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The development of rational approaches to restore immune tolerance requires an iterative
approach that builds on past success and utilizes new mechanistic insights into immune-
mediated pathologies. This article will review concepts that have evolved from the clinical
trial experience of the Immune Tolerance Network, with an emphasis on lessons learned
from the innovative mechanistic studies conducted for these trials and new strategies
under development for induction of tolerance.
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INTRODUCTION

The mission of the Immune Tolerance Network (ITN) is to advance the development of immune
tolerance strategies in autoimmunity, allergy, and transplantation by conducting high-quality
clinical trials with emerging therapeutic agents. Integrated mechanism-based research is a critical
component of these trials that provide new insights into the success or failure of the intervention, as
well as further understanding of disease pathogenesis. These results in turn provide the building
blocks for further clinical trials and the design of new treatment strategies and incremental
advancement towards the tolerance goal.

Central to the ITN’s mission is the concept of immunologic tolerance. While specific clinical
definitions of tolerance vary across the immune mediated diseases, they all center on differentiating
permanent or prolonged improvements in disease that represent a significant clinical benefit over
the expected natural history of disease or the standard of care. Conceptual parallels are illustrated in
Figure 1. In the transplant setting, tolerance is defined as graft acceptance without the need for a
continuous immunosuppressive regimen, or a greatly reduced regimen. In allergic disease, tolerance
may be defined as prolonged unresponsiveness to antigen challenge or exposure after withdrawal of
allergen immunotherapy. For autoimmune diseases, tolerance is reflected in reduced need for
disease-modifying therapy or prolonged improvement of disease manifestations, such as retention
of residual insulin secretion in type 1 diabetes.

However, at a molecular level, immunologic tolerance represents prolonged or permanent
modulation of aberrant immune responses towards a homeostatic state. Immune self-tolerance
normally occurs in T and B lymphocytes by central and peripheral mechanisms, reviewed
previously (1). Central tolerance involves elimination of lymphocytes with high affinity receptors
for self-components, a process that takes place in T lymphocytes and B lymphocytes during cellular
maturation in the thymus and bone marrow, respectively. Self-reactive lymphocytes that are not
org September 2021 | Volume 12 | Article 7448041
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eliminated centrally during development exit into the periphery
where they are restrained by a variety of tolerance mechanisms,
included induction of anergy, cellular exhaustion, and
suppression by regulatory T cells, B cells, innate immune cells,
and inhibitory cytokines.

In disease conditions, immunologic tolerance can in theory be
re-established through a variety of mechanisms whichmay expand
or augment regulatory cells (e.g. Tr1, Treg, Breg) and suppress
effector responses (e.g. effector cell depletion, co-stimulation
blockade, anti-cytokine therapy) that in tandem act to restore
immune homeostasis and disease quiescence. In this review, we
provide an overview of ITN successes, challenges, and new
strategies to achieve immune tolerance in the fields of allergy,
autoimmune disease, and solid organ transplantation. Table 1
summarizes the ITN trials mentioned in this review. Summaries of
all ITN trials are available at www.immunetolerance.org.
BARRIERS TO TOLERANCE

Immunological memory is a hallmark of successful immune
responses, and is essential for pathogen surveillance and
extinction. It is also a formidable barrier to successful immune
tolerance induction. The challenge of reversing pathogenic
immune responses in individuals with autoimmune disease and
allergy requires not only directed therapy against immune effector
cells, but also prevention of recurrent memory responses when
therapy is discontinued. This concept also plays a role in
Frontiers in Immunology | www.frontiersin.org 2
transplantation, both through initial heterologous memory and
subsequently in dealing with the robust alloimmune response.
Innate immune activation, memory, and self-perpetuating
inflammatory cascades must be restrained, allowing tissue repair
to occur. Therefore, a major focus of immune tolerance strategies
is to retain and expand regulatory immune mechanisms, thereby
exploiting homeostatic pathways that are intrinsic to a healthy
balance of immune effector and regulatory compartments.

This combination of interrupting effector mechanisms,
restraining innate activation, and boosting regulation is the central
dogma of successful immune tolerance therapy, illustrated in
Figure 2. Therapies that achieve only one of these goals without
the others, as discussed in the examples below, achieve suboptimal
or transient clinical benefit. And because immunological memory is
very resilient, early intervention – at the time of transplant or early
in the immune process prior to the onset of clinical disease in allergy
or autoimmunity – can be attempted whenever at-risk individuals
can be identified.

Underlying these efforts to rebalance immune effector and
regulatory responses is the recognition that drastic immune
suppression is accompanied by significant safety concerns,
notably infectious and neoplastic risk, as well as life-long drug
administration. Consequently, the targets of immune tolerance
therapy need to be selective, addressing the ITN’s ‘interrupting/
restraining/boosting’ therapeutic dogma without creating an
unacceptable level of danger. Selective targets within the
adaptive immune system may involve specific subsets of T or B
cells, or even antigen-specific receptors and signaling pathways;
FIGURE 1 | Conceptual parallels between the approach to autoimmunity and allergy tolerance trials, using examples from T1D and from peanut allergy. Identification
of early at-risk children allows for prevention strategies that rely on antigen exposure in the context of immune deviation or anergy. After initial antigen sensitization,
however, additional measures are required to blunt effector responses to inhibit immune amplification events. Failing this, determinant spreading elicits robust
immunity that recruits additional effector pathways and conditions inflammatory innate tissue responses, now requiring combinations of targeted therapeutics to
‘reset’ the immunological threshold and enable an opportunity to reestablish homeostatic balance between regulatory and effector pathways. Recognition of these
differences requires appropriate staging and monitoring in order to select therapeutic options with tolerogenic potential.
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TABLE 1 | Summary of ITN Clinical Trials Included in this Review.

Disease Indication Trial Name Intervention Status References ClinicalTrials.gov
Identifier

Allergy

At risk for peanut allergy LEAP
LEAP-On

Peanut Complete (2–7) NCT00329784
NCT01366846

Peanut allergic IMPACT Peanut Complete (8) NCT01867671
At risk for atopy ACTIVATE Vaginal microbiome seeding Ongoing NCT03567707
Grass allergic GRADUATE Timothy grass + Dupilumab Ongoing NCT04502966
Grass allergic GRASS Timothy grass Complete (9) NCT01335139
Cat allergic CATNIP Cat allergen + Tezepelumab Complete NCT02237196

Transplantation

Kidney transplant Mixed
Chimerism

Immunosuppression withdrawal following donor hematopoietic
stem cell transplant

Complete (10) NCT00063817,
NCT00801632

Kidney transplant TEACH Immunosuppression withdrawal following donor mesenchymal
stromal cells

Ongoing NCT03504241

Liver transplant LITTMUS Immunosuppression withdrawal following donor specific Tregs Ongoing NCT03577431,
NCT03654040

HLA sensitization awaiting kidney
transplant

ADAPT Carfilzomib plus belatacept Planned NCT05017545
ATTAIN Daratumumab plus belatacept Planned NCT04827979

Autoimmunity

Treatment-resistant multiple
sclerosis

HALT-MS Autologous hematopoietic stem cell transplant
Autologous hematopoietic stem cell transplant

Complete (11–13) NCT00288626
BEAT-MS Ongoing NCT04047628

ANCA associated vasculitis RAVE Rituximab Complete (14) NCT00104299
Lupus nephritis CALIBRATE Rituximab + Belimumab

Rituximab + Belimumab
Complete (15) NCT02260934

Primary membranous
nephropathy

REBOOT Ongoing NCT03949855

Antiphospholipid syndrome DARE-APS Daratumumab Planned Pending
New onset type 1 diabetes
New onset type 1 diabetes
New onset type 1 diabetes

AbATE Teplizumab Complete (16–18) NCT00129259
T1DAL Alefacept Complete (19–21) NCT00965458
START Antithymocyte globulin Complete (22) NCT00515099

Lupus nephritis ACCESS Abatacept
Abatacept

Complete (23) NCT00774852
Multiple sclerosis ACCLAIM Complete (24, 25) NCT01116427
Psoriasis vulgaris PAUSE Ustekinumab + Abatacept Complete (26) NCT01999868
Frontiers in Immunology | www.fron
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Summaries of all ITN trials are available at www.immunetolerance.org.
FIGURE 2 | A conceptual framework for induction and maintenance of immune tolerance. Tolerogenic therapies that focus on boosting regulatory immune
responses face daunting hurdles in the form of established immunological memory and robust redundant effector activation pathways, involving both adaptive and
innate immunity. Creating a host environment conducive to regulation is augmented by first inducing clinical remission and decreasing tissue inflammation. This
concept creates a practical platform for combination therapies in which short-term immunosuppressive or immunomodulatory interventions are first employed,
followed by emphasis on restoration of immune regulation.
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and selectivity in a broader sense may target a limited set of
cytokine, chemokine, or activation pathways without global
immunosuppression. Rapid development over the last two
decades of novel immune therapeutic agents that meet these
types of selectivity requirements has enabled the design of
clinical trials with aspirations for achieving immune tolerance.
Although transplantation, allergy, and autoimmune diseases have
many distinct characteristics, conducting such trials within the
ITN provides an opportunity to study immune mechanisms and
concepts across clinical disciplines while evaluating safety,
therapeutic durability, and homeostatic immune reconstitution.
ALLERGY

Desensitization strategies have been a mainstay of allergy therapy
for many years, for many types of environmental allergens,
including hymenoptera venom and aeroallergens such as
pollens, dust mites, and animal dander. On this background of
clinical experience showing that allergen specificity of an allergic
response that can often be modulated by controlled antigen
exposure, the ITN has designed several clinical trials intended to
achieve durable, long-lasting allergen desensitization, i.e. tolerance.

IgE-mediated peanut allergy typically develops in the first two
years of life and for the majority affected, the disease persists into
adulthood. Sensitization to peanut may involve cutaneous and
enteral pathways that lead to production of TH2 cytokines and
antigen-specific IgE. The Learning Early about Peanut Allergy
(LEAP) trial demonstrated that early oral exposure to peanut
prevented the development of peanut allergy in atopic infants
including those who had already developed sensitization to
peanut (2). This protection proved to be durable through the
LEAP-On trial, which assessed peanut allergy status after one
year of avoidance of peanut following completion of the oral
peanut intervention (3). Nearly complete protection in the LEAP
cohort of infants with family histories of peanut allergy and
eczema, who were at high risk for development of peanut allergy,
led to the publication of new public health guidelines for safely
introducing peanut protein into the early childhood diet (4). This
protection was highly allergen specific, as consumption of peanut
did not prevent the development of other food allergies (5).

While it is possible that antigen specific prevention may be
applicable for many food allergens, there are practical limitations
to introducing multiple allergens in young infants, including the
ability of young infants to comply with ingestion of multiple
different foods in sufficient quantity to prevent allergic disease
(27). Prevention strategies are needed that are personalized based
on individual risk of developing a specific allergy. For example,
subsequent whole genome sequencing from the LEAP trial
revealed a novel association for peanut allergy with a single
nucleotide variant in the mucosa-associated lymphoid tissue
lymphoma translocation (MALT1) gene (6). MALT1 encodes a
paracaspase that acts in response to antigen binding to the T-cell
or B-cell receptor leading to NFkB activation (28). The association
of MALT1 with peanut allergy was found to be independent of
atopic dermatitis and egg allergy, suggesting that carrier status
Frontiers in Immunology | www.frontiersin.org 4
predisposed to a unique risk for peanut allergy specifically, and
correlated with the progressive acquisition of IgE antibodies to
multiple allergenic peanut protein components (6). This
immunological relationship was further explored by analyzing
the development of peanut specific IgE to a broad repertoire of
linear epitopes after the second year of life (7). Peanut specific IgE
in infants sensitized to peanut and consuming it, however,
recognized conformational epitopes without expansion of
peanut specific IgE reactivity to linear epitopes. These findings
suggest an interaction between genetics, age of peanut exposure,
and likelihood of tolerance, opening possibilities for personalized
prevention and intervention strategies based on distinct
phenotypic and genotypic risk factors.

Observations in another ITN study, the Oral Immunotherapy
for Induction of Tolerance and Desensitization in Peanut-
Allergic Children (IMPACT) trial, further emphasize this
point. IMPACT was a randomized double-blind placebo
controlled trial of peanut oral immunotherapy (OIT) in peanut
allergic children ages 12-48 months. Successful desensitization at
the end of OIT and persistent desensitization after 6 months of
withholding OIT was associated with lower baseline peanut
specific IgE, particularly in children below the age of 3 years
(8). While tolerance was achieved in ~70% of the younger
children with low initial IgE, overall the success rate was much
lower, indicating an opportunity may exist early in disease
during which the host immune response may be more
receptive to development of tolerance. Together, LEAP and
IMPACT demonstrate that the atopic march, the paradigm for
the progression from atopic dermatitis to allergen-specific
disease, can be halted or even reversed early in its course for at
least a single allergen-specific disease.

These studies illustrate the concept that the younger immune
system, not surprisingly, is more amenable to tolerization using
antigen desensitization. They also suggest opportunities to
attempt tolerization therapy in older, more established allergy,
using agents to encourage an immune response that resembles
the immature phenotype. Towards that end, two novel strategies
are currently under ITN development, one using microbiome
immune modulation and another using anti-cytokine agents in
combination with desensitization. Microbiome modification is
conceptually a way of providing an innate adjuvant to encourage
tolerization, and potentially provide a complementary approach
to antigen-specific preventative therapy by inhibiting the
development of atopic diseases. Differences in environmental
exposure and associated alterations of the microbiome (e.g., gut,
nasopharyngeal, airway epithelium) have been implicated in the
development of asthma and allergic disease (29). In the LEAP
trial, colonization with S. aureus amongst young participants was
associated with increased IgE production, persistence of egg
allergy, and inhibition of oral tolerance to peanut (30). In the
Copenhagen Prospective Studies on Asthma in Childhood 2010
mother-child cohort, the risk of asthma at 6 years [OR 2.45 (95%
CI 1.32 to 4.55), P = 0.004] and allergic sensitization at 18
months [OR 1.68 (95% CI 1.01 to 2.79), P = 0.046] was higher in
infants delivered by Cesarean section compared to vaginally-
delivered infants. Since the increased risk of asthma was
September 2021 | Volume 12 | Article 744804
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identified in infants born by Cesarean section whose gut
microbiome was less mature at 1 year of age (i.e., retained a
Cesarean section microbiome signature), it is possible the infant
gut microbiomemay be a contributing factor to this predisposition
for the development of asthma (31). In addition, in neonates who
have a high risk for developing asthma, the gut microbiome
produces metabolites, which in murine studies have been shown
to increase pulmonary inflammation and decrease regulatory T
(Treg) cell abundance in the lung (32). Taken together, these
studies suggest that altering the newborn microbiome could
favorably impact the risk of allergic and atopic disease. To
address this hypothesis, the Vaginal Microbiome Exposure and
Immune Responses in C-section Infants (ACTIVATE) trial is
studying the impact of vaginal microbiome seeding on the
development of allergic disease in infants delivered by Cesarean
section (NCT03567707). Longitudinal samples of the gut, skin,
nasal, and oral microbiomes will be collected over the child’s first 3
years of life to assess for compositional factors as well as changes to
the microbiome (e.g., maturation) associated with developing
sensitization to food and aeroallergens.

In older individuals, with established allergic responses and
mature immunological memory, a strategy to alter the allergenic
immune program associated with TH2 T cell immunobiology is
an alternative approach. To this end, the ITN GRADUATE trial,
which is currently underway (NCT04502966), combines
dupilumab (anti-IL4R) and sublingual grass desensitization to
induce durable tolerance. This study builds on the previous ITN
GRASS trial comparing desensitization to grass pollen between the
sublingual and subcutaneous routes (9). Another cytokine strategy,
using tezepelumab (anti-TSLP) to alter TH2 developmental
programming, has been studied recently in the ITN CATNIP trial
as a potential adjunct to desensitization in established allergic
patients (NCT02237196). With recent advances in understanding
TH2 diathesis, agents such as anti-OX40 (33), or other strategies
targeting allergenic T effector cell subsets, known as TH2A cells
(34), may provide additional therapeutic opportunities.
TRANSPLANTATION

Hematopoietic chimerism has been utilized to induce tolerance of
kidney allografts in animals and humans, based on the
foundational discovery that dizygotic cattle twins exhibit stable
red cell chimerism and mutually accept skin grafts (35, 36). A
proof of concept for chimerism as a robust mechanism of
transplant tolerance was provided by recipients of allogeneic
hematopoietic stem cell transplant for leukemia who did not
require maintenance immunosuppression after kidney transplant
from the same donor 3–11 years later (37). The ITN clinical
experience, while successful at achieving transient mixed
chimerism (2-3 weeks) in haplotype-matched patients, was only
able to induce durable immunosuppression free graft survival in a
small number of study participants (10). Similar loss of chimerism
and subsequent rejection has been seen by others (38, 39), likely
indicating a need for improved peripheral deletion of donor-reactive
T cell clones and induction of regulatory mechanisms. Use of a
Frontiers in Immunology | www.frontiersin.org 5
donor hematopoietic stem cell product featuring CD8+/TCR-
“tolerance-promoting facilitating cells” (40), various regulatory T
cell strategies (41–44), or a donor mesenchymal stem cell infusion
(the ITN TEACH trial, NCT03504241) are alternatives currently
being evaluated for potential for inducing transplant tolerance using
therapeutic cell transfer. The ITN LITTMUS trials (NCT03577431,
NCT03654040) are currently testing whether infusion of
alloantigen‐specific regulatory T cells, generated from liver
transplant recipient cells collected within the first post-transplant
year, can facilitate withdrawal of immunosuppressive anti-
rejection medications.

In transplantation, the importance of controlling immunological
memory cannot be overemphasized. A significant proportion of
transplant candidates have accumulated pre-formed antibodies to
HLA antigens as a result of prior sensitizing events such as blood
transfusion, pregnancy, or a previous transplant. These patients
represent a growing challenge for the transplant community as their
sensitized immune systemmakes it more difficult to find compatible
potential donors. The achievement of “HLA desensitization”may be
therefore considered a waypost on the road to B-cell tolerance.
Trials of B cell depletion using rituximab and obinituzumab,
although attractive in theory, were found to be unsuccessful in
practice, likely reflecting the inability of these agents to eliminate
long-lived plasma cells, as well as to sufficiently diminish memory B
cells that are destined to develop into anti-HLA antibody-secreting
cells (45, 46). Interestingly, the strategy of targeting antibody-
secreting plasma cells alone, using agents highly effective against
multiple myeloma, has also been found to be insufficient in
producing a durable response (47). Elegant studies in
allosensitized non-human primate (NHP) models have now
shown that ensuing compensation by expanding germinal centers
(GC) following plasma cell depletion underlies the rapid
repopulation of plasma cells and consequent rebound in HLA
antibody (48). Costimulation via the CD28 and CD40 pathways
plays a critical role in GC interactions between Tfh cells and B cells
(49, 50), and costimulation blockade in NHP has been shown to
collapse GC and abrogate the humoral rebound seen after plasma
cell depletion (51). Based on these observations, a “dual-targeting”
strategy of HLA desensitization consisting of 1) plasma cell
depletion (using proteasome inhibitors or anti-CD38 monoclonal
antibody) and 2) suppression of the upstream humoral response by
costimulation blockade is now being tested in two parallel ITN trials
(ADAPT, NCT05017545, and ATTAIN, NCT04827979).
AUTOIMMUNITY

Rational strategies for tolerance induction in autoimmune
diseases rely on alignment of pathogenic mechanisms and
potential therapeutic targets. In some cases, selective targeting
of effector T or B cell compartments may be an attractive way to
induce remission, by creating a tissue environment less resistant
to subsequent homeostatic regulation; in other cases,
heterogeneity among patients with similar diseases may require
more personalized strategies to optimize the likelihood of
matching the appropriate therapy with an individual subject.
September 2021 | Volume 12 | Article 744804

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huffaker et al. Establishing Tolerance in Immune Diseases
Numerous ITN trials, in diseases such as multiple sclerosis,
systemic lupus erythematosus (SLE), anti-neutrophil
cytoplasmic antibody (ANCA)-associated vasculitis, type 1
diabetes, and psoriasis, have documented robust changes in
immune cell compartments in association with T or B cell
targeting, but clinical responses are often transient. Therefore,
different ITN trials have been designed to evaluate agents for
selective immune depletion, immune modulation, and immune
regulation, with combinations of those agents when feasible to
assess synergistic mechanisms of action. A few examples that
illustrate key concepts are discussed below.

Although over a dozen disease-modifying agents have been
approved by the FDA for the treatment of multiple sclerosis (MS),
some patients with this disease are resistant or refractory to
treatment and continue to relapse and accumulate disability. In
treatment-resistant relapsing MS, an immune “reset” can be
accomplished with immunoablation followed by autologous
hematopoietic stem cell transplant (AHSCT). In this procedure,
the pathogenic immune repertoire is eliminated with interruption
of autoimmune destruction of myelin in the central nervous
system. Clinical trials, including the HALT-MS trial conducted
by the ITN, demonstrated high efficacy in aggressive treatment-
resistant relapsing MS (11, 12, 52–54). There is evidence that
AHSCT alters the immune system upon reconstitution via thymic
reactivation (55), rebalancing of regulatory and effector immune
components (56–59), and T cell repertoire diversification (13). In
the HALT-MS trial, dominant CD4+ T cell clones were largely
replaced by a new repertoire following transplant, while CD8+ T
cell clones re-emerged and better clinical outcomes post-
transplant were associated with a more diverse CD8+ T cell
repertoire (13). To confirm this result, the BEAT-MS
multicenter trial is in progress comparing the efficacy and cost-
effectiveness of AHSCT to high efficacy disease modifying agents
in treatment-resistant relapsing MS (NCT04047628), with the aim
of developing high quality evidence supporting consensus
recommendations for utilizing AHSCT to treat resistant forms
of relapsing MS (60).

Depletion of specific effector cell populations without the
global changes induced by AHSCT are also effective, although
with inconsistency in the durability of response. In ANCA-
associated vasculitis, ANCA do not appear to cause disease by
forming immune complexes or directly binding to tissues.
Instead, these autoantibodies are suspected to bind neutrophils,
resulting in hyperactivation of neutrophils and formation of
neutrophil extracellular traps, which in turn results in vascular
damage. The Rituximab for ANCA-associated Vasculitis (RAVE)
trial treated patients with severe active granulomatosis with
polyangiitis and microscopic polyangiitis with rituximab (anti-
CD20), with the goal of depleting antibody-secreting B cells and
promoting sustained disease control (14). In this study, rituximab
therapy was shown to be non-inferior to cyclophosphamide, the
previous standard of care for induction of disease remission.
Following induction of clinical remission with rituximab
therapy, the majority of patients nevertheless relapsed, indicating
that immune tolerance was not achieved despite the initial clinical
response. A similarly transient benefit of rituximab therapy was
Frontiers in Immunology | www.frontiersin.org 6
seen in the TrialNet study of type 1 diabetes (61, 62); interestingly,
T cell transcripts indicating activation following B cell depletion
correlated with reduced preservation of residual insulin secretion,
suggesting a need for targeting multiple effector arms of the
immune response (63).

Despite an abundance of evidence supporting a critical role
for B cells in the pathogenesis of SLE, rituximab-induced B cell
depletion has failed in randomized, controlled trials to show
clinical efficacy in both non-renal SLE and lupus nephritis (64,
65). One possible explanation for the early failure of rituximab
therapy for SLE in clinical trials may be that levels of B-cell
activating factor (BAFF) increase following B cell depletion (66).
In BAFF-transgenic mice, elevated levels of BAFF rescue
autoreactive B-cells and prevent them from becoming anergic
(67). To address the hypothesis that inhibition of BAFF following
B cell depletion might improve disease control in this setting, the
ITN CALIBRATE trial was undertaken to explore in lupus
nephritis the efficacy of adding the anti-BAFF agent belimumab
to a B cell depletion regimen combining rituximab and
cyclophosphamide. Although the percentage of autoreactive
naïve B cells were decreased in the group who received
belimumab, the addition of a BAFF blocker did not differentiate
the clinical outcomes in lupus nephritis (15). A related rituximab
and belimumab combination strategy is also being studied in
primary membranous nephropathy, where anti-PLA2R
autoantibody production is being assessed in the ITN REBOOT
trial. In this disease, in contrast to SLE, rituximab therapy has
clinical efficacy for some patients. Belimumab will be initiated 4
weeks prior to rituximab therapy based on the observation that
circulating memory B cells (CD19+/CD20+/CD27+) increase in
numbers after belimumab therapy (68). Thus, initiating belimumab
therapy prior to the intervention with rituximab use has been
hypothesized to increase the proportion of memory B cells that
can be depleted by this CD20-depleting antibody.

Similar to the rationale for transplantation studies noted
above, plasma cell targeting is an attractive option for some
antibody-mediated autoimmune diseases. Elimination of
plasma cells could be beneficial for the treatment of antibody
mediated diseases such as antiphospholipid syndrome (APS), a
systemic autoimmune disease characterized by thrombotic and
obstetric manifestations in individuals with potentially
pathogenic antiphospholipid antibodies (69). Standard
treatment of APS is lifelong anticoagulation, which is not
always effective. Patients with APS often have persistence of
antiphospholipid antibodies and are therefore at risk for
future thrombosis, shining light on the antibody-secreting
cell as a plausible target for effective therapy. A candidate
drug for targeting the antibody-secreting plasma cells in
APS and other autoimmune conditions is daratumumab, a
cytolytic monoclonal antibody developed for the treatment of
multiple myeloma. Daratumumab binds to CD38 expressed on
plasma cells and is cytolytic for these cells. Small case studies of
patients with APS, SLE, and autoimmune hematologic conditions
report that treatment with daratumumab reduces autoantibody
production in concert with improved clinical manifestations of
disease (70–72), providing the rationale for the ITN study of
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daratumumab therapy in APS with the goal of eliminating
antiphospholipid antibodies.

In parallel with these depletional studies that specifically
target the pathologic humoral response, other ITN trials have
focused on inducing remission and tolerance in autoimmunity
through T cell depletion and modulation. The ITN trials of
teplizumab (anti-CD3), alefacept (LFA3-Ig), and anti-thymocyte
globulin (ATG) in type 1 diabetes (T1D) are particularly
informative. Teplizumab is a monoclonal anti-CD3 antibody,
investigated by the ITN for over a decade in several clinical trials.
In the ITN AbATE study, treatment with teplizumab delayed the
loss of residual insulin secretion in patients with type 1 diabetes in a
subset of subjects, with some maintaining insulin secretory function
for several years (16). Teplizumab does not deplete T cells; rather, it
acts as a partial agonist to induce a series of functional and
phenotypic changes. For example, whole blood transcriptomic
analysis in AbATE identified EOMES, a transcription factor and
marker of T-cell exhaustion, as a correlate of changes in insulin
secretion (16–18). Moreover, CD8 effector memory T cells were
found to have greater expression of EOMES mRNA and higher
expression levels of other exhaustion markers, namely KLRG1 and
TIGIT, by flow cytometry. These KLRG1+ TIGIT+ CD8 T-cells
showed impaired expression of cell cycle genes when activated,
suggesting impaired proliferative capacity, and an effector T-cell
exhaustion profile that correlated with improved outcomes. These
studies indicate a novel mechanistic basis for tolerance, namely
induction of lymphocyte exhaustion by a T cell agonist therapy. The
TrialNet TN10 trial subsequently extended these findings to a
population of high-risk individuals who had anti-islet cell
antibodies, a marker of susceptibility to T1D, but who were not
yet hyperglycemic. In this study, teplizumab induced a similar T cell
exhaustion profile and resulted in an overall delay in the
development of T1D by a median of 24 months (73).

The costimulatory CD2 cell surface molecule is most
prominently expressed on CD4 T effector memory (Tem) cells
and naïve CD8 (19). CD4 T regulatory cells (Treg) express CD2 at
lower levels than any other T-cell subset. Targeting this pathway to
affect the antigen-specific effector memory response preferentially
over the regulatory T-cell compartment was the basis for the ITN
T1DAL trial. T1DALwas a clinical trial carried out in children and
adolescents with new-onset type 1 diabetes and investigated the
clinical efficacy of alefacept, an LFA-3 fusion protein that blocks
the costimulatory LFA-3/CD2 interaction (19–21). In this study,
30% of treated subjects retained or improved their insulin
secretory function over 2 years, and another 40% showed only
modest loss of islet function. Similar to treatment with teplizumab,
alefacept treatment was associated with increases in the prevalence
of CD8 effector memory cells expressing both KLRG1 and TIGIT;
as seen in AbATE, these exhausted CD8 cells correlated with
beneficial clinical response. Notably, however, in T1DAL they
appeared in the blood approximately 9 months after therapy,
following an earlier induction of PD1 on a CD4 Tem population.
Both teplizumab and alefacept treated participants demonstrated
these changes in effector populations concurrent with relative
preservation of regulatory T cells, providing a proof-of-concept
for the sequential combination of an induction therapy followed
Frontiers in Immunology | www.frontiersin.org 7
by consolidation of the regulatory response. This conclusion was
reinforced by the findings in the ITN START trial (22) which
utilized anti-thymocyte globulin in a similar study of patients with
early T1D. In START, no therapeutic benefit was observed, and
analysis of lymphocyte subsets indicated depletion of multiple cell
lineages, notably including both regulatory and effector T cell
populations. Retention or boosting of regulatory responses is
therefore a major objective of current ITN therapeutic strategies,
forming one of the key components in clinical trial designs.

Failure to retain regulatory T cell function may explain the
disappointing outcomes in several trials using CD28
costimulatory blockade as a therapeutic tolerance strategy.
Abatacept (CTLA4-Ig) is a fusion protein consisting of the
extracellular domain of the CTLA4 ligand for CD80/86
coupled to a modified Fc portion of human immunoglobulin G
(IgG). It acts by preventing CD80/CD86 on APCs from binding
to CD28 on T cells, thereby inhibiting T cell activation and
function, and serving as an effective treatment option in adult
rheumatoid arthritis and juvenile idiopathic arthritis. ITN trials
with abatacept in multiple sclerosis, lupus nephritis, and
psoriasis, however, did not demonstrate clinical benefit for
induction or maintenance of tolerance (23, 24, 26). Analysis of
peripheral blood cells from the participants in the multiple
sclerosis trial demonstrated that the relative proportions of
activated CD4+ T follicular helper cells and regulatory T cells
were both decreased in participants receiving abatacept
compared with those receiving placebo (25). Similar changes
following abatacept treatment, including loss of regulatory T
cells, have been observed by others in a variety of other diseases
(74–76). While transient immunomodulatory effects in effector
cells from CD28 blockade occur, these require continued drug
administration, and therefore the undesirable inhibition of
regulatory T cells that also utilize CD28-dependent pathways
appears to preclude effective use of abatacept as a tolerance
therapy where drug discontinuation is desired.
DISCUSSION

Successful treatment interventions in transplantation, allergy, and
autoimmune disease rarely allow for discontinuation of therapy
and result in sustained and selective immune tolerance. However,
they do occur, and in the context of clinical trials, they provide an
opportunity to identify specific therapeutic targets, or
combinations of targets, capable of restoring homeostatic
immunity. Notably, minimization or extended drug holidays
from immunosuppressive therapy also provide clinical benefit,
even without achieving the ideal goal of permanent immune
tolerance. Ongoing maintenance intervention may be required,
for example a small dose of oral peanut (or other allergen) to
maintain a non-allergic state in an individual who had previously
undergone successful desensitization to that allergen.

Looking across multiple clinical trials and different clinical
disciplines in ITN studies, shared patterns emerge that
emphasize the need for a combination of interrupting effector
mechanisms, restraining innate activation, and boosting
September 2021 | Volume 12 | Article 744804
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regulation. These objectives can be met through targeting of
different cells and pathways in different diseases, whether B cell,
plasma cell, T effector, T regulatory, cytokine or other non-
lymphocytic effector mechanisms. Early intervention, and
mechanism-based stratification of individuals for optimal
targeting of particular immune pathways, are likely to improve
success rates. Combining antigen exposure in allergic disease and
transplantation with selective immunomodulation, and using
initial induction strategies in autoimmunity followed by
regulatory enhancement, are promising conduits for improving
clinical outcomes. In the examples summarized in this article, we
have learned that early intervention in the form of antigen
introduction can be successful in preventing and treating
peanut allergy. In autoimmune disease, immunomodulatory
agents targeting T cells and inducing exhaustion pathways can
delay clinical disease onset and improve the effector/regulatory T
cell balance in T1D, while targeting B cells improves outcomes in
ANCA-associated vasculitis. For other autoimmune diseases
resistant to B cell depletion or costimulatory blockade, targeting
alternative costimulatory pathways and antibody-producing plasma
cells in tandem, for example, and combination strategies interrupting
key hubs in the adaptive and innate immune response may be
required to restore immune tolerance and tissue homeostasis. In
solid organ transplantation, success has been partially achieved with
an immune reset via hematopoietic chimerism, but other strategies
including cell-based therapies and molecularly targeted agents are
under investigation. Eliminating unwanted immune responses in
allergy, autoimmunity, and transplantation and restoring a healthy
balance of regulatory and effector immune elements is a formidable
Frontiers in Immunology | www.frontiersin.org 8
goal. Nevertheless, improved understanding of the complexities of
the immune system provide opportunities that continue to provide a
foundation for future tolerance-inducing strategies and success.
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