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Fusobacterium nucleatum is involved in the development of colorectal cancer (CRC)
through innate immune cell modulation. However, the receptors of the interaction
between F. nucleatum ssp. and immune cells remain largely undetermined. Here, we
showed that F. nucleatum ssp. animalis interacts with Siglecs (sialic acid–binding
immunoglobulin-like lectins) expressed on innate immune cells with highest binding to
Siglec-7. Binding to Siglec-7 was also observed using F. nucleatum-derived outer
membrane vesicles (OMVs) and lipopolysaccharide (LPS). F. nucleatum and its derived
OMVs or LPS induced a pro-inflammatory profile in human monocyte-derived dendritic
cells (moDCs) and a tumour associated profile in human monocyte-derived macrophages
(moMfs). Siglec-7 silencing in moDCs or CRISPR-cas9 Siglec-7-depletion of U-937
macrophage cells altered F. nucleatum induced cytokine but not marker expression. The
molecular interaction between Siglec-7 and the LPS O-antigen purified from F. nucleatum
ssp. animalis was further characterised by saturation transfer difference (STD) NMR
spectroscopy, revealing novel ligands for Siglec-7. Together, these data support a new
role for Siglec-7 in mediating immune modulation by F. nucleatum strains and their OMVs
through recognition of LPS on the bacterial cell surface. This opens a new dimension in
our understanding of how F. nucleatum promotes CRC progression through the
generation of a pro-inflammatory environment and provides a molecular lead for the
development of novel cancer therapeutic approaches targeting F. nucleatum-Siglec-
7 interaction.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most frequently diagnosed
malignancies worldwide, accounting for 10% of all cancers and for
approximately 20% of all cancer-related deaths in developed
countries (1). While CRC incidence commonly appears in ages
over 50 years old, recent years have shown an increased incidence in
younger adults which may be associated to lifestyle factors (2, 3).

Tumours that arise at epithelial barrier surfaces of the body
harbour extensive microbiota, and the importance of these
microbes in CRC is now widely acknowledged. The enrichment of
Fusobacterium spp. in CRC tissues, as revealed by whole genome
sequencing, showed that themost abundant species isFusobacterium
nucleatum (4–6). Patients with F. nucleatum associated carcinoma
have a shorter survival period (7). In addition, F. nucleatum appears
to contribute to the chemoresistance of CRC (8–10). Among F.
nucleatum subspecies, F. nucleatum ssp. animalis is most
predominant in CRC specimens (11).

F. nucleatum potentiates intestinal tumorigenesis mainly by
recruitment of tumour infiltrating immune cells, in particular
myeloid-derived immune cells such as tumour associated
macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), dendritic cells (DCs), tumour associated neutrophils
(TANs) (11–13), and inhibits human T-cell response (12, 14, 15),
leading to colorectal neoplasia progression. A high abundance of
F. nucleatum in CRC tissues is associated with increased nuclear
factor kappa B (NFkB) activation and induction of a pro-
inflammatory profile (12). Well-characterised virulence factors of
F.nucleatum suchasmembraneproteinsFadAorFap2are involved
in the binding of F. nucleatum to colon cancer cells inducing
oncogenic response (16, 17). In the epithelium, F. nucleatum
induces the expression of cell signalling proteins (cytokines), such
as tumour necrosis factor (TNF)-a and interleukin (IL)-8 in
addition to epithelial-mesenchymal transition (18). Recently, the
structures ofO-chain polysaccharides (O-antigens) of the LPS from
F. nucleatum strains ATCC 23726 (ssp. nucleatum) (19), ATCC
25586 (ssp. nucleatum) (20), ATCC 10953 (ssp. polymorphum)
(21), ATCC 12230 (22), MJR 7757 B (23) and ATCC 51191 (ssp.
animalis) (24) have been elucidated, showing strain-specific
differences in the trisaccharide repeat unit containing either sialic
acid/N-acetylneuraminic acid (Neu5Ac) (21), fusaminic acid (20)
or monosaccharides other than nonulosonic acid residues (24).
However, the mechanisms underpinning the interaction of
F. nucleatum with immune cells remain undefined.

Immune cells express a large variety of glycan-binding
receptors or lectins, which sense and respond to changes in
the glycan signature of their environment leading to the
activation or inhibition of immune processes (25). Siglecs
(sialic acid–binding immunoglobulin-like lectins) are a large
family of lectins found on innate immune cells and tumour-
infiltrating T cells, which inhibit immune activation after
sensing sialic acid-containing glycans (26, 27). Individual
family members exhibit preferences for sialosides of various
linkages to underlying glycan motifs, but many of the
physiological ligands, glycoproteins or glycolipids, they
interact with remain largely unknown (28, 29). The expression
of Siglecs on immune cells is cell type dependent (30). Siglecs are
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transmembrane proteins, which possess an extracellular portion
characterized by a V-set immunoglobulin-like domain,
containing the carbohydrate recognition domain (CRD), and
one or more C2-set immunoglobulin-like domains. The
majority of Siglecs possess immunoreceptor tyrosine-based
inhibitory motifs (ITIMs) in their intracellular domain (26).
Siglec ligands can be presented on the cell on which the Siglec is
expressed (cis ligands), or on glycans in the extracellular matrix
of other cells (trans ligands) (28). Although the CRDs of most
Siglecs have some specificities towards certain sialylated
structures, several Siglecs have a broad and overlapping ligand
specificity (28). These glyco-immune checkpoints have been
proposed as new targets for cancer immunotherapy (31–33).
The working hypothesis on the role played by Siglecs in cancer
is that immune cells expressing Siglecs are inhibited upon
binding to their ligands on cancer cells. Indeed, enzymatic
removal of sialic acids from cancer cell surfaces was shown to
enhance immune cell-mediated clearance of those cells through
loss of Siglec-7 and Siglec-9 binding in cis (34) although the
range of physiological ligands of Siglec-7 and Siglec-9 remain to
be identified (35). Recently, a genome-wide CRISPR screens
revealed the glycoprotein CD43 expressed on leukemia cells as a
highly specific ligand for Siglec-7 and blocking the interaction
relieved Siglec-7-mediated inhibition of immune killing activity
(33). In addition, the tumour immune-suppressive effect of Siglec-7
was recently demonstrated in vivo (36), further supporting the
proposed role of Siglec-7 as an immune checkpoint receptor.

Several clinically relevant pathogens have evolved mechanisms
of molecular mimicry by displaying sialylated structures on their
surface to overcome the cis interactions of Siglecs on the surface of
immune cells. For example, Campylobacter jejuni strains can
interact with Siglec-7 and sialoadhesin (Siglec-1) via their
lipooligosaccharides (37) and to Siglec-10 via a sialic acid-like
molecule, pseudaminic acid present in the flagella (38), while
Siglec-7 showed sialic acid-independent binding to b-protein
expressed on Group B Streptococcus surface (39). Additionally,
human Siglecs have evolved to recognise non-Neu5Ac ligands
present on external stimuli such as microbes (40). In this work we
hypothesised that Siglecs may be involved in the recognition of
F. nucleatum strains by immune cells, contributing to the
tumorigenesis of these strains in CRC.
MATERIALS AND METHODS

Materials
All reagents were purchased from Sigma unless otherwise stated.
Recombinant Siglecs, human Siglec-3, Siglec-5, Siglec-7, Siglec-9 and
-10 and CHO-expressing Siglec-7-Fc (CHO-Siglec-7-Fc) cell line
were a kind gift from Prof. Paul Crocker (University of Dundee).
Recombinant Siglec-7-Fc was also obtained commercially
(R&D Systems).

Bacteria Growth, Preparation
and Quantification
F. nucleatum ssp. animalis ATCC 51191 isolated from clinical
samples was obtained from ATCC in partnership with LGC
October 2021 | Volume 12 | Article 744184
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standards ltd. F. nucleatum was cultured in tryptic soy broth
media (Becton Dickinson) supplemented with 5 mg/ml hemin
(Sigma) and 1 mg/ml menadione (Sigma). For binding and
human cell co-culture experiments, bacteria were centrifuged
at 15,000 x g for 5 min, and the cells were fixed with 4%
paraformaldehyde (PFA) (Electron Microscopy Sciences/CN
Technical Services ltd) for 45 min at room temperature (RT),
in the dark, followed by two washes in Dulbecco’s Phosphate-
buffered Saline (DPBS) (Lonza).

For bacteria de-sialylation, 107 cells were treated with 20 U of
sialidasea2-3,6,8,9neuraminidaseA(NEB) in1XGlycoBuffer I (NEB)
or control treated in 1X GlycoBuffer I alone, overnight (o/n) at 37°C.

Bacteria were quantified by spectroscopy with OD600nm of 1
corresponding to 109 cells/ml or by imaging flow cytometry
(Amnis ImageStreamx Mk II) (as described below).

LPS Extraction
F. nucleatum ATCC 51191 bacterial cells were harvested by
centrifugation, lyophilised, and extracted by the hot phenol/water
method, as previously described (41). Each phase was dialysed
against distilled water to remove the phenol, freeze-dried, and
analysed by 12% sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE). After the water/phenol extraction,
F. nucleatum LPS extracted fromwas detected in thewater phase by
silver nitrate staining (42). The phases containing LPS were further
purified by enzymatic digestion (DNAse, RNAse and proteinase K)
as previously described (41), followed by centrifugation at 6,000
rpm for 30min at 4°C and ultracentrifugation at 30,000 rpm for 4 h
at 4°C. To separate the O-antigen (OPS) and lipid A domains, LPS
weremild acidhydrolysedbyaceticacid1%(100°C, 2-3h).TheOPS
domain of the strains containing ulosonic residues was further
partial depolymerised. The solution was centrifuged and the
supernatants were freeze-dried and further purified by gel
filtration chromatography.

F. nucleatum OMV Purification
and Characterisation
F. nucleatum derived OMVs were collected from the cell culture
supernatant, as described previously by Liu et al. (43) with some
modifications. Briefly, F. nucleatum ssp. cells were cultured until
reaching OD600nm of 0.7-1.2. Cells were centrifuged at 8,500 x g
for 15 min at 4°C. The supernatant was collected, and vacuum
filtered using 0.22 mm membrane. The filtered supernatant was
concentrated by spin-filtration using 100,000 molecular weight
cut-off filter unit (Sartorius). OMVs were recovered from the
filter using sterile DPBS and further purified by density gradient
ultra-centrifugation. For the gradient, Optiprep media (60% w/v,
Sigma) was diluted in 0.85% w/v NaCl and 10 mM tricine-NaOH
pH 7.4 solution to make 35%, 30%, 25% and 20% density
solutions. The OMVs were mixed with 40% Optiprep solution
and placed at the bottom of a 13.2 ml Ultra-clear tube (Beckman
Coulter) and Optiprep (2 ml) was added subsequently by
density-decreasing order. The preparation was ultracentrifuged
at 135,000 x g for 16 h at 4°C with minimum acceleration and
deceleration using a SW41 Ti rotor (Beckman Coulter). From the
top to the bottom, 1 ml fractions were collected and analysed by
SDS-PAGE in 4–15% Mini-PROTEAN® TGX™ Precast Protein
Frontiers in Immunology | www.frontiersin.org 3
Gel (BIO-RAD). The OMV-containing fractions were diluted with
sterile DPBS and ultracentrifuged at 200,500 x g for 2 h at 4°C using
a Type 45 Ti rotor (BeckmanCoulter). OMVswere resuspended in
sterile DPBS and then filtered using a 0.22 mmmembrane.

Purified OMVs were quantified and measured for their particle
size using a NanoSight LM12 (Malvern Panalytical). Briefly, the
samples were diluted 100 times in 1 ml DPBS and loaded onto the
instrument’s chamber by a syringe and the sample were slowly
released. The consideredparticle size of eachOMVsamplewere the
mean of triplicates. Instrument settings used: camera shutter 1035,
camera gain 680, capture duration 60 sec.

Semi-Quantitative Analysis of LPS in
OMVs by Gas Chromatography-Mass
Spectrometry (GC-MS)
The content of LPS in F. nucleatum-derived OMVs was evaluated
by analysing the fatty acids content. Based on the chemical
structure of the lipid A component of F. nucleatum LPS in the
bacteria (44), C14:0 (or myristic acid) was considered as the
reporter group for LPS, while C16:0 (palmitic acid) and C18:0
(stearic acid) were considered the reporters for the phospholipids.

F. nucleatum-derived OMVs (1 mg) were treated with HCl/
MeOH (1 ml, 1.25 M, 80°C, 16 h) and lipids, derivatised as
methylesters, were extracted with hexane (41). This analysis
estimated the amount of each fatty acid (C14:0, C16:0 and
C18:0) by correcting the areas of the corresponding peaks with
a response factor, made by using an array of standard solutions
and by setting C16:0 as internal standard. Areas were correlated
by a linear regression. The methanol layer after extraction with
hexane, was used to countercheck the data from lipid analysis, by
verifying the presence of 3-deoxy-2-keto-D-manno-octulosonic
acid and L-glycero-D-manno-heptose, both markers of the LPS
molecules. Identification of the fatty acids or the monosaccharide
constituents, was performed by comparing the retention time and
the fragmentation pattern of each peak to a relevant standard.

All chemical derivatives were analysed by using a Gas
Chromatography-Mass Spectrometry (GC-MS) Agilent
Technologies 7820A (Santa Clara, CA, USA) equipped with a
mass selective detector 5977B and a HP-5ms capillary column
Agilent, Italy (30 m x 0.25 mm i.d., 0.25 mm as film thickness,
flow rate 1 ml/min, He as carrier gas). Electron impact mass
spectra were recorded with ionisation energy of 70 eV and an
ionising current of 0.2 mA. The temperature program used was:
150°C for 5 min, 150 up to 300°C at 10°C/min, 300°C for 12 min.

Expression and Purification of
Recombinant Siglec-Fc Proteins
CHO-Siglec-7-Fc cells were cultured in Glasgow Modified
Essential Medium (GMEM) without L-glutamine media
(Sigma) supplemented with 10% fetal bovine serum (FBS)
(Thermo Scientific Gibco), 100 U/ml penicillin and 100 mg/ml
streptomycin (Lonza) and 50X GS supplements (Sigma).

Adherent CHO-Siglec-7-Fc cells (80-90% confluence) were
washed twice with Dulbecco’s phosphate-buffered saline (DPBS)
(Thermo Scientific Gibco) and protein expression was induced
by culturing the cells with GMEM without L-glutamine media
(Sigma) supplemented with 200X FetalClone II (Thermo Fisher
October 2021 | Volume 12 | Article 744184
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Scientific), 100 U/ml penicillin and 100 mg/ml streptomycin
(Lonza), 50X GS supplements (Sigma) and 100 mg/ml MSX
(Sigma). After 4 days, the supernatant was collected for Siglec-
7-Fc purification.

Siglec-7-Fc purification was carried out using gravity-flow
column (BIO-RAD) packed with protein A-Sepharose (Sigma)
washed with DPBS. The harvested CHO supernatant was added
to the column and the column washed with DPBS. To elute
Siglec-7-Fc, a solution of 0.1 M glycine, pH 3 was added to the
column and fractions (0.5 ml) were collected in 1 M Tris, pH 8
(for neutralisation). The protein concentration in fractions was
quantified by Nanodrop (Thermo Fisher Scientific).

Binding Assays
For the flow cytometry binding assays between F. nucleatum ssp.
animalis ATCC 51191 and recombinant Siglecs (Siglec-3, Siglec-
5, Siglec-7, Siglec-9 and -10), bacteria (107 cells) were incubated
with the pre-complex of recombinant Siglec-Fc (4 mg/ml) and
mouse a-Fc-PE Ab (1 mg/ml) (R&D Systems) in DPBS for 1 h at
37°C. Following centrifugation at 14,000 x g for 4 min, bacterial
cells were washed with DPBS and analysed by Fortessa (BD
Biosciences). For the inhibition assays, Siglec-7-Fc and a-Fc-
phycoerythrin (PE) Ab pre-complex was first incubated with
disialoganglioside with three glycosyl groups GD3 (Sigma) at 50
mg/ml for 30 min at 4°C. For the flow cytometry binding assays
between F. nucleatum ssp. and human cells, U-937 (WT or
Siglec-7-/-) cells were first stained with 10,000X cell trace violet
(CTV) (Thermo Fisher Scientific) for 15 min at RT and F.
nucleatum ssp. were stained with 10 mg/ml of fluorescein
isothiocyanate (FITC) (Sigma). Following two washes with DPBS,
U-937-CTV (5 x 105 cells) were incubated with F. nucleatum-FITC
(5 x 106 cells) for 1 h at 4°C. Cells were washed with FACS buffer
(HBSS containing 0.01% bovine serum albumin (BSA), and 2 mM
EDTA), centrifuged at 510 x g for 3minand analysedusingFortessa
(Threshold of FSC parameter set to 1000). Flow cytometry data
were processed in FlowJo (TreeStar) software.

For the ELISA-based binding assays, bacteria (107 cells) or
bacteria-derivatives (10 mg/ml LPS or 108 OMV particles) in
DPBS solution were coated in a 96-well plate, o/n at 4°C.
Following a washing step with 0.05% tween in PBS (washing
buffer) the plate was incubated with 1% BSA for 1 h at RT.
Followed by 3 times washing the plates were incubated with pre-
complexed Siglec-Fc and a-Fc-HRP for 2 h at RT. Briefly, Siglec-
Fc protein (4 mg/ml) was incubated with 50,000X a-human-Fc-
HRP (Abcam) for 1 h at RT. Following 3 washes with
washing buffer, the plate was incubated with 3,3′,5,5′-
tetramethylbenzidine (TMB) (Biolegend) until colour
development. Colour development was stopped by the addition
of 2 N H2SO4 and the absorbance was measured at 450 nm with
reference at 570 nm. Data were analysed in GraphPad Prism 6.

STD NMR Analysis
Spectra were acquired on a Bruker 600 MHz AVANCE NEO
equipped with a cryo probe and analysed using the TOPSPIN
4.1.0 software. The partial depolymerised OPS derived from
F. nucleatum ssp. LPS were prepared in deuterated PBS buffer
(20 mM PBS, NaCl 150mM, pH= 7.4), using protein-ligand
Frontiers in Immunology | www.frontiersin.org 4
ratios varying from 1: 20 to 1: 80 with 15 µM of Siglec-7-Fc
protein. STD NMR experiments were acquired at 298 K with 32 k
data points and zero-filled up to 64 k data points prior to
processing. The Siglec-7-Fc resonances were saturated applying
40 Gauss pulses with a length of 50 ms, setting the on-resonance
pulse at aromatic region (7.5/6-5 ppm) and the off-resonance
pulse frequency at 100 ppm. Under these experimental
conditions, very low residual signals were observed in some of
the STD NMR spectra for the ligands in the free state which were
taken into account during data processing. To suppress the water
signal, an excitation sculpting with gradient pulses (esgp) was
applied and to reduce the NMR signals of Siglec-7-Fc, a spin-lock
filter (20 ms) was used.

Culture of Human Primary Immune Cells
and U-937 Monocytic Cell Line
Human peripheral blood was obtained from haemochromatosis
patients undergoing a therapeutic venesection at the Norfolk and
Norwich University Hospital (Norwich, UK). Blood collection in
this study was approved by the Faculty of Medicine and Health
Sciences Research Ethics Committee REC reference number
2013/2014 -14HT (University of East Anglia).

For monocyte-derived dendritic cell (moDC) and macrophage
(moMf) generation, peripheral blood mononuclear cells (PBMCs)
were isolated from whole blood following centrifugation using
Ficoll-Paque gradient media (GE Healthcare). Monocytes
(CD14+ cells) were isolated from PBMCs using CD14 positive
selection microbeads (StemCell technologies) according to the
manufacturer’s instructions. Freshly isolated CD14+ monocytes
(106 cells/ml) were cultured in Mercedes medium (RPMI 1640
medium (Lonza) supplemented with 25 mM HEPES, 10% FBS
(Thermo Scientific Gibco), 55 mM 2-mercaptoethanol, 100 U/ml
penicillin and 100 mg/ml streptomycin (Lonza), 2 mM glutamine
(Lonza), 1 mM non-essential amino acids (Lonza) and 1 mM
sodium pyruvate (Lonza), were incubated with granulocyte-
macrophage colony-stimulating factor (GM-CSF) and IL-4
(PeproTech) (25 ng/ml) for differentiation of monocytes to
moDCs or with macrophage colony-stimulating factor (M-CSF)
(PeproTech) (25ng/ml) for differentiationofmonocytes tomoMfs.
The cells were incubated for 7 days at 37°C, with addition of the
above cytokines on day 3, as previously described (45).

For U-937 differentiation, U-937 (5 x 105 cells/ml) cultured in
RPMI 1640 medium (Lonza) supplemented with 25 mMHEPES,
10% FBS (Thermo Scientific Gibco), 55 mM 2-mercaptoethanol,
100 U/ml penicillin and 100 mg/ml streptomycin (Lonza), 2 mM
glutamine (Lonza) and 1 mM sodium pyruvate (Lonza) were
differentiated with 100 ng/ml phorbol 12-myristate 13-acetate
(PMA) (Sigma) for 28 h at 37°C, as previously described (46).
Adherent cells were detached by PBS-EDTA (Lonza) and
scraping and collected for functional assays.

Generation of Siglec-7-/- U-937 Cells by
CRISPR-Cas9
CRISPR RNA (crRNA) was designed to target human Siglec-7
(CATGCCCTCTTGCACGGTCA, IDT) in U-937 cells (ATCC®

CRL-1593.2™). guide RNA (gRNA) (1 mM crRNA, 1 mM
ATTO-550 labeled tracrRNA (IDT)) was boiled at 95°C for
October 2021 | Volume 12 | Article 744184
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5 min. A solution of 20 pmol gRNA, 20 pmol Cas9 nuclease (IDT),
8 ml Cas9 PLUS reagent (IDT), 16 ml CRISPRMAX reagent
(Thermo Fisher) in 600 µl of Opti-MEM medium (Gibco) was
prepared. 750,000 U-937 cells were washed with Opti-MEM
medium (Gibco) and centrifuged at 300 x g for 5 min. The cell
pellet was resuspended in the prepared solution and incubated at
37°C, 5% CO2. After a 24 h incubation, cells were centrifuged at
300 x g for 5 min, then resuspended in 400 ml flow buffer (HBSS,
1% FBS, 500 µM EDTA). The top 5% ATTO-550 positive cells
were sorted on a BD FACSMelody™ Cell Sorter into four 96-well
flat-bottom plates containing media at one cell per well.
Approximately 2 weeks later, colonies were screened for Siglec-7
expression by flow cytometry using PE-conjugated Siglec-7 at
1:100 dilution (BioLegend) and Siglec-7-/- clones were collected.

Siglec-7 RNA Silencing of Primary
Immune Cells
moDCs were transfected with two pre-designed small interfering
RNA (siRNA) Silencer Select SIGLEC7 probes (ID# s25729 and
s25730) or with the scramble siRNA (Invitrogen) with reverse
transfection, as described previously (47). Briefly, 3 × 105 moDC
or moMf cells were incubated with the complex of two probes to
a final 200 nM concentration or with the negative control
(scramble) and 1% HiPerFect transfectant (Qiagen) in warm
RPMI 1640 (non-supplemented) media in a 24-well plate for
three days.

Cytokine and Cell Surface Marker Analysis
moDCs or moMfs or U-937-PMA (105 cells) were cultured in
96-well plates in the Mercedes medium as described above and
stimulated with PFA-fixed F. nucleatum ssp. at multiplicity of
infection (MOI) of 50 or 5, F. nucleatum ssp.-derived LPS at 10 or 1
mg/ml, the E. coli O111:B4 control at 1 mg/ml, or OMVs at 5 x 107

particles/ml for 18hat37°C.The cellswere centrifugedat 510x g for
3 min and the supernatant and pellet collected for analysis.

For cytokine analysis, human TNFa, IL-10, IL-8 production
in the supernatant was quantified by ELISA (BioLegend)
according to the manufacturer’s instructions.

For cell surfacemarker analysis,moDCormoMfpelletswerefirst
incubatedwithhumanFcblock (BioLegend)and then incubatedwith
antibodies for 30 min at 4°C as follows: programmed death-ligand 1
(PD-L1)-PE at 1:50 dilution or CD80-PE at 1:100 dilution, CD86-
Alexa488 at 1:200 dilution, isotype controls mouse IgG1-PE,k at
1:100 (BioLegend) at 1:25 dilution (BioLegend) and with propidium
iodide (PI) or 4′6-diamidino-2-phenylindole (DAPI) at 0.1 or 1 mg/
ml fordeadcell staining, respectively.Thecellswere thenwashedwith
DPBS supplemented with 1% BSA (FACS buffer) analysed by flow
cytometry using Fortessa.

Imaging Flow Cytometry
For counting bacteria, 10,000 events were collected and
processed using the IDEAS (Amnis) software. Bacteria density
‘‘objects/ml’’ were selected in the bright field channel (M04) of
the Aspect Ratio_M04 versus Area_M04 dot plot.

For internalisation assays, human cells (monocyte-derived or
U-937-PMA) at 5 × 106 cells/ml were incubated with 5 × 107

FITC-stained F. nucleatum ssp. for 4 h. Cells were washed with
Frontiers in Immunology | www.frontiersin.org 5
FACS buffer and analysed by ImageStreamx Mk II (Amnis).
Using the INSPIRE software, a total of 5,000 FITC stained cells
were collected. The percentage of internalised bacteria were
determined using the internalisation wizard with erode mask
function at 7 number of pixels.

Statistical Analyses
One-way ANOVA followed by Tukey’s test were used for
multiple comparisons, t-test or two-way ANOVA were used
for two-group comparisons, on Prism software (GraphPad). P <
0.05 was considered as statistically significant. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001, n.s., not statistically difference.
RESULTS

F. nucleatum ssp. animalis Binding to
Siglecs Revealed Specific Binding
to Siglec-7
The binding of F. nucleatumATCC 51191 was first tested against a
range of human recombinant CD33-related Siglec-Fc proteins
including Siglec-3, Siglec-5, Siglec-7, Siglec-9 and -10 by flow
cytometry. A clear shift in fluorescence was observed in the
presence of Siglec-7 with approx. 90% of F. nucleatum population
bound to Siglec-7, while 60% and 30% of F. nucleatum population
bound to Siglec-5 and Siglec-3, respectively, and only 17% of the
population bound to Siglec-9 and -10 (Figure 1A). To determine if
the binding to Siglec-7 was glycan-mediated, inhibition binding
assayswere carried out in the presenceof gangliosideGD3, a known
Siglec-7 ligand (48). A significant decrease in Siglec-7 binding to F.
nucleatum ATCC 51191 was observed in the presence of GD3,
showing an approx. 92% reduction of the bacterial cell population
bound to Siglec-7 (Figure 1B). This result suggests that Siglec-7 V-
set domain is implicated in the binding between Siglec-7 and F.
nucleatum ssp. To investigate whether the binding of F. nucleatum
ATCC 51191 to Siglec-7 wasmediated by sialic acid exposed on the
bacterial cell surface, the bacterial cells were treated with
neuraminidase A, a sialidase with broad specificity to (a2-3,6,8,9)
sialylated linkages, cleaving linear and branched non-reducing
terminal sialic acid residues from glycoconjugates. The sialidase
pre-treatment only led to a small reduction in the binding of F.
nucleatum to Siglec-7 as shown by flow cytometry (Figure S1), in
agreement with the absence of sialic acid in F. nucleatum ATCC
51191 LPS (24). Next, we conducted binding assays between the
monocytic cell line U-937 (wild type (WT) or Siglec-7-/-) and F.
nucleatum ATCC 51191 by flow cytometry. Our results showed a
reduction of F. nucleatum associated with U-937-Siglec-7-/- cells as
compared to WT cells (Figure 1C), supporting an interaction
between F. nucleatum ssp. and Siglec-7 when expressed on the
cell surface although other receptors may be involved in the
interaction between F. nucleatum ATCC 51191 and U-937 cells.

F. nucleatum Derived LPS or OMVs Bind
to Siglec-7
To determine the role of LPS in the binding of F. nucleatum
ATCC 51191 to Siglec-7, LPS was extracted from F. nucleatum
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ATCC 51191 by the hot phenol/water method (41) and further
purified by enzymatic digestion (41). The SDS-PAGE of the
extracted F. nucleatum-derived LPS showed the typical LPS
ladder-like pattern and lower average molecular weight
distribution when compared to E. coli O127:B8 (Figure S2).
Using an ELISA-type assay, we showed that the whole F.
nucleatum cells and the derived LPS bound to Siglec-7-Fc
(Figures 2A, B) while no binding of F. nucleatum-derived LPS
was observed against Siglec-9-Fc used as a control (Figure 2B). To
map the relevant positions of F. nucleatum LPS involved in the
interaction with Siglec-7 and gain a first evaluation of the ligand
epitopes, the partially depolymerised O-antigen chain (OPS)
isolated from F. nucleatum ATCC 51191 was analysed by STD
NMR(49) (Figure 2D). Interestingly, STD enhancements, together
with changes in the relative intensity of STD signals with respect to
the reference spectrum, were detected, clearly indicating that F.
nucleatum ATCC 51191 OPS structure was recognised by and
interacted with Siglec-7-Fc. Despite the significant overlapping of
ligand resonances which impaired a detailed analysis of the protons
involved in the recognition and binding process, the fingerprint of
STD NMR spectrum allowed to identify the ligand regions in close
contactwith Siglec-7-Fc.F. nucleatumATCC51191OPS contains a
linear trisaccharide made up of glucosaminuronic (GlcNAcA and
GlcNAc3NAlaA) and fucosamine (FucNAc4N) residues, [!4)‐b‐
D‐GlcpNAcA‐(1!4)‐b‐D‐GlcpNAc3NAlaA‐(1!3)‐a‐D‐
FucpNAc4NR‐(1!], with the N‐4 of the fucosamine partly
acetylated (60 %). The analysis of signals in isolated regions of the
spectrum, i.e., in the range between0.8– 1.5 ppm, demonstrated the
contribution to the interaction from glucosaminuronic (GlcNAcA
Frontiers in Immunology | www.frontiersin.org 6
and GlcNAc3NAlaA) and fucosamine (FucNAc4N) residues.
Therefore, STD NMR analysis confirmed binding of Siglec-7 to
F. nucleatum ATCC 51191 OPS, even though it lacks nonulosonic
acid residues (Figure 2D).

Next, we purified outer-membrane vesicles (OMVs)
produced by F. nucleatum ATCC 51191 by density gradient
ultracentrifugation, resulting in pure and spherical particles with
a diameter range from 30 to 250 nm (Figure S3A). We showed
by GC-MS that LPS is a main constituent (approximately in 60-
70% mol/mol) of F. nucleatum-derived OMVs (Figure S3B). We
then tested the ability of F. nucleatum-derived OMVs to bind to
Siglec-7 (Figure 2C). F. nucleatum-derived OMVs from ATCC
51191 bound to Siglec-7 at levels comparable to LPS under the
conditions tested (Figure 2C).

Together these data identified F. nucleatum LPS present on
whole cells or OMVs as a new ligand to Siglec-7-Fc.

F. nucleatum Modulates Immune
Response in a Cell Subset Specific
Manner
To investigate the impact of F. nucleatum ssp. on the host immune
response, myeloid cells, moDCs and moMfs, were generated from
human blood, and stimulated with F. nucleatum ATCC 51191 or
with F. nucleatum ATCC 51191-derived LPS and OMVs.

F. nucleatum bacterial cells were shown to associate with the
cell surface of moDCs or moMfs as determined by imaging flow
cytometry (Figure S4). Stimulation of moDCs with F. nucleatum
at MOI 5 resulted in a marked increase in cytokine production of
TNFa, IL-8 (p < 0.0001) (Figure 3A) and an induction of CD86
A

B C

FIGURE 1 | Binding of F. nucleatum ATCC 51191 to Siglecs using flow cytometry. (A) Binding of F. nucleatum to recombinant Siglec-Fc proteins (in blue).
(B) Binding of F. nucleatum to Siglec-7 in the presence of GD3 inhibitor (in green) or untreated cells (in blue). (C) Binding of F. nucleatum to WT or Siglec-7-/-

U-937 cells. Bacteria incubated with a-Fc-PE Ab only was used as a control (in red). Fn, F. nucleatum.
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and PD-L1 as compared to the unstimulated control
(Figure 3B). A different profile was observed with moMfs,
where stimulation with F. nucleatum led to a significant
induction of IL-10 and IL-8 production (p < 0.0001), low levels
(n.s.) of TNFa production (Figure 3A) and to the induction of
PD-L1 and downregulation of CD86 cell surface markers as
compared to the unstimulated control (Figure 3B). The results
were dose-dependent, with a marked increase in cytokine
production when cells were stimulated at MOI 50 as compared
to MOI 5 (Figure S5A). This acquired moMf phenotype was
also observed using the macrophage like cell line U-937 after
F. nucleatum ATCC 51191 stimulation, leading to high IL-10 and
low TNFa levels (Figure S5B). Consistent with these results, we
showed, using imaging flow cytometry, that both moDCs and
moMfs were able to internalise F. nucleatum (Figure 3C), with
Frontiers in Immunology | www.frontiersin.org 7
moDCs showing approx. 10% less internalisation as compared to
moMfs (Figure 3C).

Next, we stimulated moDCs or moMfs with F. nucleatum
ATCC 51191-derived LPS or OMVs. In moDCs, treatment with
OMVs or with LPS at 10 mg/ml but not 1 mg/ml induced TNFa
production (Figures 4A, B). In moMfs, stimulation OMVs
or LPS (at both 10 or 1 mg/ml) showed significant induction of
IL-10 at levels comparable to the whole bacteria (Figures 4A, B).
When moMfs or moDCs were treated with LPS or OMVs, there
was an upregulation of the CD80 cell surface marker expression
as compared to the unstimulated control, as showed with the
whole bacteria. In moDCs, LPS stimulation led to an induction of
CD86 expression (Figure 4C), as also observed with the whole
bacteria, while stimulation with OMVs showed a reduction of
CD86 expression compared to the unstimulated control
A B

D

C

FIGURE 2 | Binding of F. nucleatum ATCC 51191 cells, LPS or OMVs to Siglec-7-Fc. Immobilised F. nucleatum 51191 cells were tested for binding to (A) Siglec-7-
Fc and the extracted LPS to (B) Siglec-7-Fc or Siglec-9-Fc by ELISA. (C) Immobilised OMVs extracted from F. nucleatum 51191 were tested for binding to Siglec-7-
Fc by ELISA. PBS was used as control. Data shown are the mean of duplicates ± SD derived from one representative experiment reproduced in three independent
experiments. Fn, F. nucleatum. (D) STD NMR analysis of the binding between Siglec-7 and partially depolymerised OPS from F. nucleatum ATCC 51191. The panel
shows the superimposition of the reference 1H NMR spectrum (in black) and STD NMR spectrum (in green), the 1H-13C HSQC spectrum (blue/red) and the chemical
structure of F. nucleatum OPS repeating units. Statistical analyses were performed by t-test (for panels 2Aand 2C) or one-way ANOVA followed by Tukey’s test.
P < 0.05 was considered as statistically significant. **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s., not statistically difference.
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(Figure 4D). Stimulation of moMfs with LPS (at 10 or 1 mg/ml)
showed a reduction of CD86 expression (Figure 4C), as also
observed with the whole bacteria.

Overall, our results suggest that moDCs stimulated with
F. nucleatum ATCC 51191 and derived components (OMVs
and LPS) show a pro-inflammatory profile while F. nucleatum-
treated moMfs acquire a M2-phenotype which is associated with
tumour progression (50).

Siglec-7 Is Involved in F. nucleatum-
Mediated Immune Response
To obtain direct evidence of the contribution of Siglec-7 in
F. nucleatum ATCC 51191 interaction with myeloid human
cells, we used CRISPR-Cas9 editing to generate Siglec-7
deficient U-937 cells and assayed the effect of F. nucleatum
stimulation on the immune response of differentiated U-937 WT
or Siglec-7-deficient (Siglec-7-/-) cell lines (Figure 5). The
expression of Siglec-7 in these cell lines was confirmed by flow
cytometry (Figure S6). A significant increase (p < 0.01) in TNFa
and IL-10 cytokine production was observed in F. nucleatum
Frontiers in Immunology | www.frontiersin.org 8
ssp.-stimulated U-937-Siglec-7-/- as compared to WT
cells (Figure 5A).

Next, we carried out silencing of Siglec-7 in primary moDCs
and moMfs by siRNA. Using flow cytometry, we confirmed that
Siglec-7 was expressed on the cell surface of moDCs and moMfs
(Figure S7A), and that expression could be reduced by up to 40%
in moDCs as compared to the scramble control (Figure S7B)
while no significant reduction in expression could be achieved in
moMfs. We then analysed the cytokine profile and expression of
cell surface markers following stimulation of silenced or
scramble control moDCs with F. nucleatum ATCC 51191 at
MOI 5 (Figure 5B). We showed that stimulation of Siglec-7
silenced moDCs with F. nucleatum produced statistically
significant (p < 0.05) lower TNFa levels as compared to
scramble moDCs (Figure 5B). No differences in cell surface
marker expression were observed between F. nucleatum-
stimulated Siglec-7 silenced or scramble moDCs (Figure 5C).
Together these data suggest that Siglec-7 is involved in the
induction of a pro-inflammatory response in moDCs by F.
nucleatum ATCC 51191.
A

B

C

FIGURE 3 | Effect of F. nucleatum ATCC 51191 on human myeloid cells. Analysis of (A) cytokine and (B) cell surface marker expression in moDCs or moMfs by
flow cytometry. Human cells were stimulated with F. nucleatum ATCC 51191 (in orange). Unstained cells (in red) and unstimulated (un/ted) cells (in blue) were used
as controls. (C) Internalisation of F. nucleatum ATCC 51191 into moDCs or moMfs. Images were taken with a 40X objective. For the cytokine quantification, data
shown are the mean of triplicates ± SD derived from one representative experiment reproduced in three independent experiments. Statistical analyses were
performed by one-way ANOVA followed by Tukey’s test. P < 0.05 was considered as statistically significant. ****p < 0.0001, n.s., not statistically difference.
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DISCUSSION

F. nucleatum is the most abundant bacterial species in the
colorectal tumour microenvironment with F. nucleatum ssp.
animalis ATCC 51191 being enriched in CRC tissues (11). F.
nucleatum encodes an array of genes related to adhesion and
Frontiers in Immunology | www.frontiersin.org 9
invasion (51), enabling it to reside intracellularly in tumour cells
(52), and, once there, potentially influencing tumorigenesis.
Adhesion and invasion of F. nucleatum to epithelial cells are
mediated by the Fap2 lectin and FadA adhesin expressed on the
surface of F. nucleatum. The Fap2 lectin interacts with Gal-
GalNAc glycans which are overexpressed on tumour cells (53),
A B

C

D

FIGURE 4 | Effect of F. nucleatum ATCC 51191-derived LPS or OMVs on human myeloid cells. Analysis of (A) F. nucleatum LPS or (B) F. nucleatum OMVs on
cytokine production and (C) F. nucleatum LPS or (D) F. nucleatum OMVs on cell surface marker expression. Unstimulated (un/ted) cells (in blue) and unstained
cells (in red) were used as controls. Data shown are the mean of triplicates ± SD derived from one representative experiment reproduced in three independent
experiments. Statistical analyses were performed by one-way ANOVA followed by Tukey’s test. P < 0.05 was considered as statistically significant. **p < 0.01,
****p < 0.0001, n.s., not statistically difference.
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while the FadA adhesin, recognises and binds host surface
components, such as vascular endothelial cadherin (54) and
epithelial cadherin (16). F. nucleatum FadA expression was
also shown to be upregulated in CRC tissue (16). Interaction of
FadA with E-cadherin triggers the expression of oncogenes, such
as c-MYC and inflammatory genes, through the b-catenin
cascade and the upregulation of annenix A1 (16, 17). However,
the receptors involved in the interaction between F. nucleatum
ssp. and immune cells remain largely unknown.

Here, we showed that F. nucleatum ssp. animalis ATCC
51191 interacts with Siglec-7 expressed by immune cells and
that binding is LPS-mediated. Human NK cells, macrophages,
Frontiers in Immunology | www.frontiersin.org 10
dendritic cells constitutively express Siglec-7, and the colonic
lamina propria monocytes and macrophages represent the major
Siglec-7 positive populations (55). Extracellularly, Siglec-7 has a
sialic acid-binding V-set domain which we demonstrated was
implicated in the binding to F. nucleatum. Siglec-7 has been
shown to bind to the sialylated ganglioside GD3 (56), and N-
linked disialyl Lewisa in the normal colonic epithelium (55). At
the molecular level, Siglec-7 has been reported to bind to
terminal sialic acid moieties with diverse underlying glycan
structures. We recently uncovered the LPS structure of F.
nucleatum ATCC 51191, revealing a novel sugar repeating unit
in the O-antigen structure [!4)-b-D-GlcpNAcA-(1!4)-b-D-
A

B

C

FIGURE 5 | Effect of Siglec-7 on F. nucleatum ATCC 51191 interaction with human immune cells. (A) Cytokine production of U-937-PMA (WT or Siglec-7-/-)
stimulated with F. nucleatum ATCC 51191. Bars represent the median values from 3 technical replicates. (B) Cytokine production and (C) cell surface marker
expression of Siglec-7 silenced moDCs (in orange) or scramble control cells (in blue) stimulated with F. nucleatum. Unstimulated (un/ted) cells (in green) and
unstained cells (in red) were used as controls. For the cytokine and internalisation analyses, data shown are the mean of triplicates ± SD and duplicated ± SD,
respectively, derived from one representative experiment reproduced in three independent experiments. Statistical analyses were performed by two-way ANOVA
followed by Tukey’s test. P < 0.05 was considered as statistically significant. ***p < 0.001, ****p < 0.0001, n.s., not statistically difference.
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GlcpNAc3NAlaA-(1!3)-a-D-FucpNAc4NR-(1!], (R=
Acetylated 60%), and a bis-phosphorylated hexa-acylated lipid
A moiety (24). It therefore likely that the LPS glycans other than
sialic acid moieties may contribute to the binding of F. nucleatum
ATCC 51191 to Siglec-7, consistent with the results of the
sialidase treatment. This was further confirmed by STD NMR,
showing that the OPS extracted from F. nucleatum ATCC 51191
was recognised by Siglec-7, revealing new ligand epitopes not
restricted to nonulosonic acids (neuraminic acid and fusaminic
acid). The discovery that F. nucleatum LPS is a ligand for
immune checkpoint receptors like Siglec-7 opens up new
blockade strategies and studies are in progress to gain further
structural insights into the broad ligand specificity of Siglec-7
towards the bacterial glycan structures revealed in this work.

We showed that F. nucleatum ATCC 51191 induced a pro-
inflammatory profile in moDCs and a tumour associated profile in
macrophages (moMfs andU-937 cells) and that Siglec-7 contributed
to these cell-specific responses using Siglec-7 RNA-silenced moDCs
and Siglec-7 deficient U-937 cells. In macrophages, F. nucleatum
ATCC 51191 induced the expression of IL-10, IL-8 cytokines and
PD-L1 marker and a downregulation of CD86 cell surface marker
expression, characteristic of macrophage type 2 (M2) polarisation
(12, 13).These results are inagreementwithprevious studies showing
an infiltration of M2-macrophages in F. nucleatum ssp. positive
clinical CRC specimens (57) and a M2 acquired phenotype in
macrophage-like cell lines stimulated with F. nucleatum ATCC
10953 (13), and F. nucleatum ATCC 25586 (58). A recent study
showed that Siglec-7and -9 induce thepolarisationofmonocytes into
a tumour-associated macrophage (TAM) phenotype and the
induction of tumour-associated cell surface markers such as PD-L1
(59). ThemoDCresponse toF.nucleatumATCC51191 suggests that
Siglec-7 contributes to the pro-inflammatory response. These cell-
specific phenotypes could be recapitulated using F. nucleatum
derived OMVs or LPS, implicating LPS as a ligand of the
interaction with Siglec-7. The interaction of F. nucleatum derived
LPS has been reported with TLR-4 leading to polarisation of
macrophages, a process that is associated with tumour cell
proliferation and metastasis (13). Our findings that LPS and OMVs
influence innate immunecell responses is supportedby recent studies
showing that F. nucleatum OMVs can trigger inflammation of
human intestinal epithelial cells (IECs) (60), by promoting NF-kB
activation in a TLR-2-dependent manner (61).

Siglec-7 can bind to a range of human cell types (such as
basophils, eosinophils, NK cells and splenocytes), illustrating its
role of ‘self’ recognition (62). The response we observed upon
interaction with F. nucleatum differs from the canonical inhibition
of immune activity observed between immune cells and cancer cells
(25) but is consistent with in vivo work using ApcMin/+ model
reporting that F. nucleatum induced expression of the genes
encoding several pro-inflammatory cytokines, including TNFa,
IL-6, IL-8 and IL-1b (12)whichmirrors humanRNA-seqdata from
patients bearing highF. nucleatum loads in their colorectal tumours
(12). To our knowledge, only one study, using Siglec-7 silencing
approach in monocytes, also showed association of Siglec-7 with
pro-inflammatory cytokine production, upon interaction with
yeast particles in a sialic acid-independent manner (63). These
Frontiers in Immunology | www.frontiersin.org 11
differences in cell immune response could be attributed to themode
of recognition, the nature of the interactions (cell-cell or cell-
microbe), or the heterogeneity in pattern recognition receptor
(PRR) expression in the different cell subsets used in the in vitro
studies. Indeed, other PRRsmay act synergistically with Siglec-7 to
contribute to a distinct immune response. For example, TLR-4, a
toll-like receptor with an intracellular activation motif has been
shown to establish a direct interactionwith Siglecs including Siglec-
7 (64). Therefore, since TLR-4 is expressed in U-937 (65) and
moDCs (66), our findings could be the result of a synergetic effect
between Siglec-7 and TLR-4. This interaction could also contribute
to the capacity of F. nucleatum ssp. to promote chemoresistance of
CRC by inhibition of cancer cell apoptosis (8–10). A recent in vivo
study using humanized immunocompetent mice, showed that
Siglec-7 and -9 could be potential targets to enhance anti-tumour
immunity (36). In the future, it will be interesting to study the effect
of F. nucleatum-Siglec-7 interaction in vivo, using humanised
immunocompetent murine model, as Siglec-E, the closest murine
homolog of Siglec-7, does not recognise F. nucleatum ssp. (data not
shown), consistent with the lack of direct homology between
murine and human Siglecs (67).

It was recently reported that Siglec−7 is expressed in
macrophages in CRC tissue from patients and that high levels of
Siglec−7 expression in tumour tissues are associated with shorter
overall survival in patients treated with immunotherapy for
metastatic CRC (68). Mirroring this, an independent human
study reported that patients with high relative abundance of F.
nucleatum in tumour tissues compared to matched control tissues
have a higher incidence of regional lymph node metastases (69).
These studies support the translation of our findings to humans.
The interaction of F. nucleatum ssp. with Siglec-7, leading to a pro-
inflammatory microenvironment, provides a mechanism
underpinning these associations in patients and initial evidence
that blocking this interactionmay be a potential strategy to alleviate
the progression of F. nucleatum associated CRC.

In summary, our results reporting LPS-mediated interaction of
F. nucleatum and derived OMVs with Siglec-7, add a new
dimension in our understanding of the role of Siglecs in cancer
progression. Given the role of F. nucleatum in influencing CRC
tumorigenesis and response to cancer treatment, there is significant
interest in developing strategies that target F. nucleatum, preferably
in the tumour tissue. However, antimicrobial strategies are limited
due to concerns about antibiotic resistance and themutualistic role
ofF. nucleatum in the oral cavity and othermucosal sites of humans
(70). Targeted glycan interventions to displace Siglec-7-F.
nucleatum interactions could prove an effective way of improving
current approaches for the treatment of cancer by targeting F.
nucleatum in the tumour environment and without compromising
the rest of the gutmicrobiome or inducing antimicrobial resistance.
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