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Mycobacterial diseases are a major public health challenge. Their causative agents
include, in order of impact, members of the Mycobacterium tuberculosis complex
(causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous
mycobacterial pathogens including Mycobacterium ulcerans. Macrophages
are mycobacterial targets and they play an essential role in the host immune response
to mycobacteria. This review aims to provide a comprehensive understanding of the
immune-metabolic adaptations of the macrophage to mycobacterial infections. This
metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as
in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage
metabolic adaptations result in changes in intracellular metabolites, which can post-
translationally modify proteins including histones, with potential for shaping the epigenetic
landscape. This review will also cover how critical tuberculosis co-morbidities such as
smoking, diabetes and HIV infection shape host metabolic responses and impact disease
outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last
decades can be harnessed towards the design of novel diagnostic and therapeutic tools,
as well as vaccines.
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INTRODUCTION

Mycobacteria have been a major cause of human disease for millennia, with the effects of
Mycobacterium tuberculosis (M.tb) seen in the skeletons of mummified human remains from
over 4000 years ago (1). The main mycobacteria of public health importance today are members of
the mycobacterium tuberculosis complex (which includes M.tb, M.bovis, M.africanum, M.microti,
M.pinnepedi, M.caprae), which cause tuberculosis (TB),Mycobacterium leprae (M.leprae) the cause
org September 2021 | Volume 12 | Article 7473871
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of leprosy, and nontuberculous mycobacteria (NTM) leading to a
wide variety of clinical presentations. NTM include
Mycobacterium ulcerans (M.ulcerans), the cause of Buruli
ulcer (BU).

Around 2 billion people worldwide are infected with M.tb.
Approximately 10 million people fall ill with TB each year and
there are around 1.5 million deaths (2). Great progress has been
made with TB control over the past decade, but these gains have
been undermined to some extent by the ongoing Covid-19
pandemic, especially in less well-resourced settings (3). Current
treatment for drug sensitive TB is a minimum of 6 months and
considerably longer for drug resistant disease. Shorter more
effective treatments are needed, and host-directed therapies
(HDT) arise as a promising strategy.

Leprosy caused by chronic infection with M.leprae is
predominantly a disease of the skin and peripheral nerves. It is
curable with a prolonged course of antibiotics. The incidence of
leprosy has declined over the past century, but the rate of decline
is currently sluggish. A large proportion of endemic countries
(118/161) reported new cases in 2019 (202,256 or 26 per million
population) (4). Although antibiotics can still cure the disease,
permanent changes to nerves can occur leading to lifelong
disabilities. There is still a great amount of stigma around the
diagnosis of leprosy which can delay detection and effective
treatment. Also, weak health systems can make early detection
and treatment difficult. Current therapies although effective are
prolonged and commonly associated with adverse effects (5).

Both TB and leprosy present a spectrum of clinical
manifestations. TB can be described as a dynamic continuum
from asymptomatic M.tb infection to active infectious disease,
including latent infection as well as incipient, subclinical and
active TB disease (6, 7). Leprosy also comprises ample clinical
variability. The two extremes of the spectrum are tuberculoid
and lepromatous forms of the disease, the first being
paucibacillary and mild, while the latter is multibacillary and
presents increased disease severity (8, 9).

There are over 200 species of NTM identified to date (10), of
which the vast majority (over 95%) have not been associated with
human disease. NTM are predominantly environmental
organisms of low pathogenicity to humans that only cause
disease in specific circumstances. An exception is M.ulcerans,
which causes chronic skin ulcers in immunocompetent
individuals, through production of a diffusible cytotoxin called
mycolactone (11). BU is, after TB and leprosy, the third most
common mycobacterial disease worldwide and together with
leprosy one of the 20 Neglected Tropical Diseases prioritized by
theWHO (12). West African countries are the worst impacted by
BU, with prevalence rates reaching 26.9 cases per 10,000 in
Benin. Other NTMs primarily affect immunocompromised
people. Recently, NTM infections have been associated with
health care procedures with infections due to M.chimerae
occurring after cardiac surgery (13) and infections with rapid
growing NTM’s such as M.abscessus being associated with
cosmetic surgery procedures (14). M.abscessus is also
associated with progressive lung infection in patients with
cystic fibrosis (15). Treatment of NTM infections is complex
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requiring multiple prolonged antibiotics which may not be
effective or well tolerated. Overall, novel treatments for
mycobacterial diseases are needed. HTDs are a promising
approach but we need a greater understanding of how the host
responds to infection.
MACROPHAGES AS TARGETS OF
MYCOBACTERIAL INFECTION

Macrophages not only play an essential role in the host immune
response to mycobacteria, but they also are mycobacterial
targets. They fulfil a variety of essential functions in
homeostasis and disease, including phagocytosis, uptake and
killing of pathogens, tissue repair and inflammation resolution
(16, 17). Mirroring their wide range of functions, macrophages
constitute a highly diverse and heterogeneous population (18,
19). Traditionally, they have been classified into M1, i.e.
classically-activated (LPS + IFNg) and pro-inflammatory, and
M2, i.e. alternatively-activated (IL-4) and anti-inflammatory.
While the oversimplified M1/M2 dichotomy has been a useful
tool when studying macrophage diversity, most macrophages
exist as a spectrum and contain features of both (20, 21).
Additionally, it is increasingly recognised that specific
environmental cues can promote certain macrophage
phenotypes and functions, demonstrating their plasticity.
Metabolically, M1-like macrophages are predominantly
glycolytic and present a broken TCA cycle (22). Their pentose
phosphate pathway as well as fatty acid synthesis are highly
active, ensuring availability of biosynthetic precursors. In
contrast, M2-like macrophages mainly rely on oxidative
metabolism, present an intact TCA cycle and fatty acid
oxidation is upregulated. This review will explore macrophage
metabolic diversity and flexibility and how these metabolic
changes can drive specific phenotypes and functions, focusing
on their relevance in the context of mycobacterial pathogenesis.

M.tb infection occurs when aerosols containing the bacilli are
inhaled by a susceptible host. When M.tb reaches the lung,
alveolar macrophages (AM), the first cellular target (23), are
infected. Infected AMs can migrate to the lung interstitium,
facilitating infection of other cell types, including newly-
recruited monocyte-derived macrophages and neutrophils.
Although abundant evidence points towards M.leprae being
transmitted through the respiratory route (24, 25), the precise
mechanisms for M.leprae spread remain to be fully elucidated
(26). M.leprae primary cell targets are macrophages and
Schwann cells, the latter contributing to build the myelin
sheath that covers nerve fibres. Following introduction into the
skin, M. ulcerans bacilli are phagocytosed by macrophages and
multiply intracellularly until bacterial production of mycolactone
causes host cell apoptosis (11, 27). Therefore, macrophages are a
clear target for mycobacterial pathogens which have evolved
successful strategies to survive and replicate within them (28),
including metabolic manipulation.

In the context of mycobacterial disease, macrophages play an
essential role in driving innate and adaptive immune responses
September 2021 | Volume 12 | Article 747387
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and inflammation, while mediating both tissue destruction and
repair (29). Two major macrophage populations cohabit in the
lung: AMs and interstitial macrophages (IMs). They are distinct
at the ontogenic, phenotypic, metabolic and functional levels
(30). AMs display an M2-like phenotype (31) with predominant
oxidative metabolism (30, 32), similar to IL-4 treated hMDM
(33). In contrast, IMs are mainly derived from recruited
monocytes (34, 35), and this has been particularly shown in
the context of M.tb infection (30, 36). IMs are M1-like and
operate at high levels of glycolysis (30). Other types of
macrophages relevant in the context of mycobacterial infection
include epithelioid cells, multinucleate giant cells (MGCs) and
foamy, lipid-rich macrophages (37). MGCs are the result of
macrophage fusion within the granuloma, organised cellular
aggregates hallmark of TB and leprosy (38).

In leprosy, skin lesions from the milder, tuberculoid forms of
the disease have been shown to have an M1-like macrophage
predominant population, whereas in more severe skin lesions of
multibacillary patients the balance shifts towards M2-like
macrophages (39).

BU manifests as chronic ulcerative skin lesions with a
distinctive lack of pain and inflammation, which if untreated
enlarge over time (40). Tissue necrosis, local analgesia and
defective inflammation are all attributed to bacterial
production of mycolactone, a diffusible macrolide targeting the
entry point of the secretory pathway in eukaryotic cells: the Sec61
translocon (11, 41, 42). By inhibiting Sec61, mycolactone
prevents host cell’s production of secreted proteins, and most
of its transmembrane proteins, leading to their cytosolic
degradation by the proteasome (43–45). In the skin regions
surrounding bacterial foci, complete and sustained inhibition
of Sec61 in host cells triggers endoplasmic reticulum (ER) stress
responses culminating in apoptosis (46). In immune cells
recruited to the site of infection, including macrophages,
exposure to non-cytotoxic concentrations of mycolactone
prevents the production of cytokines, chemokines and the
transduction of receptor-mediated signals, thereby the
generation of protective immune responses (41). How M.tb,
M.leprae and M.ulcerans impact the metabolic reprogramming
Frontiers in Immunology | www.frontiersin.org 3
of immune cells is explored in the following section, and is
summarised in Table 1.
IMMUNE-METABOLIC ADAPTATIONS OF
THE MACROPHAGE TO MYCOBACTERIAL
INFECTION

This section provides an overview of the current knowledge
regarding the effects of M.tb, M.leprae and M.ulcerans on host
macrophage glycolysis, oxidative and lipid metabolism (Figure 1).

Glycolysis Versus Oxidative Metabolism:
Shaping Macrophage Polarisation
Activation of Toll-like receptors (TLRs) by mycobacterial
components induces dynamic and coordinated changes in the
energy metabolism of host macrophages similar to those
occurring during macrophagic differentiation into the M1-like
phenotype. They include a switch towards glycolysis, a
disruption of the TCA cycle leading to the accumulation of
succinate, and an impaired oxidative phosphorylation. Such
alterations are promoted by the Hypoxia-Inducible Factor
(HIF)-1a, an oxygen sensor and key glycolysis regulator that is
activated by the TCA cycle intermediate succinate and mediates
the production of Interleukin (IL)-1b (56). Induction of aerobic
glycolysis and HIF-1a are beneficial for both innate and IFNg-
dependent control of intracellular M.tb infection by host
macrophages (47, 57, 58). Importantly, in contrast to killed
M.tb and the vaccine strain Bacille Calmette-Guérin (BCG),
live M.tb was recently shown to specifically prevent the
glycolytic switch in infected macrophages, pointing towards
M.tb having evolved specific strategies to modulate host cell
metabolism to its own benefit (48–50). Thus, there is an arms
race to control macrophage metabolism as it is essential in
determining infection outcome, and this topic has been
extensively covered in recent excellent reviews (59–61).
Validating this idea, it was shown in a mouse model of M.tb
infection that ontologically and metabolically distinct lung
TABLE 1 | M1-like vs M2-like macrophages in mycobacterial infection.

M1-like M2-like

Baseline Predominantly glycolytic
Pro-inflammatory
Microbicidal
Key markers: CD86, iNOS, ROS

Mainly reliant on oxidative metabolism
Anti-inflammatory
Tissue repair
Key markers: CD206, CD163, Arg

M.tb Interstitial macrophages
Glycolysis needed for M.tb control (47)
M.tb restricts glycolysis (48–50)

Alveolar macrophages
More permissive to M.tb growth (30)

M.leprae Predominant tuberculoid, lesions (39, 51)
Blocks M1 polarization in infected monocytes (52)

Predominant in severe lesions (39, 51)
Favor bacterial persistence (53)
Infections promote M2 phenotype in hMDMs (54, 55)
Promotes Treg phenotype (54, 55)
Summary of the key distinctive factors between the M1-like and M2-like macrophage populations. Each population plays a different role in the context of M.tb and M.leprae infection, and
have specific capabilities to combat infection, resulting in differential outcome.
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macrophage populations (AMs and IMs) have differential
capacities to control bacterial burden (30). Specifically, IMs
which are predominantly monocyte-derived and glycolytic,
present an increased ability to control M.tb growth compared
to AMs, a subset of embryonic origin committed to fatty acid
oxidation. Although these findings require further validation in
humans, a recent single cell RNA-seq study demonstrated that
the majority of lung macrophage populations are conserved
between mouse and human (62).

Reprogramming of energy metabolism in M.tb-infected
macrophages is also associated with increased levels of
NADPH oxidase and inducible nitric oxide synthase (iNOS),
promoting the production of reactive oxygen species (ROS)
including nitric oxide (NO) with antimycobacterial activity (63,
64). In addition to yielding succinate, disruption of the TCA
cycle upon M.tb infection promotes the generation of itaconate
from cis-aconitate by aconitate decarboxylase, also known as
immune-responsive-gene 1 (IRG1). Although itaconate
suppresses the production of inflammatory cytokines and ROS
by infected macrophages (65, 66), it directly inhibits M.tb
enzymes isocitrate lyases Icl1/2, which are required for
bacterial virulence and growth in vivo (67). IRG1 expression
was shown to potentiate macrophage capacity to control
intracellular M.tb (68) and prevent immunopathology in a
mouse model of M.tb infection (69), demonstrating the key
Frontiers in Immunology | www.frontiersin.org 4
importance of this metabolic pathway in host defence
against M.tb.

Studies in Schwann cells suggested that infection with
M.leprae may also triggers major metabolic reprogramming in
infected macrophages. Following infection byM.leprae, Schwann
cells increase the expression of insulin-like growth factor (IGF),
upregulating glucose transporter 1 (GLUT-1) and glucose uptake
by Akt signalling (70). Glucose is redirected from glycolysis to
the pentose phosphate pathway through the activation of G6PD,
increasing the carbon flux to lipid biosynthesis, while both
mitochondrial activity and lactate production are reduced (71,
72). Since M.leprae infection success depends on the pentose
phosphate pathway, which generates reducing power for
glutathione antioxidant system, it was proposed that M.leprae
subverts host cell glucose metabolism to facilitate glutathione
regeneration and thereby free-radical control (71).

In vitro experiments demonstrated that M1-like macrophages
acquire M2-like phenotypes in the presence of M.leprae and
apoptotic cells (which occur in skin lesions), contributing to
mycobacterial persistence (52). Exposure of human CD14+
monocytes to M.leprae (MOI 5:1) inhibited M1 polarization,
and this effect was likely mediated by the lipid component PGL-1
(73). IL-10 (anti-inflammatory) and IL-15 (pro-inflammatory)
were shown to drive distinct macrophage responses which
translated into progressive versus self-healing leprosy lesions,
FIGURE 1 | M.tb, M.leprae and M.ulcerans infect macrophages and alter their metabolism. M.tb is primarily sensed by host macrophages through TLR2 and TLR4.
Macrophage metabolism shifts towards glycolysis (M1-like), which allows infection control. M.tb has developed strategies to counteract this metabolic switch though
induction of miR-21 and IFNb. M1-like macrophages present a broken TCA cycle, with elevated succinate concentrations that stabilise HIF1a, essential for induction
of glycolysis and secretion of pro-inflammatory cytokines such as IL-1b. Itaconate also arises as a consequence of a broken TCA cycle and has multiple immune-
regulatory functions, including inhibition of isocitrate lyases Icl1/2. M.tb infection triggers ROS production through NAPDH oxidase. It also promotes increased
intracellular lipid content. This results in the development of lipid droplets and the foamy macrophage phenotype, which can be beneficial (i.e. providing cholesterol as
nutrient) or detrimental (i.e. secretion of prostaglandins) for the pathogen. M.leprae infection of CD14+ monocytes drives macrophages towards an M2-like
phenotype, with a key role for PGL-1. M2-like macrophages rely on oxidative metabolism and are associated with severe lesions. Upon M.leprae infection,
macrophages upregulate CD36 and SR-A1 which translates in increased lipid uptake. Lipid droplets and the foamy phenotype have been linked to suppressed
mitochondrial function. Furthermore, M.leprae-infected macrophages promote a Treg phenotype when interacting with naïve T cells, together with an impairment of
pro-inflammatory cytokine release. Mycolactone released by phagocytozed and extracellular M. ulcerans bacilli diffuses into the cytoplasm of host macrophages and
neighboring cells, respectively, gains access to the Sec61 translocon and blocks its activity. An immediate effect of Sec61 blockade by mycolactone is the
downregulation of secretory and transmembrane proteins, among which the glucose importer Glut-1, likely resulting in decreased glycolysis. Sustained Sec61
blockade in mycolactone-exposed cells, including macrophages, triggers ER stress responses culminating in apoptosis. Created with BioRender.com.
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respectively (54). Live (but not killed)M.leprae promoted anM2-
like phenotype in hMDM, based on IL-1b, IL-6, TNF, IL-10,
CD163 and MHC-II expression (55). This M2-skewing was
confirmed by measuring IL-10 and IL-12 transcript and
protein levels in a different study (74). When M.leprae-infected
macrophages were exposed to naïve T cells, diminished pro-
inflammatory responses together with increased T regulatory
phenotypes were reported (55, 74). These changes occurred
using M.leprae harvested from both tuberculoid and
lepromatous skin lesions (74). These findings suggest that the
M2-like macrophages with predominant oxidative metabolism –
same as in the context ofM.tb infection - would favour pathogen
persistence rather than infection resolution.

Production of mycolactone by intracellularM.ulcerans causes
the apoptosis of host macrophages, and bacteria grow primarily
extracellularly in infected skin during active BU (11). However,
mycolactone released by bacteria diffuses broadly in infected
organisms, interfering with the metabolism of both skin-resident
and more distant cells (11, 75–77). Mycolactone-mediated Sec61
blockade is likely to impair host cell energy metabolism via the
downregulation of nutrient tranporters, such as the glucose
transporter Glut1 (SLC2A1). In support of this hypothesis, our
metabolomic analysis of Jurkat T cells exposed to mycolactone
revealed decreased intracellular levels of Glut1 substrates,
glucose-1-phosphate and mannose-6-phosphate, suggesting
impaired glycolytic activity (77). We speculate that during
infection with M.ulcerans, inhibition of Sec61 impairs
glycolysis reprogramming in infected macrophages, and more
generally in all mycolactone-exposed immune cells.

Lipid Metabolism
In addition to reprogramming energetic metabolism, M.tb
infection rewires the lipid metabolism of host macrophages
through inhibition of catabolic pathways (lipid droplet [LD]
lysis and b-oxidation of fatty acids) and concomitant activation
of lipid uptake, mobilization and de novo synthesis (78). This
leads M.tb-infected macrophages to acquire a foamy phenotype,
due to the cytoplasmic accumulation of LDs mainly composed of
triacylglycerol (TAGs), a storage form of fatty acids, and
cholesteryl esters. Whether LD accumulation is beneficial to
host macrophages or intracellular M.tb is a matter of debate.
Since intracellular M.tb has the ability to import fatty acids
deriving from host TAGs and foamy macrophages are a hallmark
of chronic TB, accumulation of LDs in infected macrophages
may provide the pathogen with essential nutrients (37, 79–81).
However, recent data indicate that LD maintenance requires
IFNg-driven induction of HIF-1a, which inhibits lipolysis and
prevents M.tb’s acquisition of host lipids (82). Besides, LDs are
the major sites of eicosanoid production including the anti-
mycobacterial prostaglandin E2 (PGE2) (83), and have direct
antibacterial properties (84). PGE2 is required for M.tb control
(85, 86) Leukotriene B4 (LTB4) is elevated in pulmonary TB
compared to latent M.tb infected individuals (LTBI) (87) and
contributes to M.tb immunopathogenesis (86). Beside
eicosanoids, fatty acids released by LD lysis can be shuttled
across the mitochondrial cell wall for b-oxidation, generating
acetyl-CoA that enters the TCA cycle, and co-enzymes used in
Frontiers in Immunology | www.frontiersin.org 5
the respiratory chain to produce ATP. Interestingly, inhibiting
fatty acid oxidation augmented macrophage ability to control
M.tb infection (30, 53). Rather than starving intracellular M.tb
from lipid nutrients, blocking b-oxidation of fatty acids may
favour the generation of mitochondrial ROS that promote the
phagosomal recruitment of NADPH oxidase and the xenophagic
elimination of M.tb (53).

Similar to M.tb, M.leprae upregulates lipid uptake and
biosynthetic pathways in infected macrophages, particularly
cholesterol (88, 89). Mechanistically, infection with M.leprae
increases macrophage expression of scavenger receptor (SR)A-I
and CD36, promoting the foamy macrophage phenotype (90, 91).
The mycobacteria seem to take shelter within lipid bodies, formed
abundantly by host cells, possibly as a strategy to cover and hide
surface antigens from innate immune receptors in the cytosol (92,
93). Contrary to M.tb (94), M.leprae cannot degrade or utilize
cholesterol as a nutritional source (92), leaving the mechanism by
which host cholesterol metabolism supports its in vivo persistence
undefined. Notably, M.leprae infection reduces host cell
mitochondrial activity in a distinctive manner (88). Oliveira et al.
proposed that cytosolic accumulation of lipids in M.leprae-infected
macrophages may contribute to mitochondrial shutdown and
suppression of their innate immune functions (88).

Besides, macrophages infected withM.tb deprive intracellular
bacteria from essential micronutrients like iron and manganese,
while using copper and zinc to poison them (95). In turn, M.tb
has developed sophisticated strategies to ensure micronutrient
acquisition and resist metal toxicity. Interestingly, iron release
prevails in AMs facilitatingM.tb access to iron, whereas IMs have
the capacity to sequester it, contributing to an iron starvation
M.tb phenotype (96). Further information on this topic can be
found in an excellent recent review by Neyrolles et al. (95).
Proteins involved in iron uptake and metabolism are upregulated
in lepromatous leprosy lesions, compared to tuberculoid forms,
suggesting an association between iron storage in M.leprae-
infected macrophages and intracellular bacterial persistence (97).

Together, these studies revealed aerobic glycolysis and fatty acid
oxidation as key metabolic pathways enhancing or decreasing the
anti-mycobacterial responses of macrophages, respectively. They
highlighted species-specific mechanisms used byM.tb,M.leprae and
M. ulcerans to subvert the glycolytic switch that is induced by TLR
stimulation in infected macrophages, and take advantage of the
increased lipid anabolism in host macrophages.
METABOLIC-EPIGENETIC CROSSTALK
IN MYCOBACTERIAL-INFECTED
MACROPHAGES

The macrophage metabolic adaptations to mycobacterial
infection translate into changes of the intracellular
metabolome. The concentration of particular metabolites
therefore increases with the predominance of certain metabolic
pathways. For example, lactate generation is enhanced with
glycolysis, and so are citrate and acetyl-CoA with an active
TCA cycle. These metabolic intermediates have the potential to
September 2021 | Volume 12 | Article 747387
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post-translationally modify a wide range of proteins (e.g.
histones), increasing proteome diversity and modulating
function, including immune function, according to the cell
needs (98–100). DNA and histones can thus be modified
through metabolic substrates (e.g. methionine, acetyl-CoA,
lactate), and metabolic genes can also be targets of such
modifications (101). There is increasing recognition that
epigenetics play an important role in shaping host-pathogen
interactions and infection outcomes.

Zhang and colleagues showed that macrophage histones can
be lactylated promoting an M2-like phenotype upon bacterial
challenge (102), although this idea has been recently challenged
(103). Since elevated glycolysis and lactate production occur in
the lung ofM.tb-infected hosts [reviewed in (104)], lactate could
potentially drive macrophages towards an M2-phenotpye,
favouring M.tb survival.

M.tb components switch host cellular metabolism toward
aerobic glycolysis in human peripheral blood mononuclear cells
(PBMC) through a TLR2-dependent but NOD2-independent
mechanism which is partly mediated via the activation of the
AKT/mTOR pathway (58). This seems to be of functional
relevance as inhibition of the AKT/mTOR pathway inhibits
cellular responses to M.tb both in human PBMC and a murine
model of TB (58). Insights into the possible mechanisms underlying
this relationship has come from studies of BCG vaccination, which
has been shown to be a potent inducer of trained immunity due to
cellular metabolism reprogramming arising from epigenetic
changes (105). BCG-stimulated monocytes have been shown to
undergo chromatin remodeling due to histone modification,
namely increases in H3K4me3 and H3K9me3 at promoter sites of
essential glycolytic genes. The resultant activation of the AKT/
mTOR/HIF-1a pathway switches cellular metabolism from
oxidative phosphorylation to aerobic glycolysis and as a
consequence facilitates increased production of cytokines such as
TNF and IL-6 that promote mycobacterial killing (106, 107).
Conversely, these epigenetic changes are dependent on the
induction of metabolic processes, as inhibition of glycolysis results
in reversal of changes in H3K4me3 and H3K9me3 at promoter sites
of TNF and IL-6 (107). In contrast to BCG,M.tb has been shown to
impair macrophage trained immunity through activation of the type
I interferon/iron axis in hematopoietic stem cells (108). This
immune-metabolic reprogramming also resulted in suppressed
myelopoiesis, overall enhancing host susceptibility to M.tb
infection (108).

Another recently described epigenetic modification shown to
cause immunomodulation in M.tb infection involves Alu repeat
elements. Alu repeats are mobile interspersed repetitive DNA
sequences that are transposable from one site in the genome to
another, resulting in mutations, insertions and recombination
events in protein-coding mRNAs (109). Analysis of genes
adjacent to H3K4me1-associated Alu repeats linked to
macrophage metabolic responses to M.tb infection has shown that
Liver X Receptor-a signaling can be initiated at response elements
present in Alu repeats and significantly reduces M.tb viability by
altering cholesterol metabolism and enhancing macrophage
apoptosis (110). Furthermore, levels of Alu methylation have been
Frontiers in Immunology | www.frontiersin.org 6
found to be significantly lower in paediatric TB patients and the
detection of Alu DNA methylation may serve as a diagnostic and
prognostic tool of TB disease in this population (111).
CO-MORBIDITIES IMPACT ON
METABOLISM AND IMMUNITY

Vulnerability to infection with M.tb and progression to active
disease can be affected by several co-morbidities and social risk
factors. The main co-morbidities associated with TB progression
and poor outcomes are HIV infection, diabetes, renal disease and
smoking. Social risk factors such as excess alcohol consumption,
air pollution, incarceration and poor housing are also important.
Diabetes, tobacco smoking and HIV infection have a profound
impact on the host metabolic state, at both the macrophage
(Figure 2) and systemic levels. Understanding how these
metabolic changes occur will contribute to elucidating why
these particular conditions worsen TB.

Smoking
The fact that tobacco smoking impacts the immune system and
increases the prevalence of both respiratory and distal organ-
associated diseases has been known for decades [reviewed in
(112–116)]. Cigarette smoke (CS) contains abundant
FIGURE 2 | TB co-morbidities impact alveolar macrophages (AMs).
Smoking, HIV infection and diabetes mellitus perturb the healthy alveolar
macrophage phenotype. These co-morbidities promote changes in alveolar
macrophage metabolism and essential functions including phagocytosis and
cytokine secretion. These disturbances render the alveolar macrophage
population more susceptible to M.tb infection. ↑ increased; ↓ decreased.
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compounds (including toxins and carcinogens) which can
directly modify immune function [reviewed in (115)].

Few studies have investigated the direct metabolic impact of
smoking in M.tb infection. A macrophage shift to glycolysis is
essential for effective control of M.tb (30, 47, 49). AMs from
smokers presented decreased capacity to control H37Ra M.tb
compared to non-smokers (117). This was probably due to
impaired secretion of key cytokines for infection control,
including IL-1b, TNF and IFNg, and some of these altered
immune responses remained in AMs from ex-smokers (117).

Both reduced metabolic activity (measured by oxygen
consumption rate [OCR] and extracellular acidification rate
[ECAR]) and metabolic reserves (glycolytic reserve and spare
respiratory capacity [SRC]) have been reported at baseline in AM
from smokers, measured by extracellular flux analysis (33).
Interestingly, baseline metabolism of smokers’ AMs was skewed
towards glycolysis, matching previous results (118). AMs from
smokers showed diminished glycolysis than AMs from non-
smokers when challenged with M.tb, measured by extracellular
flux analysis and lactate secretion (33). No differences in oxidative
metabolism were detected. Of note, the essential shift towards
glycolysis (ECAR/OCR) for M.tb control was severely impaired in
smokers’ AMs compared to their non-smokers counterparts, and
was confirmed at the transcriptional level (2-fold change reduction
in the glycolysis rate-limiting enzyme hexokinase 1). This translated
in a trend towards attenuated pro-inflammatory responses (IL-1b
and PGE2 secretion). The described deficient shift to glycolysis,
decreased lactate and IL-1b secretion were confirmed in an in vitro
model of hMDMs treated with CSE (33). The bioenergetic profiling
experiments were performed using H37Rv g-irradiatedM.tb. This is
important since live/dead M.tb have been shown to induce
profoundly different metabolic adaptations in hMDMs measured
by extracellular flux analysis (48). Other studies using hMDM and a
THP-1 model and CSE have shown impaired responses to LPS,
based on reduced basal and induced glycolysis, NLRP3 activation
and subsequent IL-1b and IL-18 secretion (119).

Although further mechanistic studies are needed, there is
enough evidence supporting the notion that CS causes
dysfunctional AM metabolic profiles, which directly impact the
orchestration of effective immune responses against respiratory
pathogens, and might help explaining the worsening of TB
reported in the smoking population.

Diabetes Mellitus
The Increasing Overlap of Two Epidemics
Up until a few years ago, the epidemics of TB and diabetes mellitus
(DM) were, for the most part, geographically disconnected. Today,
the geographic overlap between these two epidemics arises as a
worldwide threat, as TB and diabetes have the potential to make
each other worse (120, 121). It is estimated that about 15% of
current TB cases are associated with T2D (122, 123). Here, we will
discuss how diabetes detrimentally impacts TB.

Animal studies have further confirmed that DM worsens TB
outcomes. In a mouse model of DM using streptozotocin (STZ)
to destroy pancreatic islets, macrophages presented a 90%
reduction in their phagocytic capacity, although their
Frontiers in Immunology | www.frontiersin.org 7
intracellular killing abilities were intact (124). When these mice
were challenged with M.tb (Schacht strain) 90% of them died,
compared to 10% in the non-diabetic group (124). Other mice,
rat and guinea pig models of diabetes/hyperglycaemia have
reported increased bacterial burden compared to control
animals, together with diminished IFNg responses (125–129).

Immune Alterations
Chemotaxis of monocytes has been shown to be impaired in
diabetic patients (130, 131), potentially affecting recruitment into
the lung. Furthermore, monocytes from DM patients presented
diminished binding and phagocytic capacity towards H37Rv
M.tb compared to healthy controls (132).

Within the lungs of diabetic C57BL/6 mice (STZ model) and
using an aerosol challengemodel of ErdmanM.tb, it was shown that
the increased TB susceptibility may arise from delayed innate
immune responses (133). In particular, at 2 weeks post-infection
(pi) there was abundant recruited monocytes at the site of infection
in the control group. In contrast, in the lungs of diabetic mice,M.tb-
infected AMs prevailed, and monocyte recruitment was limited
(133). This translated in delayed delivery of M.tb-antigens to the
lymph nodes, and delayed presence of IFNg+M.tb-specific T cells in
the lymph nodes and in the lungs compared to the non-diabetic
group, slowing appearance of effective immune responses and
potentially contributing to bacterial persistence (133). The
mechanisms underlying impaired chemotaxis/recruitment remain
unknown. The reliance of AMs on oxidative metabolism which
facilitates M.tb persistence, in comparison to the more glycolytic
recruited monocytes, could further explain the observed differences
in mycobacterial control.

PBMCs from healthy individuals treated withM.tb lysate in high
concentrations of glucose (40mM, but not 25mM or lower) resulted
in increased secretion of TNF, IL-1b, IL-6, but not IFNg IL-17A and
IL-22 (134). Differentiated macrophages at 25 mM glucose promoted
enhanced cytokine production after stimulation withM.tb lysate and
LPS. However, no differences were reported in phagocytosis andM.tb
killing capacities (134). Macrophages differentiated from healthy
individuals and diabetic patients were characterised at baseline and
after M.tb infection (MOI 5:1 for 24h) with different strains (135).
Expression of key molecules for antigen presentation (HLA-DR,
CD80 and CD86), the inhibitory molecule PD-L1, and cytokines/
chemokines secretion patterns differed between DM patients and
controls. MDMs from T2D patients presented attenuated capacity to
bind, internalise and clear M.tb, and worse outcomes were reported
with more virulent strains (135). Similarly, MDMs from chronic
diabetic patients presented impaired M.tb killing capacity (136).
Monocytes from T2D patients and healthy controls infected with
M.tb presented similar bacterial growth (137). However, monocytes
cultured at 30mM glucose to mimic hyperglycaemic conditions,
compared to monocytes cultured at 11mM glucose, presented
decreased IL-8 production (a key neutrophil chemoattractant) as
well as increased H37ra M.tb survival 3 days pi (137).

In the particular context of AM, TB-DM patients presented
decreased numbers of a particular hypodense AM subset, compared
to TB only patients (138). Within the active pulmonary TB patients,
a negative correlation was observed between the percentage of
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hypodense AMs and sputum bacterial load, together with disease
severity assessed by chest X-ray. Overall AMs from TB-DM patients
were less activated (138). Although primarily reporting descriptive
findings, this is, to our knowledge, the first study showing direct
impact of DM in the AM lung-resident population. Another key
study focusing on AMs used the STZ mice diabetes model and
showed that AMs from diabetic mice presented reduced CD14 and
MARCO expression, the latter being essential in the recognition of
trehalose 6,6′-dimycolate (TDM) within the bacterial cell wall (139).
This translated in reduced M.tb (Erdman strain) phagocytosis and
was specific to the AM population (peritoneal or BMDM did not
present this altered phenotype). These AMs defects resulted in
impaired T-cell priming, which was observed when AMs from
diabetic animals were transferred to control animals (139).

Other major immune cell types including dendritic cells,
neutrophils, natural killer cells and T cells are also impacted in
the context of diabetes and hyperglycaemia. It is beyond the
scope of this review to explore their precise mechanisms, and
they have been reviewed elsewhere (140, 141).

Immune-Metabolic Alterations Beyond
Hyperglycaemia
DM not only comprises hyperglycaemia but also a wide range of
further metabolic alterations [reviewed in (142)] which have the
potential to impact immune responses to M.tb (i .e.
dyslipidaemia, redox and hormone balance). DM is often
associated with dyslipidaemia (e.g. increased oxidised-low
density lipoproteins [ox-LDLs)] and although it is difficult to
establish causal links, it is well described that M.tb thrives in
lipid-rich environments. Ox-LDLs accumulate in AMs of guinea
pigs infected with M.tb, increasing bacterial burden (143).
Similarly, in vitro human studies showed that ox-LDLs
promoted M.tb survival by impairing lysosomal function (144).

It is challenging to draw conclusive answers regarding the
underlying mechanisms of TB enhanced susceptibility in DM
patients due to the limited number of human studies and the
variety of models used (ie. mouse and human monocytes/
macrophages, from diabetic subjects or treated with varying
concentrations of glucose). Nonetheless, there is ample evidence
suggesting altered function of the myeloid compartment in the
context of DM, including chemotaxis, bacterial recognition,
phagocytosis, cytokine secretion and metabolism, which could
facilitate TB disease. The described immune alterations have the
potential to impact the outcome of other infectious diseases [reviewed
in (145, 146)]. Although there is scarce literature exploring the link
between diabetes and leprosy, early studies reported an increase in
diabetes in lepromatous leprosy patients (147).

HIV
According to the WHO, people living with HIV have an
increased risk (16-27 times) of developing active TB compared
to non-infected individuals (2). One of the key mechanisms
behind this enhanced risk is the fact that HIV causes CD4+ T cell
depletion [reviewed in (148)], a cell subset essential for control of
M.tb infection (149–151). There is increasing awareness of HIV-
driven impairment in the innate immune compartment as a key
contributor to increased TB risk in M.tb-infected individuals.
Frontiers in Immunology | www.frontiersin.org 8
Here, we explore the impact of HIV infection on macrophages
and how that may facilitate TB progression.

Monocyte chemotaxis (152) and monocyte oxidative burst
capacities have been shown to be impaired in HIV-infected
individuals (153). HIV infection downregulated essential TLRs in
the myeloid compartment which are essential for M.tb recognition
(154, 155). In vitro, HIV infection of hMDMs promotes an M1-like
phenotype (156) and impacts macrophage metabolism, inducing
mitochondrial fusion, reduced oxidative phosphorylation and no
changes in glycolysis (157, 158). Enhanced lipid accumulation
together with increased uptake of ox-LDL was reported in
hMDMs from HIV-infected individuals compared to controls,
which could potentially contribute to the foamy macrophage
phenotype and aid M.tb survival (159). HIV-infected hMDMs
prevented GM-CSF-mediated activation of STAT5A, a signalling
pathway essential for TB control (160). TNF secretion was reduced
in HIV/M.tb co-infected macrophages compared toM.tb alone in a
THP-1 cell model and human AMs (161, 162), as well as TNF-
dependent apoptosis (161–163). There is evidence of HIV capacity
to infect AMs (164, 165) which can act as viral reservoirs (166).
HIV-infected AMs present impaired phagocytic function (167), and
HIV inhibits phagocytosis in hMDMs in a Nef-dependent manner
(168). Restricted vesicle acidification in AMs from HIV-TB patients
has been reported (169). One study in HIV-TB coinfected
individuals reported no differences in phagocytosis or acidification
capacities due to HIV infection (170). The overall evidence suggests
that HIV makes AMs more permissive toM.tb and promotes early
bacterial growth, but further research is needed to precisely elucidate
the role of macrophage metabolism in this co-infection setting.

In contrast to TB, an increased risk of leprosy or enhanced severe
disease has not been described in HIV-infected individuals
[reviewed in (171)]. However, leprosy patients receiving highly
active antiretroviral therapy (HAART) are at increased risk of
reversal reaction (RR), an inflammatory exacerbation (172). The
monocyte/macrophage phenotype has been shown to be distinct in
skin lesions from RR/HIV patients compared to RR alone (173)
including increased expression of CD209, vascular endothelial
growth factor (VEGF), arginase 2 (ARG2) and PPARg in the
former. The clinical implications of these findings remain
unknown. HIV-BU co-infection is rare and there is very limited
research on the topic. However, current studies point towards BU
patients being more likely to be infected with HIV, and HIV
infection increasing BU severity (174, 175).
IDENTIFYING IMMUNE-METABOLIC HOST
THERAPEUTIC TARGETS

Given the significant disease burden of TB and leprosy, the rise in
drug resistance and the challenges associated with the development
of novel anti-mycobacterial agents, HDT strategies which augment
host responses to mycobacterial infections, have become an
increasing focus of interest (176–178) (Figure 3). Greater
understanding of the role of immunometabolism in both
protection against, and susceptibility to, infection provides
potential targets to promote resistance and modulate tolerance to
chronic infection.
September 2021 | Volume 12 | Article 747387

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Llibre et al. Host Adaptations to Mycobacterial Infection
As discussed, it is well established epidemiologically that
individuals with metabolic conditions such as T2D are at increased
risk of developing active TB disease, suggesting not only the
important role of host metabolic regulation in anti-M.tb responses
but also pathways for possible therapeutic intervention (179).

In the context of T2D, the antihyperglycemic biguanide drug
metformin appears to be a good candidate to modulate
mycobacterial tolerance [reviewed in (180)]. Among patients with
T2D metformin reduces the risk of M.tb infection, the progression
to and the severity of TB disease, mortality, lung cavitation, relapse,
accelerates sputum conversion and enhances the efficacy of anti-TB
drugs (181–186). Several possible mechanisms for the advantageous
effects of metformin have been suggested, including enhancing
phagocytosis, phagolysosome fusion and autophagy to increase
M.tb killing in macrophages; the upregulation of mitochondrial
ROS production and intracellular antimycobacterial responses; an
anti-inflammatory effect to reduce deleterious inflammation (182,
187, 188). Recent work suggests that metformin also educates CD8+
T-cells which results in increased mitochondrial mass, oxidative
phosphorylation, and fatty acid oxidation. Such reprogramming of
immune-metabolic circuits increases survival capacity and anti-
mycobacterial properties of CD8+ T-cells, as seen by enhancement
of BCG vaccine protective efficacy and improvements in the
sterilizing ability of antibiotics (189). Since butyrate increases
susceptibility to TB (134), increasing its concentration by altering
gut microbiota might offer another HDT against M.tb. Eicosanoids
have also been proposed as potential drug candidates for treating
TB. In elegant mice experiments, IL-1 induced PGE2 production
which promoted M.tb control by suppressing type I IFN (85).
Furthermore, PGE2 administration resulted in decreased
pulmonary M.tb load and associated pathology, as well as
increased animal survival (85). These promising findings need to
be validated in humans and recent evidence highlights the potential
of PGE2 as an HDT candidate for treating TB (190). However, a
Frontiers in Immunology | www.frontiersin.org 9
comprehensive understanding of PGE2 kinetics and its effects on
the overall immune system will be needed before eicosanoids can be
clinically applied (191).

Similar to the action of metformin in targeting whole-body
metabolism, statin intake has been associated with significantly
reduced risk of developing TB in both T2D patients and non-
diabetic general populations (192). Statins reduce inflammation,
modulate the immune responses and have direct antimicrobial
effects (193). Used as an adjunct, statins enhance the bactericidal
activity offirst-line TB drugs against intracellularM.tb and shortens
TB treatment duration (194). Mechanistic studies indicate that
statin-mediated reduction in cholesterol levels within phagosomal
membranes counteract M.tb-induced inhibition of phagosomal
maturation and promotes host-induced autophagy, therefore
augmenting host responses against M.tb (195).

The role of vitamins in host immunity toM.tb are of increasing
interest. The active form of vitamin A, all-trans retinoic acid
(ATRA), has been shown to promote autophagy. This results in a
reduced bacterial burden in human macrophages infected with
M.tb, which is induced by cytosolic sensing of double-stranded
DNA via the STING/TBK1/IRF3 axis (196). Furthermore, ATRA
induces a reduction in total cellular cholesterol concentration and
promotes lysosomal acidification inM.tb-infected monocytes via an
NPC2-dependent mechanism which results in enhanced
antimicrobial activity (197). The possible benefit derived from
sunlight and vitamin D supplementation was first suggested in
the pre-antibiotic era and has shown to modulate both innate and
adaptive immune responses. The biologically active form of vitamin
D, 1,25-dihydroxy- vitamin D3 (1,25(OH)2D3), enhances the
expression of LL-37 in macrophages, the only cathelicidin-derived
antimicrobial peptide found in humans, which promotes the
destruction of M.tb and consequently autophagy (198, 199).
While a series of clinical trials have failed to show vitamin D
supplementation impacts on clinical outcomes in TB, there is some
FIGURE 3 | Host-directed therapies in mycobacterial infections. A wide range of approaches and molecules are being investigated to identify novel immune-
metabolic targets for treatment of mycobacterial diseases. Therapeutic interventions with macronutrients, micronutrients and small chemical molecules, as well as
compounds targeting whole-body metabolism have the potential to shift the resistance/tolerance balance of the host when challenged with mycobacteria.
↑ increased; ↓ decreased.
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evidence that high-dose vitamin D improves the resolution of
inflammatory responses during TB therapy and may be beneficial
in a subset of TB patients who have a specific polymorphism in the
vitamin D receptor (VDR) (200, 201).

The exploration of possible roles of immunomodulatory
macronutrient has, to date, focused on glutamine, arginine and
tryptophan. Glutamine pathway genes are differentially expressed in
M.tb-infected macrophages and in the blood of individuals with
LTBI or active TB. Glutamine has been identified as the main
nitrogenM.tb source within infected macrophages (202). Inhibiting
glutaminolysis or reducing the availability of glutamine impairs the
production of key cytokines by T-cells (IFNg, IL-1b, IL-17 and IL-
22) in response to challenge with M.tb, as does genetic
polymorphisms in glutamine metabolism genes (including GLS2,
SLC1A5, and SLC7A5) (203). Similarly, L-citrulline and L-arginine
are necessary for antimycobacterial responses, mediated by
microbicidal NO production via inducible NO synthase–mediated
L-arginine metabolism in infected macrophages. It has been
suggested that targeting this pathway might provide novel
approaches for enhancing immunity in mycobacterial disease
(204). Interestingly, Arg1 conditional gene-deleted mice presented
decreased M.tb burden compared to wild types, probably due
to enhanced macrophage M.tb killing capacities (205). In contrast,
L-Arg has been shown to contribute to macrophageM.tb clearance
(206). Observed differences could be explained by different location
of Arg1+ macrophages within the granuloma, as well as their role in
different infection stages (207). Finally, tryptophan biosynthesis by
mycobacteria under stress conditions has been shown to protect
M.tb fromCD4+ T-cell-mediated killing by IFNg. Inhibition ofM.tb
tryptophan synthesis by the small-molecule 2-amino-6-
fluorobenzoic acid (6-FABA) converts M.tb into a tryptophan
auxotroph and restores the efficacy of failed CD4+ T-cell-
mediated host defence (208). Interestingly, the indole propionic
acid (IPA), produced by the gut microbiota, also blocks tryptophan
biosynthesis in M.tb via inhibition of anthranilate synthase (TrpE)
which catalyses the first committed step in the tryptophan
biosynthesis pathway, by mimicking the physiological allosteric
inhibitor of this enzyme (209). Therefore, in contrast to
macronutrient supplementation by glutamine and arginine,
tryptophan depletion may have a role in M.tb control. In the
specific context of macrophages, M.tb infection causes
indoleamine 2,3-dioxygenase (IDO) upregulation, the first rate-
limiting enzyme of tryptophan catabolism (210, 211). This not only
decreases tryptophan concentrations, but also produces metabolites
which activate the aryl hydrocarbon receptor (AHR), which in turns
modulate immune activity. For instance, Ahr-/- mice were unable to
control M.tb H37Rv infection (212). Excellent recent reviews have
further covered the potential intervention of metabolic pathways for
HDT against TB (213–216).

Treating infected macrophages with statins reduces the
viability of intracellular M. leprae, similar to that seen with
M.tb, raising the possible use of statins as an adjuvant HDT
for leprosy (217). Also similar to M.tb, autophagy is an exciting
possible target for HDT leprosy as it promotes bacterial clearance
and antigen presentation (218, 219). Not only does autophagy
clearM. leprae from macrophages but recent evidence suggests it
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can modulate leprosy disease presentation, driving paucibacillary
tuberculoid leprosy in individuals with more autophagic control
with a predominance of IL-26, IFNg, and TNF, autophagy-
inducing cytokines (51, 220–223). Rapamycin, metformin and
the antiprotozoal drug nitazoxanide have been proposed as
HDTs against leprosy via modulating autophagic mechanisms
to promote the antimicrobial response against M.leprae and
decrease inflammation-mediated immunopathology (93).
CONCLUSION

Mycobacterial infections still represent a major public health issue
and we need better treatments. A greater understanding of the host-
induced metabolic and immune responses to mycobacterial
challenge will aid the design of novel, and needed, host-directed
therapeutic strategies. Macrophages are mycobacterial targets and
constitute a heterogenous cell population; as reflected by their
metabolic diversity and plasticity. Mycobacterial infection shapes
host cell metabolism and there are clear metabolic and coupled
functional phenotypes associated with particular infection outcomes
(ie. M1-like favours infection control, while M2-like macrophages
are more permissive to infection). Changes in macrophage
polarisation upon infection directly impact the concentration of
certain intracellular metabolites. They have the potential to post-
translationally modify proteins, including histones. Therefore,
changes in host cell metabolism can change the epigenetic
landscape of the cell, with long term consequences regarding the
host ability to control mycobacterial infection (107, 108).
Mycobacterial diseases including TB and leprosy do not exist in
isolation. Co-morbidities such as smoking, diabetes and HIV
infection can worsen TB outcomes, and this can partially be
explained by disease-induced metabolic changes. Gaining
mechanistic understanding of this phenomenon brings us closer
to the design of new and effective therapies, including expanding the
use of current drugs such as metformin. There has been outstanding
research in the last decades unravelling the links between cell
metabolism and induced immune responses. This is a promising
avenue that needs pursuing as it holds great potential to identify
new targets for therapy that will aid the fight against ancient and
devastating epidemics such as TB and leprosy.
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212. Moura-Alves P, Faé K, Houthuys E, Dorhoi A, Kreuchwig A, Furkert J, et al.
Ahr Sensing of Bacterial Pigments Regulates Antibacterial Defence. Nature
(2014) 512(7515):387–92. doi: 10.1038/nature13684

213. Kim JS, Kim YR, Yang CS. Host-Directed Therapy in Tuberculosis:
Targeting Host Metabolism. Front Immunol (2020) 11:1–12. doi: 10.3389/
fimmu.2020.01790

214. Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic
Regulation Between Host and Pathogens: New Opportunities for the
Development of Improved Therapeutic Strategies Against Mycobacterium
Tuberculosis Infection. Front Cell Infect Microbiol (2021) 11:1–21. doi:
10.3389/fcimb.2021.635335

215. Crowther RR, Qualls JE. Metabolic Regulation of Immune Responses to
Mycobacterium Tuberculosis: A Spotlight on L-Arginine and L-Tryptophan
Metabolism. Front Immunol (2021) 11:1–16. doi: 10.3389/fimmu.
2020.628432

216. Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and
Cancer: A Comparative Review. Front Cell Infect Microbiol (2021) 11
(37):624607. doi: 10.3389/fcimb.2021.624607

217. Lobato LS, Rosa PS, Da Silva Ferreira J, Da Silva Neumann A, Da Silva MG,
Nascimento DC, et al. Statins Increase Rifampin Mycobactericidal Effect.
Antimicrob Agents Chemother (2014) 58(10):5766–74. doi: 10.1128/AAC.01826-13

218. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S,
et al. Autophagy Protects Against Active Tuberculosis by Suppressing
Bacterial Burden and Inflammation. Proc Natl Acad Sci USA (2012) 109
(46):1–9. doi: 10.1073/pnas.1210500109

219. Saini NK, Baena A, Ng TW, Venkataswamy MM, Kennedy SC, Kunnath-
Velayudhan S, et al. Suppression of Autophagy and Antigen Presentation by
Mycobacterium Tuberculosis PE-PGRS47. Nat Microbiol (2016) 1(52):1–12.
doi: 10.1038/nmicrobiol.2016.133

220. Evans MJ, Levy L. Ultrastructural Changes in Cells of the Mouse Footpad
Infected With Mycobacterium Leprae. Infect Immun (1972) 5(2):238–47.
doi: 10.1128/iai.5.2.238-247.1972

221. Silva BJ de A, Barbosa MG de M, Andrade PR, Ferreira H, Nery JA da C,
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