the mechanisms
underlying mediator secretion are not well established in
malignant cells even though cancer cells are known to
abundantly secrete diverse mediators. An upregulation of
signature genes associated with ER to Golgi trafficking
pathways has been linked to the increased secretion of
mediators, including CCL20, from murine breast cancer cell
lines with high metastatic potential (78). Moreover, it has been
shown that the secretion of CCL5 depends on the exocytosis of
CCL5-carrying pre-made vesicles in the hormone receptor
positive breast cancer cell line MCF-7 (79). Whether specific
VAMP proteins mediate CCL5 trafficking and vesicle fusion with
the plasma membrane and if/how the machinery differs in early-
and late-stage malignant cells compared to non-malignant
epithelial cells have yet to be determined. Of note, VAMP3 has
been reported to be involved in CXCL6 and TNF-a release from
the synovial sarcoma cell line SW982, indicating an active role of
VAMP proteins in diffusible mediator secretion from cancer cells
(80). Furthermore, studies have reported enhanced expression of
V-SNARE and t-SNARE members in cancer cells along the
course of tumor progression, which may further promote the
exocytic release of the mediators in the TME (81).

Autophagy
An unconventional mechanism for diffusible mediator secretion
is autophagy. Autophagy is traditionally known for intracellular
degradation and recycling of cargos, including damaged
organelles or protein aggregates, to maintain cellular
homeostasis. The fusion of autophagic vacuole carrying cargos
with lysosomes results in cargo degradation by acid hydrolysis
and proteolysis (82). Our understanding of the machinery
involved in autophagy-dependent secretion, also known as
secretory autophagy (SA) (83), is however less clear. Under
nutrient deprived conditions in yeast, SA is known to mediate
the release of leader peptide-less proteins (84). However, there is
emerging evidence that SA is involved in the secretion of
mediators that are both leader-less, such as IL-1b and IL18,
and leader-positive, such as CXCL6, CXCL8, and TGF-b (85, 86).
Attempts to define the sequence of events leading to SA of IL-1b
September 2021 | Volume 12 | Article 734188
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from macrophages in response to lysosomal damage identified
several molecular players key to the process (87). For example,
TRIM16 serves as the SA cargo receptor that together with
VAMP member Sec22b sequesters IL-1b in LC3-II-positive
vesicles, where LC3-II is a canonical autophagosome marker.
Further, the fusion of cargo vesicles with the plasma membrane
as well as the release of cargos are achieved by the coordinated
action of dedicated SNARE proteins including syntaxin 3,
syntaxin 4, SNAP-23, and SNAP-29.

SA in both cancer cells and CAFs has recently been implicated in
shaping the tumor secretome and promoting cancer progression
(88, 89). For instance, secretion of CXCL8, IL-1b, LIF (leukemia
inhibitory factor), and Fam3 (family with sequence similarity 3
member C) were found elevated or impaired in a murine melanoma
cell line when stimulated with an autophagy-inducing peptide or
subjected to autophagy related gene knockdown approaches,
respectively (90). More strikingly, a correlation between the
elevated presence of the same mediators in the serum of patients
with high-autophagy melanoma, compared to patients with low-
autophagymelanoma, was reported in the same study. Autophagy is
also recognized to contribute to oncogenic RAS driven cancer cell
migration and invasion by inducing the secretion of the migration
promoting CXCL6 chemokine and the transcription of pro-invasive
molecules, includingMMP2 andWNT5A (91). In addition, CXCL6
secretion was mediated by autophagy in the triple-negative breast
cancer cell line MDA-MB-468, which depends on autophagy for
survival (92). In contrast, autophagy inhibition promoted CXCL6
secretion from MCF-7 cells, which otherwise does not depend on
autophagy for survival. The apparent contrasting effect of autophagy
on CXCL6 secretion reflects context dependent regulation of
cytokine secretion by autophagy and highlights the need to
explore more comprehensively the role of autophagy in mediator
secretion in different cancer types and subtypes.

Extracellular Vesicles
Extracellular vesicles (EVs) are heterogeneous in size (93).
Exosomes are smaller EVs with a diameter less than 150 nm
that originate as intraluminal vesicles (ILVs) by the inward
budding of late endosomal vesicles that form multivesicular
bodies (MVBs). Upon fusion of MVBs with the plasma
membrane, ILVs are released as exosomes in the extracellular
milieu. By contrast, other larger EVs (diameter up to 1000 nm) are
generated through the outward budding of the plasma membrane
(93) and come in different flavors, including microvesicles or
ectosomes, migrasomes (secreted along retraction fibers of
migrating cells), and oncosomes (secreted by cancer cells) (93–
96). EVs are well established as vehicles for diverse cargos,
including proteins, lipids, and nucleic acids that mediate
intercellular communication. EVs released from cancer cells,
CAFs, and immune cells have been shown to induce directional
migration of the same or other cell types through autocrine and
paracrine communication (93, 97). Interestingly, cancer cell-
secreted exosomes were shown to mediate the systemic
mobilization of neutrophils to the spleen in an in vivo model of
breast cancer (98). However, the role of exosomes as the vehicle for
tumor-secreted mediators that directly induce neutrophil
migration remains to be determined. A diverse group of
Frontiers in Immunology | www.frontiersin.org 6
cytokines, chemokines and growth factors were found to be
associated at the surface of EVs or encapsulated inside EVs that
were isolated from cultured immune cells, tissue explants, and
different types of biological fluids (99). The availability of the
mediators in a free or EV-associated form was reported to depend
on the activating stimuli and the cellular system studied.
Furthermore, CCL chemokines were found to be enriched in
exosomes when tumor cells were exposed to heat stress (100). The
degree of exosomal chemokine release may therefore be tunable as
tumor cells are exposed to changing physicochemical factors in the
dynamic TME. EVs are also emerging as a vital means of tumor-
stromal cell communication that further promote tumor
progression and metastasis. For instance, osteosarcoma cells
release EVs carrying membrane-associated TGF-b1, which was
shown to educate mesenchymal stromal cells to release CXCL6,
and promote further tumor growth and metastasis (101). In
addition, osteosarcoma-derived EVs were shown to induce lung
fibroblast differentiation in a TGF-b1 dependent manner,
indicating a potential role of EV-associated immune mediators
to endorse distant metastasis (102).
INTERPLAY BETWEEN TGF-b AND
CHEMOKINES TO MAXIMIZE
NEUTROPHIL RECRUITMENT

Asmentioned, given the presence of diverse cell types in the tumor
niche, the TME harbors multiple diffusible mediators. Neutrophil
navigation to the tumor niche could therefore be orchestrated by
the interplay of different mediators. We recently reported that
CXCR2 ligands, potentially growth-related oncogene (GRO)
members (CXCL1/2/3), and TGF-b1, which are abundantly
secreted by triple-negative breast cancer cells, concertedly induce
robust neutrophil migration (24). TGF-b ligands belong to the
TGF-b subfamily, with three known mammalian isoforms: TGF-
b1, TGF-b2 and TGF-b3, of which TGF-b1 is the most commonly
expressed. Cells secrete all isoforms as a latent complex that is
activated by the presence of integrins, ECM proteins, and
proteolytic enzymes (103). Once released in an active form, all
isoforms interact and activate the type II/type I TGF-b receptor
complex and propagate signals through SMAD-dependent and
-independent pathways (104, 105). TGF-b target genes are
involved in regulating fundamental cellular functions such as
proliferation, differentiation, migration, senescence, apoptosis,
along with maintaining immune homeostasis. The signaling
outcome of TGF-b is highly context dependent in cancer.
During early stages of cancer, it can prevent tumorigenesis by
inhibiting cell proliferation, regulating cell cycle progression, and
promoting apoptosis. However, cancer-associated disruption of
TGF-b receptor/signaling components and/or the activation of
EMT inducing signaling of TGF-b may promote the
dissemination of cancer cells (105, 106). The mechanistic basis
for the complexity of TGF-b signaling outcome has achieved
significant clarity over the years. However, the mechanism and
outcome of the crosstalk of TGF-b with other diffusible mediators
on tumor progression are only beginning to be understood.
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Both cancer and immune cells express TGF-b receptors.
Receptor expression on immune cells is further modulated by the
mediators present in the tumor niche. For instance, mediators
secreted from metastatic prostate cancer cells upregulate the gene
expression of the type I TGF-b receptor (TGF-b RI) in neutrophils
(107), suggesting that the effect of TGF-b on neutrophil function is
tunable. In an in vivo murine model of lung cancer and
mesothelioma, TGF-b has been reported to promote the tumor
supporting functions of neutrophils and treatment with a systemic
inhibitor of TGF-b RI led to increased neutrophil recruitment to
tumors indicating a negative regulation of neutrophil migration by
TGF-b signaling (8). Conversely, TGF-b signaling was reported to
promote neutrophil recruitment to metastatic sites in a genetically
engineered in vivomousemodel of metastatic colorectal cancer (28).
Additionally, in vitro studies documented various ways by which
TGF-b can foster or hinder other neutrophil responses, such as
prolonging neutrophil survival, promoting phagocytosis and
respiratory burst (108), and impairing granule exocytosis (109).

The role of TGF-b in directional migration of neutrophils is,
surprisingly, not clear. Studies have reported strong to no direct
effect of TGF-b on neutrophil chemotaxis (110, 111). Given its
pleiotropic role, TGF-b may indirectly regulate neutrophil
chemotaxis. Indeed, TGF-b1 was reported to promote
chemotaxis of immature DCs to CC and CXC chemokines by
upregulating chemokine receptor expression (112). Whether
TGF-b1 uses a similar mechanism to regulate CXCR1/2
expression and mediate its effect on neutrophil chemotaxis
remains unknown. TGF-b1 has also been reported to promote
the secretion of CXCL5 from hepatocellular carcinoma cell lines,
which in turn induces neutrophil migration (32). Furthermore,
TGF-b1 is known to enhance the secretion of leukotrienes from
monocyte-derived macrophages and DCs, of which LTB4 is a
potent neutrophil recruiting lipid mediator (113, 114). Finally,
chemokines may also synergize with TGF-b to optimize cellular
responses by triggering the activation of downstream signaling
components, such as SMAD3, which was reported to be
phosphorylated by chemokines like CCL2 (115).
TARGETING STRATEGIES/PERSPECTIVE

Our knowledge of the multifaceted functions of neutrophils in
cancer is rapidly expanding. Yet, a precise understanding of the
diffusible mediators that are secreted in the TME and induce
Frontiers in Immunology | www.frontiersin.org 7
neutrophil trafficking to the tumor niche is lacking. Many cancer
therapeutic strategies, such as chemotherapy, radiotherapy, and
immune-checkpoint inhibitors, have the potential to affect the
level of circulating neutrophils or modulate the recruitment or
function of TANs, which may in turn impact patient prognosis
(116). More effort should therefore be placed on directly
targeting the diffusible mediators themselves or the pathways
that underlie neutrophil recruitment to the TME. Integrating
such neutrophil-focused approaches with routinely applied
therapeutic strategies may lead to a synergistic protection
against cancer progression. However, the fact that neutrophils
are quintessential soldiers of the immune system requires careful
consideration in developing neutrophil targeting strategies for
cancer therapy. From a mechanistic standpoint, it is therefore
crucial to address several questions in the context of neutrophil
recruitment to specifically target the process without
compromising the overall protective role of neutrophils. For
example, (i) which trafficking molecules regulate the secretion of
neutrophil recruiting mediators in cancer cells? (ii) Does EMT
induction change the expression of these regulators and enhance
the release of the mediators? (iii) Does the exocytic pathway/SA/
EV-dependent release of mediators further promote EMT by
triggering an autocrine-paracrine loop? and (iv) How do
mediators from distinct classes such as chemokines and
cytokines/growth factors/lipid mediators collaborate to
optimize neutrophil recruitment to tumors and reprogram
TAN function? Addressing these basic questions will provide a
deeper understanding of the molecular players and signaling
components that dictate neutrophil trafficking to tumors, which
will assist in the design of effective therapeutic strategies.
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