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The complexity of transplant medicine pushes the boundaries of innate, human reasoning.
From networks of immune modulators to dynamic pharmacokinetics to variable postoperative
graft survival to equitable allocation of scarce organs, machine learning promises to inform
clinical decision making by deciphering prodigious amounts of available data. This paper
reviews current research describing how algorithms have the potential to augment clinical
practice in solid organ transplantation. We provide a general introduction to different machine
learning techniques, describing their strengths, limitations, and barriers to clinical
implementation. We summarize emerging evidence that recent advances that allow machine
learning algorithms to predict acute post-surgical and long-term outcomes, classify biopsy and
radiographic data, augment pharmacologic decision making, and accurately represent the
complexity of host immune response. Yet, many of these applications exist in pre-clinical form
only, supported primarily by evidence of single-center, retrospective studies. Prospective
investigation of these technologies has the potential to unlock the potential of machine
learning to augment solid organ transplantation clinical care and health care delivery systems.

Keywords: machine learning, transplantation, artificial intelligence, organ allocation, critical care

INTRODUCTION

The inherent complexity and rapid, multidisciplinary growth of transplant medicine stands to
benefit from new tools to inform clinical decision making. Machine learning offers the promise of
rendering troves of routinely collected data actionable in the field of transplantation.

Machine learning is a branch of artificial intelligence in which a computer algorithm learns from
examples to generate reproducible predictions and classifications on previously unseen data (1, 2).

Abbreviations: APACHE, Acute Physiology And Chronic Health Evaluation; AUC-ROC, Area Under the Curve - Receiver
Operating Curve; AISE, Artificial Intelligence Sepsis Expert; CNN, Convolutional Neural Network; EMR, Electronic Medical
Record; MELD, Model for End-Stage Liver Disease; SOFT, Survival Outcomes Following Liver Transplantation.
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Machine learning can be supervised or unsupervised: the former
referring to manually mapping an observation’s characteristics to a
known outcome; the latter referring to discovery of innate patterns
using unlabeled data (1). An example of supervised learning would
include using known clinical risk factors to predict survival. In
contrast, an unsupervised model could be fed thousands of
histopathology slides and learn to group them according to
similarities in pixel patterns. A further subset of machine
learning includes neural networks. These networks rely on layers
of calculation-performing nodes that differentially weight inputs
before passing them along to other nodes, eventually producing a
narrow range of outputs. Deep neural networks consist of dozens
to hundreds of layers, often with specialized functions interspersed

within the layers, enabling the network to better represent
complex patterns in unstructured data.

Several excellent reviews have been published on machine
learning in transplant medicine (3-6). This review builds on
prior knowledge by incorporating additional applications of
machine learning in predicting acute post-surgical and long-
term outcomes, caring for critically ill patients, classifying biopsy
and radiographic data, augmenting pharmacologic decision
making, and elucidating the complexity of host immune
response. A glossary of machine learning terms and
applications in solid organ transplantation is provided in
Table 1. Major applications of machine learning in solid organ
transplantation are illustrated in Figure 1.

TABLE 1 | A glossary of machine learning terms and applications in solid organ transplantation.

Term Definition

Machine Learning

A sub-field of artificial intelligence in which a computer system performs a task without explicit instructions

Deep Neural A sub-field of machine learning in which computer systems learn and represent data by adjusting weighted associations among input features
Networks across a layered hierarchy of neurons or neural network

Supervised Algorithms learn from training sets of labeled data and then classifies new, previously unseen data

Learning

Unsupervised Algorithms learn from unlabeled data and generate their own classification schemes, which can discover hidden patterns

Learning

Term Definition

Clustering Analysis

Convolutional
Neural Networks

Ensemble learning

Gated Recurrent
Units

Modified U-net
model

Random Forest
Model

Recurrent Neural
Networks

Reduced Error
Pruning Tree
Reinforcement
Learning

Support Vector
Machine

Arranging data objects into groups based on similarities among objects

Neural networks that represent patterns in two-dimensional data, used frequently in
image processing

Combines multiple decision trees into one model, capitalizing on the individual
strengths and weaknesses of individual predictions

Specify how information is stored and filtered in a recurrent neural network

Type of convolutional neural network that can use smaller training sets with greater
output resolution

Multiple, uncorrelated decision trees whose accuracy is greater than the sum of
individual trees

Neural networks that remember past decisions and can process data in temporal
sequence, i.e.
time series data

Elimination of redundant classification trees to reduce overfitting

Optimizes the probability of achieving an objective in a particular situation or
environment

Defines a plane that optimally separates two classes of data points

Application in Transplant Medicine

Phenotyping kidney transplant recipients with highest risk
of rejection (7)

Ultrasound to identify cirrhosis (8)

Quantifying hepatic steatosis in liver biopsies (9)

Early assessment of transplanted kidney function on biopsy
(10)

Predicting critical illness from EMR data (11)

Liver segmentation and volumetric analysis of living donors
(12)

|dentifying modifiable risk factors for mortality in liver
transplant recipients with diabetes (13)

Predicating acute kidney injury after liver transplant (14)
Estimating biocavailability of tacrolimus in renal transplant (15)
Predicting mortality for liver transplant candidates (16, 17)
Optimizing tacrolimus dosing in renal transplant recipients (18)
Predicting sepsis in ICU patients (19)

Continuous acuity scoring for ICU patients (20)

Quantifying hepatic steatosis in liver biopsies (21)

Predicting survival after liver transplantation (22)
Predicting liver graft failure (23)
Predicting acute kidney injury after liver transplantation (14)

Predicting risk for sepsis (19)
Predicting in-hospital mortality (20)

Identifying hepatitis C virus genotypes associated with
advanced fibrosis (24)

T helper cell response to effector molecules (25)
Optimizing clinical decision making in treating sepsis (26)

Predicting acute kidney injury after liver transplant (14)
Predicting bronchiolitis obliterans with CT imaging (27)

ICU, intensive care unit.
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FIGURE 1 | lllustrative summary of machine learning applications in solid organ transplantation.

PREDICTING CLINICAL OUTCOMES
AFTER SOLID ORGAN
TRANSPLANTATION WITH
MACHINE LEARNING

Accurate prognostic information is essential for informed
decision-making in transplant medicine, both at bedside and in
allocation policy. Current models—including the Donor Risk
Index, Model for End-Stage Liver Disease (MELD), and the
Survival Outcomes Following Liver Transplantation (SOFT)
scores—offer moderate success in predicting who would benefit
from transplant; yet these models are not without their critics.
MELD requires exception points for certain medical conditions
and may disproportionately allocate organs to patients with
medically stable hepatocellular carcinoma (28). Donor Risk
Index has limited generalizability, relies on variable ratings of
pathology, and has had limited clinical adoption (23). The SOFT
score and its variations, while accurate in predicting mortality,
are less successful in predicting morbidity (29). Most
survivorship models in heart, liver, kidney, and lung transplant

assume linear relationships between non-interacting input
variables and mortality; and their relationship is often
summarized with Cox proportional hazards models. While
offering a straightforward interpretation through hazard ratios,
they are limited both by the number of variables that can be
compared and by the linear relationship among those variables.
Machine learning and neural networks offer the synthesis of non-
linear associations among a greater number of inputs.

Multiple models have been proposed in recent years. Risk
features for acute, postoperative outcomes, including mortality
and acute kidney injury, were identified using a gradient boosting
machine (13, 14). Molinari et al. (17) bridged traditional
methods by developing a point-system for predicting 90-day
mortality in liver transplant using variables identified through
artificial neural networks, classification tree analysis, and logistic
regression. Lau et al. (23) compared Donor Risk Index and
Survival Outcomes following Liver Transplantation scores using
artificial neural networks and random forest models to identify
15 important factors and were able to improve upon the pre-
existing models (AUC-ROC value from 0.680 to 0.818).
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Yoon et al. (30) generated a tree of predictors for cardiac
transplant and Kantidakis et al. (22) demonstrated improved
predictability using random forest survival analysis in kidney
transplant compared with Cox models. Bertsimas et al. (16)
compared an optimal classification of trees model to MELD
scoring, demonstrating that the machine learning approach had
both improved accuracy and the potential to decrease mortality
from sub-optimal organ allocation.

Specific genotypes can place individuals at higher risk of need
for liver transplantation. Shousha et al. (24) constructed a
specialized data mining analysis using a reduced error pruning
tree to identify variables associated with liver fibrosis in patients
infected with hepatitis C. They found that the genotype IL28B
were most heavily weighted by the algorithm when predicting
advanced fibrosis. Barriers exist to the adoption of these models.
The algorithms may be trained on single-institution datasets, thus
lacking generalizability. They also suffer from overfitting, lack of
integration into pre-existing EMRs, involvement of proprietary
software that limits adoptability, or inadequate interpretability. At
its most basic level, machine learning may not offer improvement
over currently existing statistical methods. Kantidakis et al. (22)
demonstrated only a marginal improvement in IBS and C-index
for predicting survival in kidney transplants with their advanced
computational models; Miller et al. (31) demonstrated no added
benefit of their models to current risk indices.

Organ scarcity, healthcare resource intensity, and patient goals
of care mandate both subjective and objective assessments of
transplant candidacy. Predicted patient survivorship and
outcomes are an inseparable part of these discussions; machine
learning may be able to offer more equitable estimates-and
possible inclusion of alternative outcomes-to guide both
individual and system-wide organ allocation. Several authors
have validated their work on national datasets (16, 17, 22, 31)
and would benefit from trials of integration of these models into
electronic medical records to help guide the physician-patient
discussion. Eventual changes to national allocation algorithms
would require both further validation and weighting of stake
holder realities.

ALIGNING PATIENT ACUITY WITH
RESOURCE INTENSITY AFTER SOLID
ORGAN TRANSPLANTATION

Clinical outcomes are highly dependent on the timely
recognition of complications in the immediate postoperative
period. Protocols for posttransplant management vary by
institutional, surgeon, and patient factors. Cardiac, lung, and
liver transplant recipients almost universally require admission
to a surgical intensive care unit following their procedure, though
duration of stay does not necessarily reflect patient acuity.
Similarly, predicting decompensation on surgical wards can
help avoid failure-to-rescue by pre-emptively triaging patients
back to intensive care units.

Research into machine learning has touched upon identifying
patients at high risk for decompensation. Lee et al. (14) were able

to predict onset of acute kidney injury following liver transplant
using a support vector machine and random tree analysis. More
generally, DeepSOFA and Artificial Intelligence Sepsis Expert
(AISE) were able to provide real-time acuity predictions for
patients at risk for sepsis that outperformed SOFA and APACHE
models using recurrent neural networks, grated recurrent units,
and modified Weibull-Cox proportional hazards models (19, 20).
A reinforcement learning algorithm outperformed clinicians in
determining theoretical ideal fluid resuscitation and vasopressor
use (26).

Outputs are often meaningless to clinicians without a clear path
tohow they were obtained. Shickel etal. (20) and Lauristen etal. (11)
were able to create interpretable models by reversing the algorithm
to highlight which inputs weighed most heavily in deciding the
outputs. A variety of tools exist explicitly for this purpose.

While many of these tools have yet to be validated in a
transplant cohort, they have potential applicability for
identifying decompensation or acute rejection. Recording of
continuous, multivariate physiologic input features and real-
time integration into the EHR could improve these models’
predictive abilities along with their usability to clinicians.

CLASSIFYING SOLID ORGAN BIOPSY
SPECIMENS AND RADIOGRAPHIC
FINDINGS WITH COMPUTER VISION

Since the early 1980s, computers have assisted in radiographic
interpretation. Evolving from low-level pixel processing and image
editing to segmentation and feature extraction and recently to the
introduction of convolutional neural networks, imaging analytics
have been at the forefront of machine learning in medicine (32).
Multiple studies highlight the inter- and intra-user variability in
interpreting both diagnostic imaging and biopsy specimens (33-
35). This can have profound implications when assessing organ
injury, donor organ viability, and acceptance of newly
transplanted organs. There are practical implications too, with
the oft-hours timing of organ procurement, transplant, and
complications, when accurate diagnosis is time sensitive.

Esteva et al. (36) demonstrated that deep neural networks can
outperform dermatologists in classifying images of skin lesions.
Computer vision, or the field of teaching computers to “see”,
takes advantage of convolutional neural networks (CNN) to take
clusters of pixels and employ a weighted pattern recognition to
classify images into groups that can correspond to disease vs
non-diseased states. Prior to transplant, Liu et al. (8) were able to
combine the descriptive power of CNN with the generalizable
features of support vector machines to produce a model that
accurately identifies cirrhosis on ultrasound. Liu’s model was
trained on only 91 images, suggesting that the same approach
can be applied to rare conditions for which gold standard images
are sparse. Models can also take both supervised and
unsupervised approaches. Kuvar et al. (12) compared semi-
automatic (requiring human input) with fully automatic
algorithms for liver segmentation and volumetric analysis in
living liver donors. The latter had improved functionality
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without the requirement of user interactions, though it does
require enormous amounts of memory and processing power.

At time of procurement, donor liver viability can be impaired
by steatosis, requiring accurate and timely assessment of biopsy
specimens. Reliable analysis is limited given the variations in size,
shape, overlap, and clumping of adipose droplets. Roy et al. (21)
were able to create an unsupervised, modified U-net model that
distinguished true droplets, providing correlations with
pathologist measurements, radiology readouts, and clinical data.
Sun et al. (9) developed a similar model that consistently out-
performed the on call pathologist. Both models used VGG16
(Visual Geometry Group, Oxford), a computer vision CNN
trained on millions of random images and modified its
uppermost classification layers to identify steatosis.

Post-transplant complications are often diagnosed on biopsy,
though integration of machine learning into imaging may obviate
this need and its attendant risk for hemorrhage, infection, and
damage to adjacent anatomical structures. Diffusion weighted MRI
images have been added to models of non-imaging inputs,
including creatine clearance and serum plasma creatine, to reveal
early graft dysfunction at greater than 90% sensitivity and specificity
(10). Late graft dysfunction, including bronchiolitis obliterans after
lung transplant, can be seen early with computed tomography scans
and functional respiratory imaging (27).

When biopsy is required, tissue molecular analysis may augment
visual assessment. Reeve et al. (7, 37) used a clustering analysis to
group phenotypes associated with kidney transplant rejection. The
algorithm-trained on 1,208 kidney biopsies—sought to replace
empiric, yes/no assessments of indeterminant histologic diagnosis
of rejection with a probabilistic model using algorithm-identified
subtypes of T cell- (TCMR) and antibody-mediated rejection
(ABMR). Liu et al. (38) used the statistical method of linear
discriminant analysis combined with machine learning
techniques to demonstrate the feasibility of using mRNA to
diagnosis TCMR in biopsy specimens. These studies were
furthered and commercialized by Halloran et al. (39) in the
development of the Molecular Microscope® Diagnostic System
(MMDx). Using support vector machines, principal component
analyses, and classification trees to parse out mRNA expression
variation in kidney transplant biopsies, this technology hopes to
compliment, if not surpass, histology in determining
rejection phenotype.

Machine learning promises to augment clinical decisions
shared by transplant patients and practitioners. While the need
for human supervision and ultimate responsibility remains
strong, these tools have the stated goals of reducing intra- and
inter-user variability and providing baseline risk profiles for early
disease and organ assessment in both the donor and recipient.

MACHINE LEARNING FOR
PERSONALIZED PHARMACOKINETICS IN
SOLID ORGAN TRANSPLANTATION

One of the major challenges in managing solid organ transplant
is determining optimal dosing of immunosuppression and

other dose-sensitive medications. This task is especially
challenging in the context of renal and hepatic dysfunction.
Waiting for stabilization of drug levels can result not only in
delay of discharge, but also graft failure and adverse drug
events. Falling into the realm of personalized medicine,
patient specific phenotypes play an important role in
pharmacokinetics, suggesting utility for incorporating
pharmacokinetic data into machine-learning algorithms to
improve clinical dosing decisions.

Two studies examined artificial intelligence in predicting
tacrolimus bioavailability and dosing. Using input features of
creatinine, body mass index, age, sex, ABCB1 polymorphisms, and
CYP3A5"3 genotypes, Thishya et al. (15) developed a three-level
artificial neural network to show which variables increased
tacrolimus bioavailability and risk of diabetes in renal transplant
recipients. Also in renal transplant recipients, Tang et al. (18)
compared linear regression to eight machine learning models to
predict stable tacrolimus dosing. Regression trees had the best overall
performance, however, while superior to linear regression, their
predictive ability was similar to the seven other machine
learning techniques.

The question remains as to what clinical benefit these machine
learning models provide. Less cumbersome mathematical models
have demonstrated efficacy in optimizing medication dosing.
Zarrinpar et al. (40) developed a parabolic personalized dosing
model based on a second order polynomial equation that
consistently resulted in appropriate tacrolimus dosing changes in
liver transplant recipients. Current dosing strategies are largely
based on physician and pharmacologist experience. Future tools
will need to incorporate patient level factors to build more objective
and consistent dosing schemes.

COMPLEXITY OF THE HOST IMMUNE
RESPONSE TO TRANSPLANTATION AND
IMMUNOSUPPRESSION

The human immune system is too complex to be interpreted by
additive or linear models alone. Within transplant medicine,
immunosuppression adds additional layers of complexity that
are often beyond our innate reasoning’s ability to interpret, and
thus requiring computational assistance.

As early as 1970, the integration of computer science into
medicine was predicted to be inevitable (41). The rapid
expansion of medical knowledge included insights to our own
limits. In diagnosis, we are hampered by our inability to
intuitively multiply probabilities; and our decision making is
informed more by heuristics—also called mental shortcuts—than
assimilation of all available data (29). Innate and adaptive
immunity is influenced by environmental cues regarding the
presence of pathogens, subtle structural changes in ligand-
receptor complexes, circulating stimulatory and inhibitory
mediators, and a host of other complex processes. Transplant
immunology further complicates this system by introducing
foreign antigens and relatively nonspecific immune targeting
agents. The interplay between all these factors is far too complex
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to model by adding the individual parts together, particularly
since our knowledge of each part is itself quite limited.

Growth in the field of reinforcement learning has informed
our understanding of many biologic systems, though its
application to the immune system is limited (42). Kato et al.
created a theoretical framework using reinforcement learning
and reward systems to understand how T helper cells bias the
responses of their effectors towards elimination of pathogens
(25). With greater than 10 (16) unique receptor sequences and 10
(28) unique T cells, these models are essential given the shear
diversity of adaptive immune cells (43).

Publications at the intersection of transplant immunology
and machine learning are, however, limited. As we have seen,
there is potential in adding genotypic and cell-expression
variables into models predicting both need for transplant and
risk of graft failure.

LIMITATIONS

While limitations specific to individual studies were presented
above, it is worth restating and consolidating the limits of these
technologies more generally. Most studied algorithms are trained
on single-institution, proprietary datasets. This may provide
improved quality of data and inclusion of more specific
variables but can result in overfitting, or where the model
incorporates the irrelevant noise into its final predictions and
cannot be generalized onto broader data sets. This is notable
when studies fail to mention external validation of their model.
Secondly, machine learning models may fail to offer
improvement over current models. As mentioned above,
multiple studies have no additional benefit in predictive ability
despite the extra computing power (22, 31, 40).

More problematic is the lack of studies failing to demonstrate
clinic relevance. The use of machine learning in medicine in still
young and research is often focused on the predictive abilities
rather than improvement in patient outcomes. Computer-guided
decision making and its impact on graft survival, surgical
complications, or mortality are difficult to undertake and may
face further practical barriers in obtaining approval of Institution
Review Boards.

Once these limitations are addressed, integration into
workflow and clinical practice remain a perennial problem.
There are many opportunities for inclusion of decision-making
tools into the EHR are available, but alarm fatigue, ease of use,
cost to implementation, value to patients and providers, and even
mistrust of these services will hinder their adoption.
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