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Manuel González-Garay13, Elena Espinosa14, Arturo Muriel9, David Domı́nguez14,
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Acute respiratory distress syndrome (ARDS) is an inflammatory process of the lungs that
develops primarily in response to pulmonary or systemic sepsis, resulting in a
disproportionate death toll in intensive care units (ICUs). Given its role as a critical
activator of the inflammatory and innate immune responses, previous studies have
reported that an increase of circulating cell-free mitochondrial DNA (mtDNA) is a
biomarker for fatal outcome in the ICU. Here we analyzed the association of whole-
blood mtDNA (wb-mtDNA) copies with 28-day survival from sepsis and sepsis-associated
ARDS. We analyzed mtDNA data from 687 peripheral whole-blood samples within 24 h of
sepsis diagnosis from unrelated Spanish patients with sepsis (264 with ARDS) included in
the GEN-SEP study. The wb-mtDNA copies were obtained from the array intensities of
selected probes, with 100% identity with mtDNA and with the largest number of
mismatches with the nuclear sequences, and normalized across the individual-probe
intensities. We used Cox regression models for testing the association with 28-day
survival. We observed that wb-mtDNA copies were significantly associated with 28-day
survival in ARDS patients (hazard ratio = 3.65, 95% confidence interval = 1.39–9.59, p =
0.009) but not in non-ARDS patients. Our findings support that wb-mtDNA copies at
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sepsis diagnosis could be considered an early prognostic biomarker in sepsis-associated
ARDS patients. Future studies will be needed to evaluate the mechanistic links of this
observation with the pathogenesis of ARDS.
Keywords: ARDS, mitochondria, DAMPs, whole blood, mtDNA, survival
INTRODUCTION

The acute respiratory distress syndrome (ARDS) is a lung
inflammatory process that develops primarily as a response to
respiratory or systemic-induced sepsis, which causes a
disproportionate mortality burden in the adult intensive care
unit (ICU) and has disabling consequences for years in surviving
patients (1–3). ARDS occurs in 7 cases per 100,000 people per
year, although the estimate varies widely among studies since the
clinical diagnostic criteria are nonspecific. Its overall mortality
rate remains high in most series, around 30%–40% (2–4). ARDS
still has no effective and efficient treatment despite multiple
studies that have focused on identifying the pathophysiology
and improving the prognosis of these patients since it was
first described. To date, lung-protective mechanical ventilation
(MV) remains the main standard supportive ARDS treatment
(5, 6) and there is no specific pharmacological therapy
for it. Thus, identifying specific biomarkers will help to
develop early therapeutic and preventive therapies, while
assisting in predicting the prognosis of individual ARDS
patients (3, 7, 8).

Mitochondria are a bioenergetic and biosynthetic cell
organelle and a signaling hub that controls several important
cellular functions, including cell survival and differentiation, as
well as functioning of inflammatory responses (9, 10). The
multiorgan and cellular dysfunction underlying sepsis and
leading to ARDS could trigger mitochondrial dysfunction,
which is characterized by fragmentation of the mitochondria
and loss of integrity of mitochondrial DNA (mtDNA) (11).
Previous studies have shown that, while the cellular mtDNA
levels decrease, the cell-free mtDNA levels increase in response
to a stimulus due to major trauma or a microbial infection (12–
16). Based on evidence from animal models (17) and patient
studies (18, 19), circulating mtDNA levels have been proposed as
a potential biomarker for the systemic inflammatory response
and lung injury after major trauma.

Cell-free mtDNA is considered a molecular pattern associated
with damage (DAMPs) and could act as a critical activator of the
innate immune system and inflammation (7, 9, 20, 21).
Circulating cell-free mtDNA, measured by quantitative PCR
(qPCR), has been associated with the overall 28-day mortality
in ICU patients (22). Among ARDS patients, plasma mtDNA
levels measured by qPCR on day 7 after diagnosis were
significantly higher among non-surviving patients (23).
Similarly, the plasma mtDNA levels among sepsis patients
admitted to the emergency room were significantly higher
among those who did not survive, and a score combining their
levels with plasma lactate concentration considerably improved
the 28-day mortality prediction (24). In fact, molecular patterns
org 2
associated with mtDNA damage in transfusion products
significantly contribute to the incidence of ARDS after massive
transfusions (25).

Based on this evidence, and following a pragmatic approach,
we tested the association of array-based measures of whole-blood
mtDNA (wb-mtDNA) copies within 24 h of sepsis diagnosis
with 28-day patient survival. We hypothesized that early wb-
mtDNA measurements could be associated with mortality in
patients with sepsis and ARDS.
METHODS

Study Population
Peripheral blood samples and clinical information from 687
unrelated adult patients of European ancestry aged between 18
and 93 years from the network of Spanish postsurgical units and
ICUs (GEN-SEP study) were used for this study (Table 1). The
GEN-SEP cohort is a national, multicenter, observational study
conducted in Spain between January 2002 and June 2019. For
the purpose of this study, sepsis was defined according to the
Third International Consensus Definitions for Sepsis (26). ARDS
was defined according to the Berlin definition criteria (1).
All participants gave written informed consent, and the study
was approved by the Research Ethics Committee from all
participating centers.

Measures of Whole-Blood mtDNA Levels
DNA was purified using a commercial column-based solution
(Illustra™ blood genomicPrep Mini Spin Kit) from peripheral
blood drawn within 24 h of sepsis diagnosis, and the
concentration was measured on the Qubit 3.0 fluorometer with
the dsDNA HS Assay kit (Thermo Fisher Scientific). All samples
were assessed for single-nucleotide polymorphisms (SNPs)
across the genome using the Axiom Genome-Wide Human
CEU 1 Array data (Thermo Fisher Scientific) in the National
Genotyping Center (CeGen), Universidad de Santiago de
Compostela Node, Spain. The intensity data were processed
using AffyPipe v2.10.0 (27), following the quality controls
recommended by the manufacturer. Further genotyping quality
controls were performed with the R environment v3.6.0 and
PLINK v1.07 (28). Samples with genotype call rates <95% or with
evidence of relatedness (PIHAT > 0.2) were removed from the
study. Likewise, we excluded SNPs based on genotyping rate
<95%, minor allele frequency (MAF) <0.01, and largely deviating
from Hardy–Weinberg expectations (p <1×10-6). Principal
components (PCs) to assess genetic heterogeneity among
patients were obtained from a subset of approximately 100,000
September 2021 | Volume 12 | Article 737369
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independent variants using PLINK v1.90 (29), and the first 5 PCs
were used for sensitivity analysis.

To obtain a measure of the wb-mtDNA copies, we selected
mtDNA probes from the array data and normalized (log R ratio)
across the individual-probe intensities of the cohort following the
methodology described by Tin and colleagues (11). To ensure
specificity of the estimations, we used the average of the GC
content-corrected intensities of the array probes targeting the
human mtDNA with 100% identity, with the largest number of
mismatches against the nuclear sequences based on BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). Probes behaving as
outliers (beyond 1.5 SD of the mean) for the corrected
intensities were then removed from the analysis. These filtering
steps left us with a total of 17 probes to obtain the wb-mtDNA
copy estimates, which were finally available for a total of 687
sepsis patients, where 181 subjects died in the ICUs within 28
days from sepsis onset. A total of 264 patients developed ARDS,
and 96 of them died within 28 days from sepsis onset (Table 1).
Frontiers in Immunology | www.frontiersin.org 3
Statistical Analyses
The statistical power of the study was estimated using the
formula nevent = (4*(Zalfa+Zbeta)

2)/[Ln(RR)]2 (30), supporting
that as few as 88 events were needed to reach 90% statistical
power. The “survival” R package 3.1-12 (31) was used to model
the association between wb-mtDNA copies and 28-day survival
in all patients with sepsis (N = 687), in those who developed
ARDS (N = 264), and in non-ARDS patients (N = 423). Cox
regressions and Kaplan–Meier analyses were performed.
Sensitivity analyses were used to evaluate the effects of
demographic and clinical variables on the Cox regression
models. Finally, receiver operating characteristic (ROC) curves
and their area under the curve (AUC) estimates were assessed
with “pROC” R package 1.17.0.1 (32).
RESULTS

Demographic and clinical features of all sepsis patients and of
those with or without ARDS are shown in Table 1. As expected,
there were large and significant differences between ARDS and
non-ARDS patients for their severity scores, hospital and ICU
length of stay, mortality rate, and physiological variables such as
the partial pressure of oxygen (PaO2). There were differences in
the organ dysfunction among ARDS and non-ARDS patients
(ANOVA, p < 0.001). However, as expected, they were due to the
lung affectation. On the other hand, for the pathogens, we did not
observe significant differences between ARDS and non-ARDS
patients (ANOVA, p = 0.127).

We first found that the association between wb-mtDNA
copies within 24 h of sepsis diagnosis and 28-day survival
among all patients with sepsis from GEN-SEP was significant
(Table 2). We then tested the same model stratifying the sepsis
patients by those who did not develop ARDS and those who
developed ARDS. In all models, the proportional risk assumption
was held. Although we did not observe any association between
wb-mtDNA copies and 28-day survival in septic non-ARDS
patients, we found a strong association in septic patients who
developed ARDS (hazard ratio [HR] = 3.65, 95% confidence
interval [CI] 1.39–9.59, p = 0.009). Taken together, this indicates
that the significant association between the wb-mtDNA copies
within 24 h of sepsis diagnosis and 28-day survival observed
among all GEN-SEP patients could be explained by those
developing ARDS. A Kaplan–Meier analysis of the 28-day
mortality among the ARDS patients reinforced this observation
(log-rank test p = 0.037) (Supplementary Figure S1).

Given that there were demographic and clinical differences
between ARDS patients that survived and that did not survive
(Table 3), sensitivity analyses were conducted to ensure that
TABLE 2 | Association results of wb-mtDNA copy number with 28-day mortality.

Cohorts (N/events) Hazard ratio (95% CI) p-value

All patients (687/181) 2.39 (1.18–4.84) 0.015
Non-ARDS (423/85) 1.24 (0.44–3.51) 0.683
ARDS (264/96) 3.65 (1.39–9.59) 0.009
S
eptember 2021 | Volume 12 | Article
TABLE 1 | Demographic and clinical features among sepsis, non-ARDS, and
ARDS related to sepsis cases from the GEN-SEP study.

All sepsis
(N = 687)

Non-ARDS
(N = 423)

ARDS
(N = 264)

p-value*

Gender, % male (N) 63 (430) 60 (255) 66 (175) 0.133
Age, mean years ± SD 64 ± 15 64 ± 15 63 ± 14 0.139
BMI, mean ± SD 27 ± 6 27 ± 5 29 ± 7 0.029
SAPS, mean ± SD 47 ± 15 46 ± 15 49 ± 14 0.071
APACHE II, mean ± SD 20 ± 7 19 ± 7 22 ± 7 <0.001
Comorbidities$, % (N) 43 (256) 45 (174) 39 (82) 0.237
28-day mortality, % (N) 26 (181) 20 (85) 36 (96) <0.001
ICU mortality, % (N) 28 (194) 19 (82) 42 (112) <0.001
Days in hospital, mean ± SD 35 ± 40 33 ± 44 38 ± 33 <0.001
Days in ICU, mean ± SD 16 ± 23 12 ± 22 22 ± 23 <0.001
Organ dysfunction, % (N)
Cardiovascular 90 (619) 87 (375) 92 (244) 0.137
Neurological systems 22 (152) 20 (85) 25 (67) 0.128
Coagulation 24 (168) 23 (98) 26 (70) 0.386
Hepatic 17 (117) 18 (75) 16 (42) 0.579
Renal 37 (252) 35 (150) 39 (102) 0.476
Respiratory 59 (404) 37 (157) 94 (247) <0.001

Total SOFA#, mean ± SD 8 ± 4 8 ± 4 8 ± 4 0.257
Partial pressure of oxygen
(PaO2), mean ± SD

109 ± 47 116 ± 51 96 ± 37 <0.001

Sepsis of pulmonary origin,
% (N)

34 (229) 25 (103) 48 (126) <0.001

Pathogen, % (N)
Gram-positive 26 (126) 24 (74) 30 (52) 0.151
Gram-negative 35 (171) 35 (108) 36 (63) 0.747
Others+ 29 (139) 29 (93) 26 (46) 0.532
*p-value calculated between non-ARDS and ARDS patients. Comparisons for gender,
comorbidities, 28-day mortality, ICU mortality, sepsis of pulmonary origin, organ
dysfunction, and pathogen were conducted by a chi-square test. The rest of variables
were compared using the Mann–Whitney U-test.
$Includes: cancer, age >80 years, hepatopathy, valvular disease, immunodeficiency,
severe brain damage, morbid obesity, chronic disease, autoimmune disease,
pregnancy, myopathy, pneumonia, and serious recurrent infections.
#Total SOFA: sum of the cardiovascular, neurological systems, coagulation, hepatic, renal,
and respiratory SOFA scores.
+Includes: mixed Gram-positive and Gram-negative infection, fungi, virus, and
polymicrobial.
APACHE II, Acute Physiology and Chronic Health Evaluation II; BMI, body mass index;
ICU, intensive care unit; SAPS, Simplified Acute Physiology Score II; SOFA, Sequential
Organ Failure Assessment.
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those differences did not explain the association with wb-
mtDNA. Note that there were no overall differences among
ARDS patients in the organ dysfunction (ANOVA, p = 0.159)
or in the pathogens (ANOVA, p = 0.985), therefore not affecting
the sensitivity analyses. We found that the association was robust
to model adjustments by variables that were not significantly
different between survivor and non-survivor ARDS patients (e.g.,
gender, comorbidities, and the first five PCs of genetic
heterogeneity). Likewise, the results of the univariate model
with wb-mtDNA levels were similar to those with independent
adjustment by age, SAPS, APACHE II score, and organ
dysfunction, where the assumption of proportionality risk was
held (Table 4). The only two adjusted models that did not hold
for the proportionality risk assumption were those including as
covariates the length of stay in ICU or in the hospital, for which
conclusions should be taken with caution. Based on these
findings, we tested multivariate models in the sensitivity
analyses except those with a high proportion of missing data
(i.e., SAPS) or were variable adjustments that turned into
violated assumptions of the proportionality of risks in the
sensitivity analyses (i.e., length of stay in ICU or in the
hospital) (Table 4). We found that when including age and
Frontiers in Immunology | www.frontiersin.org 4
APACHE II score, the association of wb-mtDNA with survival
was similar (HR = 4.51, 95%CI = 1.62–12.47, p = 0.004) and the
proportionality of risk was held. The results were similar, and the
proportionality of risk was also held, when the model adjusting
for age and APACHE II also included the organ dysfunction
categories that reached nominal significance in the differences
between ARDS patients that survived and that did not survive
(HR = 4.40, 95%CI = 1.55–12.53, p = 0.006).

Among the ARDS patients, the AUC of the wb-mtDNA copy
number for the 28-day survival was 0.612 (95% CI = 0.541–
0.683) (Supplementary Figure S2). However, this predictive
value was similar to that provided by other clinical scores
routinely used in clinical settings. As an example, for the same
patients, the prognostic ability of the APACHE II score reached
an AUC of 0.634 (95% CI = 0.565–0.704) (Supplementary
Figure S2). Combining both the wb-mtDNA copy number and
the APACHE II score in the models, the AUC slightly improved
to 0.676 (95% CI = 0.609–0.742) although the AUC of the two
curves (wb-mtDNA alone and wb-mtDNA plus APACHE II
together) were not significantly different (p = 0.062) based on
DeLong’s test for two correlated ROC curves.
DISCUSSION

Given the multifactorial risks involved in the prognostic
trajectories of ICU patients (33), the identification of an ideal
biomarker for predicting outcomes is a difficult task. One of the
hallmarks of ARDS is the presence of inflammatory, protein-
enriched pulmonary edema (1), caused by an increase in the
permeability of the lung tissue (34, 35) and elevating the risk of
death (2). It has been reported that DAMPs, including mtDNA,
increase endothelial permeability through neutrophil-dependent
and independent pathways (36). In a sufficiently powered cohort
of Spanish patients recruited from a nationwide network of
postsurgical ICUs, we describe evidence supporting that
TABLE 3 | Demographic and clinical features of the ARDS patients.

Survivors
(N = 168)

Non-survivors
(N = 96)

p-
value*

Gender, % male (N) 66 (111) 67 (64) 1.000
Age, mean years ± SD 62 ± 14 66 ± 13 0.021
BMI, mean ± SD 29 ± 7 27 ± 5 0.192
SAPS, mean ± SD 47 ± 13 54 ± 16 0.004
APACHE II score, mean ± SD 21 ± 7 24 ± 7 <0.001
Comorbidities$, % (N) 40 (59) 37 (23) 0.707
Days in hospital, mean ± SD 51 ± 35 17 ± 11 <0.001
Days in ICU, mean ± SD 29 ± 26 11 ± 7 <0.001
Organ dysfunction, % (N)
Cardiovascular 92 (155) 93 (89) 1.000
Neurological systems 21 (35) 34 (32) 0.031
Coagulation 21 (35 36 (35) 0.009
Hepatic 12 (20) 23 (22) 0.029
Renal 31 (52) 52 (50) 0.001
Respiratory 94 (158) 93 (89) 0.868

Total SOFA#, mean ± SD 8 ± 4 8 ± 5 0.834
Partial pressure of oxygen (PaO2),
mean ± SD

95 ± 33 100 ± 44 0.627

Sepsis of pulmonary origin, % (N) 51 (84) 44 (42) 0.323
Pathogen, % (N)
Gram-positive 29 (32) 34 (20) 0.537
Gram-negative 39 (45) 31 (18) 0.320
Others+ 25 (28) 31 (18) 0.511
*p-value calculated between survivors and non-survivors. Comparisons for gender,
comorbidities, sepsis of pulmonary origin, organ dysfunction, and pathogen were
conducted by a chi-square test. The rest of variables were compared using the Mann–
Whitney U-test.
$Includes: cancer, age >80 years, hepatopathy, valvular disease, immunodeficiency,
severe brain damage, morbid obesity, chronic disease, autoimmune disease,
pregnancy, myopathy, pneumonia, and serious recurrent infections.
#Total SOFA: sum of the cardiovascular, neurological systems, coagulation, hepatic, renal
and respiratory SOFA scores.
+Includes: mixed Gram-positive and Gram-negative infection, fungi, virus and
polymicrobial.
APACHE II, Acute Physiology and Chronic Health Evaluation II; BMI, body mass index;
SAPS, Simplified Acute Physiology Score II; SOFA, Sequential Organ Failure Assessment.
TABLE 4 | Association results of wb-mtDNA levels with 28-day survival in ARDS
patients adjusting the models for the variables that were significantly different by
mortality group.

N Hazard ratio
(95% CI)

p-value

wb-mtDNA levels 264 3.65 (1.39–9.59) 0.009
Adjusted by age 264 3.99 (1.46–10.87) 0.007
Adjusted by SAPS 131 7.93 (1.57–39.93) 0.012
Adjusted by APACHE II score 258 4.26 (1.56–11.64) 0.005
Adjusted by organ dysfunction:
Neurological systems 263 3.48 (1.30–9.27) 0.013
Coagulation 264 3.93 (1.47–10.42) 0.006
Hepatic 264 3.66 (1.39–9.62) 0.009
Renal 264 3.85 (1.46–10.20) 0.007

Adjusted by days in hospital* 228 5.77 (1.70–19.53) 0.005
Adjusted by days in ICU* 264 4.64 (1.67–12.87) 0.003
Adjusted by age, APACHE II 258 4.51 (1.62–12.57) 0.004
Adjusted by age, APACHE II, organ
dysfunction

257 4.40 (1.55–12–53) 0.006
September
 2021
 | Volume 12 | Article
*Statistically significant for the Schoenfeld test of the proportionality of risks.
APACHE II, Acute Physiology and Chronic Health Evaluation II; ICU, intensive care unit;
SAPS, Simplified Acute Physiology Score II.
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mtDNA copies measured in peripheral blood within 24 h of
sepsis diagnosis were associated with 28-day survival in patients
developing ARDS. Given that the association was absent among
non-ARDS patients from the same series, our findings might
suggest an ARDS-specific effect.

In agreement with our findings, Nakahira and colleagues
observed an association between circulating cell-free mtDNA
with overall patient 28-day mortality in the ICUs and if they
combined mtDNA levels with other clinical parameters, the
prediction of the ICU patients improved (22). Other studies
have shown that high mtDNA plasma levels could be associated
with sepsis and ARDS (19, 23, 24, 37). In one of these studies,
high mtDNA plasma levels and a strong association with 28-day
survival were observed in patients with sepsis and septic shock
(24). Supporting our results, Huang and colleagues also observed
a positive association between higher mtDNA plasma levels and
28-day mortality among patients with all-cause ARDS, although
their findings revealed an association only with mtDNA
measures of day 7 after diagnosis (23). Likewise, mtDNA
plasma levels were also analyzed in other critically ill patients,
such as the patients affected by the coronavirus disease 2019
(COVID-19) (38) or trauma patients (19), where also high
mtDNA levels were associated with poor prognostics or
outcomes of these diseases.

Among the strengths of this study, we recognize that it was
based on a well-phenotyped and clinically characterized cohort
of sepsis and ARDS patients. In addition, the wb-mtDNA
estimates were obtained with a method that is not subject to
the sample conservation problems linked to the qPCR (39).
Related to this, given that we relied on an SNP array platform,
we were able to perform model adjustments by the genetic
heterogeneity, which is inherent in any heterogeneous patient
population. Nevertheless, our study has some major limitations
as well. The main weakness is that the models lacked adjustments
by platelet count or the different cell populations, precluding
determination of the contribution of the different types of white
blood cells and platelets to the overall wb-mtDNA copy number
estimation (13, 40). Another important limitation is that we were
unable to adjust the models for other relevant clinical data that
can be prognostic of ARDS such as creatinine, mean arterial
pressure, Glasgow coma scale, and urine, among others. The
analyses also lacked longitudinal measures that could have
provided dynamical insights into mtDNA levels and outcomes
(23). Besides, we have considered all the mtDNA content from
the peripheral blood limiting the comparisons with other studies
that have focused on the circulating cell-free fraction of mtDNA
(22, 41). A final important limitation is that we were not able to
infer causality.
CONCLUSIONS

Wb-mtDNA copies measured within 24 h of sepsis diagnosis are
significantly associated with 28-day survival in ARDS patients.
Further studies should disentangle whether this association is
Frontiers in Immunology | www.frontiersin.org 5
independent of sepsis and whether the causality of wb-mtDNA
elevation is involved in the pathogenesis of ARDS.
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