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Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract
infection in young children. It is also a significant contributor to upper respiratory tract
infections, therefore, a major cause for visits to the pediatrician. High morbidity and
mortality are associated with high-risk populations including premature infants, the elderly,
and the immunocompromised. However, no effective and specific treatment is available.
Recently, we discovered that an exchange protein directly activated by cyclic AMP 2
(EPAC2) can serve as a potential therapeutic target for RSV. In both lower and upper
epithelial cells, EPAC2 promotes RSV replication and pro-inflammatory cytokine/
chemokine induction. However, the overall role of EPAC2 in the pulmonary responses
to RSV has not been investigated. Herein, we found that EPAC2-deficient mice (KO) or
mice treated with an EPAC2-specific inhibitor showed a significant decrease in body
weight loss, airway hyperresponsiveness, and pulmonary inflammation, compared with
wild-type (WT) or vehicle-treated mice. Overall, this study demonstrates the critical
contribution of the EPAC2-mediated pathway to airway diseases in experimental RSV
infection, suggesting the possibility to target EPAC2 as a promising treatment modality
for RSV.

Keywords: EPAC2, RSV, pulmonary disease, immune response, inflammation
IMPORTANCE

Respiratory syncytial virus (RSV) is highly associated with bronchiolitis, pneumonia, and even
death in infants younger than six months of age, the elderly, and the immunocompromised.
Currently, no effective treatment or vaccine is available. In addition, many molecular mechanisms
underlying RSV-induced lung diseases are not fully understood. Our study elucidated the roles of a
protein called EPAC2, which is a target of a major second messenger cAMP, in RSV-induced
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pulmonary responses and associated disease. Therefore, our
results are likely going to provide important insight into the
development of new pharmacologic strategies against
RSV infection.
INTRODUCTION

Respiratory syncytial virus (RSV) is a significant respiratory
pathogen, representing the most common cause to lower
respiratory tract infection (LRTI) diseases in children, the
elderly, and the immunocompromised. Together with other
impor tant v i ruses , such as influenza and human
metapneumovirus, RSV exhibits strong seasonal activity and its
medical burden usually exceeds that of influenza among young
age groups (1, 2). It also contributes significantly to upper
respiratory tract infection (URTI) resulting in a huge
outpatient burden (3). Infection with RSV usually starts with
the epithelium of the URT and then descends to the lower
airways resulting in symptoms ranging from bronchiolitis to
pneumonia, which always requires hospitalization. To date, there
is no effective and specific treatment available against RSV
infection, demonstrating the need to explore more disease
mechanisms beyond current knowledge so that effective
therapeutic approaches can be effectively integrated, designed,
and developed.

Exchange proteins directly activated by cAMP (EPAC) are a
fairly new receptor family of cyclic AMP (cAMP), compared
with another major cAMP receptor family protein kinase A
(PKA). Soon after the discovery of EPAC, they were found to be
functionally important for various diseases including heart
failure, cancer, neurological disorders, diabetes, and
inflammation (4–8). They have two main isoforms: EPAC1
and EPAC2. The function of EPAC in viral infections is also
emerging with associated regulatory mechanisms largely
unknown (9–12). Unlike Ebola, Middle East respiratory
syndrome coronavirus (MERS-CoV), and vesicular stomatitis
virus (VSV), which activate the EPAC1-mediated pathway to
favor virus invasion (9–11), we discovered that RSV uses EPAC2
to favor its survival in the airway epithelial cells (AECs) (12).
EPAC2 deficient AECs, derived from both U/LRT, have a
decrease in RSV replication and suppressed cellular
inflammatory responses to RSV infection, compared with
EPAC2 competent cells. By using an EPAC2-specific inhibitor,
we also confirmed the role of EPAC2 in RSV infection in the
AECs. However, the overall in vivo role of EPAC2 has not been
investigated (12).

In this study, we demonstrated EPAC2 knockout (EPAC2-/-)
mice had a significant decrease in body weight loss, basal airway
hyperresponsiveness, pulmonary inflammation, and viral
replication in response to RSV infection, compared with wild-
type (WT) mice. Consistently, mice treated with EPAC2-specific
inhibitor share similar disease symptoms, compared with the
vehicle-treated mice. Other than its role in RSV-induced
pulmonary inflammation, EPAC2 has been reported to be
involved in inflammatory and remodeling processes induced
Frontiers in Immunology | www.frontiersin.org 2
by cigarette smoke (13), confirming its essential role in
respiratory health. Taken together, our data indicate the role of
EPAC2-mediated pathways in the pulmonary responses to RSV
infection. Therefore, EPAC2 could serve as a novel potential
therapeutic target to control both RSV replication and associated
host inflammatory responses.
MATERIALS AND METHODS

Cell Lines and RSV Preparation
RSV long strain was propagated in HEp-2 cells (ATCC, Manassas,
VA) at 37°C and purified by sucrose gradient as described (14–16).
Viral titer was determined by immunostaining in HEp-2 cells
using biotin-conjugated goat anti-RSV primary antibody (Cat #:
7950-0104, Bio-rad, Hercules, CA), followed by the incubation
with streptavidin peroxidase polymer (Cat#: S2438, Sigma-
Aldrich, St Louis, MO), as previously described (14, 16).

Mice
WT and EPAC2−/− mice (C57BL/6 background) are generous
gifts from Ju Chen (University of California at San Diego) and
grown under specific-pathogen-free conditions at the University
of Texas Medical Branch (UTMB). Mice were anesthetized and
infected intranasally (i.n.) with 107 plaque-forming units (p.f.u.)
RSV diluted in Dulbecco’s PBS (D-PBS) (Invitrogen) as
described (17–19). In the control group, mice were inoculated
with an equivalent volume of sucrose diluted in D-PBS. All of the
studies have been approved by the full board of the UTMB
Institutional Animal Care and Use Committee, under protocol
number 9001002J following the National Institutes of Health and
University of Texas Medical Branch institutional guidelines for
animal care.

We also studied the effect of EPAC2 inhibitor on the
pulmonary responses to RSV. In brief, 10-week old BALB/c
mice were infected with 3×106 p.f.u. RSV and treated with
EPAC2 inhibitor MAY0132 (N-(4-chloro-3-(trifluoromethyl)
phenyl)-2,4,6-trimethylaniline, 20 mg/kg) or vehicle
intranasally (i.n). We have carefully investigated the specificity
of MAY0132 to inhibit EPAC2 (20, 21). MAY0132 was dissolved
in ethanol to constitute 400 mg/mL stock and stored at -20°C.
Before mice treatment, MAY0132 was freshly prepared in 10%
PEG400-PBS and warmed to 37°C before treatment in mice.
MAY0132 was given to mice five hours before RSV inoculation,
then mice were treated with MAY0132 again at six hours
postinfection (p.i) and days 1-3 p.i.

Cytokine and Chemokine Quantification
To investigate the role of EPAC2 in regulating pulmonary innate
responses, a multi-analytic profiling mouse (Cat#: M60-
009RDPD) cytokine/chemokine kit from Bio-Rad (Hercules,
CA) was used to measure RSV-induced cytokines/chemokines
for bronchoalveolar lavage (BAL) samples from mice, uninfected
or infected with RSV, according to the manufacturer’s
instructions. Data were analyzed using the Multiplex Analyst
Software from Bio-Rad.
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Quantitative RT-PCR
Total lung RNAs were extracted using TRIzol reagents (Thermo
Fisher Scientific, Waltham, MA). qRT-PCR for viral replication
or viral gene expression was performed using SYBR, as we
previously described (12). The primers used to quantify the
EPAC genes are available upon request.

Bronchoalveolar Lavage Fluid Analysis
Total cells in the 50 ml of BALF were determined by trypan blue
staining and the counting of viable cells was done by a
hemocytometer. Differential cell counts were performed on
cytocentrifuge preparations (Cytospin 3; Thermo Shandon,
Pittsburgh, PA) stained with Wright-Giemsa stain (Thermo
Fisher Scientific, Waltham, MA). A total of 200 cells per
sample were counted by using light microscopy.

Lung Pathology Analysis
The formalin-fixed lungs were embedded in paraffin, sectioned at
a 4-mm thickness, and stained with hematoxylin and eosin or
Masson’s trichrome. Microscopy was performed on a Nikon
Eclipse Ti system, similar as described in (22).

Airway Hyperresponsiveness
Basal AHR was assessed in unrestrained mice before or after
infections at the days as indicated, using whole-body barometric
plethysmography (Buxco, Troy, NY) to record enhanced pause
(Penh), as previously described (17, 23). Penh value is to estimate
airway resistance.

Western Blot Analysis
Total lung lysates were prepared as previously described (24,
25). Proteins were then quantified with a protein quantification
kit from Bio-Rad, followed by the fractionation using
SDS-PAGE denaturing gels and protein transferring to
polyvinylidene difluoride membranes. Membranes were
blocked with 5% non-fat dried milk in TBS-Tween 20 and
incubated with primary antibody, the biotin-conjugated goat
anti-RSV, followed by the secondary anti-goat antibody (cat#
sc-2354 from Santa Cruz, Santa Cruz, CA), according to the
manufacturer’s instruction.

FACS Analysis
Total lung cells were harvested at day 7 p.i. after mock or RSV
infection as previously described (17, 19). Isolated cells were
incubated with anti-FcgRII/FcgRIII mAb (24G2; BD
Biosciences). For cell-surface marker staining, an aliquot of
cells was stained with the following anti-mouse antibodies:
anti-CD11c, anti-F4/80, anti-CD11b, and anti-Gr-1 (all from
BD-Pharmingen). Samples were stained at 4°C in PBS with 1%
FBS and analyzed with a FACS Canto flow cytometer equipped
with BD FACSDiva software (both from Becton Dickinson
Immunocytometry Systems). Analysis was performed using
WinMDI2.8 (Scripps).

Statistical Analysis
One-way ANOVA analysis was performed, followed by Tukey’s
post hoc test to determine significance. Mann-Whitney tests were
Frontiers in Immunology | www.frontiersin.org 3
used for nonparametric data. All data subjected to statistical
analysis are means ± standard deviations (SD). A P value of <0.05
was considered significant.
RESULTS

EPAC2 Promotes RSV-Induced Disease
and Airway Obstruction In Vivo
We have recently presented the idea that EPAC2 deficiency
benefits the control of RSV replication and associated cellular
inflammatory response in the AECs. To confirm its impact in
vivo, we first used EPAC2 knockout (KO) mice to investigate
whether any changes in disease presentation are associated with
EPAC2 KO – following RSV infection. Consistent with the
previous mouse model which showed a time-dependent body
weight loss and airway obstruction of mice in response to RSV
infection (23, 26), we also found that WT mice (C57BL/6
background) induced a significant body weight loss, which
peaked at day three following the infection (Figure 1A) and
experienced enhanced baseline and enhanced pause (Penh) with
a peak at day two (Figure 1B). Compared with the infected WT
mice, EPAC2 KO mice after the infection had lower body weight
loss (Figure 1A) and attenuated enhancement in Penh
(Figure 1B). Consistent with the impact of EPAC2 KO on
RSV-induced disease and airway obstruction, we also found
that the treatment of MAY0132, an EPAC2-specific inhibitor
(27), attenuated RSV-induced body weight loss, starting at day
two postinfection (p.i.), with a further clinical benefit at day three
p.i. On day four p.i., the bodyweight loss showed no difference
with that of mice without infection (Figure 1C). The treatment
of MAY0132 also eased RSV-enhanced Penh, starting as early as
day one p.i. and completely back to the normal basal level by day
three p.i. (Figure 1D). The treatment of MAY0132 did not result
in ruffled fur, suggesting minimal-to-no toxicity signs at the dose
of 20 mg/kg. All these results support that EPAC2 deficiency
ameliorates viral-induced disease and pulmonary function in
response to RSV infection.

EPAC2 Promotes Pulmonary
Inflammation in RSV-Infected Mice
Neutrophils, whose recruitment to the airways usually peaks at
18-24 h p.i. (28), become the predominant inflammatory cells in
BALF during the RSV infection (29). To investigate whether
EPAC2 plays a role in modulating RSV-induced lung
inflammation, we first compared the neutrophil infiltration in
WT and EPAC2-/- mice. WT and EPAC2-/- mice were
inoculated with RSV and the BALF samples were harvested at
day two p.i. when a significant discrepancy in body weight loss
and basal Penh started to show. The neutrophil recruitment into
the airways was prevented in EPAC2-/- mice (Figure 2A). We
found that at day three p.i., BAL neutrophil cells of RSV-infected
mice, both WT and EPAC2-/-, went back to the basal level (data
not shown). On day two p.i., RSV-infected mice had comparable
BAL macrophages in WT and EPAC2-/- mice (Figure 2B). The
impact of EPAC2 on pulmonary neutrophils and macrophages
October 2021 | Volume 12 | Article 757758
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was also investigated by comparing their presence in BALF
between RSV-infected mice treated with and without
MAY0132. We found that MAY0132-treated mice had
attenuated neutrophil infiltration than vehicle-treated mice at
days two and three p.i. (Figure 2C). On day four p.i., the
neutrophil cells in BAL, vehicle- or MAY0132-treated, went
back to the basal level (data not shown). In conclusion,
MAY0132 did not impact the BAL macrophage (Figure 2D).

EPAC2 Contributes to the Production of
Immune Mediators
To determine whether EPAC2 deficiency, either by knockout or
the treatment of its inhibitor, affects RSV-induced immune
mediator secretion, we also measured cytokine/chemokine
levels in BAL samples collected at day two p.i., which is the
induction peak of immune mediators following RSV infection
(30). In RSV-infected mice, EPAC2 knockout significantly
decreased the production of proinflammatory cytokines, such
as IL-1a, IL-1b, IL-6, and TNF-a. Similar results were observed
with the release of the chemokines regulated upon activation of
Frontiers in Immunology | www.frontiersin.org 4
MIP-1a, MIP-1b, MCP-1, and neutrophil chemokine KC
(Figures 3A–C). The induction of RANTES and G-CSF was
comparable in infectedWT and EPAC2-/- mice (Figure 3D). We
also found that UV-inactivated RSV significantly impaired
cytokine/chemokine induction and the induction was
comparable between infected WT- and EPAC2-/- mice
(Figure S1), suggesting the EPAC2-mediated innate response
is replication-dependent.

Consistent with the attenuated secretion of cytokines/
chemokines in RSV-infected EPAC2-/- mice, the treatment of
MAY0132 resulted in a suppressed inflammatory mediator
induction, as well (Figures 3E–G).

EPAC2 Deficiency Reduces
RSV Replication
We have recently shown that EPAC2 deficiency leads to RSV
replication suppression in AECs (12). To determine whether
EPAC2 knockout alters RSV replication in the lung, we used
qRT-PCR and plaque assay to determine the changes in viral
genome/gene copies and infectious viral particles, respectively,
A B

DC

FIGURE 1 | The effect of EPAC2 on disease severity in RSV-infected mice. (A, B) WT and EPAC2-/- mice (C57BL/6 background) were infected with 1×107 pfu of
RSV or appropriate volume of control vehicle intranasally (i.n.). (A) Bodyweight was monitored daily and expressed as a percentage of baseline weight. (B) Lung
function in RSV-infected mice, either WT or EPAC2/-, at the days p.i. as indicated. Unrestrained, whole-body plethysmography (Buxco Electronicsm Inc. Sharon, CT)
was used to measure the basal enhanced pause (Penh). The percentage of baseline weight and Penh values were presented as mean ± SEM (n = 4-5 mice/group,
from four independent experiments). Asterisks indicate levels of significance, *P < 0.05 and **P < 0.01 for comparison to RSV-infected samples from EPAC2−/−
mice. (C, D) 10-week old BALB/c mice were i.n. infected with 3×106 p.f.u. RSV, followed by the treatment of EPAC2 inhibitor MAY0132 (20 mg/kg) or vehicle (PEG
in PBS). MAY0132 was given to mice five hours before RSV inoculation, then mice were treated with MAY0132 again at six hours and days 1-4 p.i. Bodyweight (C)
and basic Penh (D) were monitored daily. The percentage of baseline weight and Penh values were presented as mean ± SE (n = 4-5 mice/group, from three
independent experiments). Asterisks indicate levels of significance, *P < 0.05 and **P < 0.01 for comparison to RSV-infected MAY0132-treated mice.
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by EPAC2 knockout. Compared with WT mice, EPAC2-/- mice
exhibited significantly less RSV N gene and genome copies
number at day four p.i. (Figures 4A, B). In addition, the lung
viral titer of EPAC2-/- at day five p.i was also significantly less
than that of WT mice (Figure 4C). Days four and five are usually
the peak of the replication in the experimental models of RSV
(26, 31).

The mice were also treated with 20mg/kg of MAY0132 or
control vehicle as described in “Methods”, and lungs were
harvested at day four p.i. We found that a decrease of N and
virus genome copies in the lungs were observed in MAY0132-
treated mice, compared to the infected vehicle-treated mice
(Figures 5A, B). A significant reduction of RSV peak titer was
observed in MAY0132-treated animals (Figure 5C). The reduction
of viral particles in the lungs by MAY0132 was also confirmed by a
Western blot assay using an anti-RSV antibody. Significantly fewer
viral proteins in the lungs were observed in MAY0132-treated
animals than vehicle animals (Figure 5D). The results of these
experiments showed that the administration of MAY0132 was
effective in reducing RSV viral replication in the lung.
Frontiers in Immunology | www.frontiersin.org 5
The Treatment of EPAC2 Inhibitor
Lessens RSV-Induced Pathogenesis
To further confirm the efficacy of MAY0132 in suppressing RSV-
induced innate inflammation in vivo, we used histological
assessment to exam the effect of EPAC2 inhibitor on lung
pathology. Alveolar neutrophils and interstitial lymphocytes
infiltrate at day four p.i. was less in MAY0132-treated mice
than in control mice. Compared to control vehicle treatment, less
inflammatory cells and structural damages in lungs were
impacted by RSV with MAY0132 treatment (Figure 6),
supporting the protective feature of MAY0132 on RSV-
induced lung pathogenesis and highlighting a potential
pharmaceutical intervention to treat RSV.
DISCUSSION

RSV is the leading cause of severe LRTI in children. It is currently
estimated that 33.1 million episodes of RSV-associated LRTI lead
to about 3.2 million hospital admissions and 59,600 in-hospital
A B

C D

FIGURE 2 | The impact of EPAC2 on the presence of immune cells in the BALF. (A, B) WT and EPAC2-/- mice were infected with RSV i.n., as described in
Figure 1. Quantification of polymorphonuclear neutrophils (A) and macrophages (B) in BALF cytospins were carried out at day two p.i. (C, D) BALB/c mice, with/
without MAY0132 treatment, were infected with RSV i.n., as described in Figure 1. Neutrophils (C) and macrophages (D) in BALF cytospins were quantified at day
two or three p.i. n = 10-11 mice/group. The results are from three independent experiments. Asterisks indicate levels of significance, **P < 0.01 for comparison to
RSV-infected samples from WT mice (A) or RSV-infected with MAY0132-treated mice (C).
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deaths of children younger than five years old globally. In
addition, in-hospital deaths, due to RSV-caused LRTI,
contribute to about 45% of hospital admitted patients
younger than six months old, demonstrating a considerable
burden of RSV infection on health-care services (32, 33).
Palivizumab, although available for preventing RSV-associated
hospitalizations, is not very cost-effective and is mainly limited to
selected high-risk infants for the first RSV season (34). Other
than palivizumab, there is no other prophylactic method. In
addition, no effective treatment besides supportive measures is
available. Herein, we demonstrated that EPAC2 controls
Frontiers in Immunology | www.frontiersin.org 6
pulmonary responses, viral replication, and the overall diseases
in animal models of RSV infection, supporting EPAC2 to be a
new potential target in the development of new treatment
modalities for RSV.

As a recently discovered family of cAMP sensors, EPAC has
been found to have two major isoforms: EPAC1 and EPAC2. In
humans, both EPAC1 and EPAC2 have ubiquitous tissue
distribution, with no expression of EPAC1 and EPAC2 in
ovarian tissue and oral mucosa, respectively. Compared with
EPAC1, whose signalosomes have been extensively studied,
current knowledge on the significance/function mechanisms of
A B

C D

E F G

FIGURE 3 | Impaired the cytokine/chemokine induction by EPAC2 deficiency. (A–D) WT or EPAC2-/- mice were sham infected or infected with RSV as described in
Figure 1. The BAL fluid samples were collected at day two p.i., followed by cytokine/chemokines quantification using Bio-Plex Pro Mouse Cytokine 23-plex kit (Bio-
rad, Cat #: M60009RDPD). The secretion is shown according to their absolute induction in the infected WT mice: 0-200 pg/ml (A), 400-1400 pg/ml (B), and more
than 1500 pg/ml (C). (D) unaffected immune mediators. n = 12 mice/group. The results, shown as mean ± SE, are from three independent experiments. Asterisks
indicate levels of significance, *P < 0.05 and **P < 0.01 for comparison to RSV-infected samples from WT mice. (E–G) Mice were treated with MAY0132 or vehicle,
RSV at the dose of 3×106 pfu, or sham infected and harvested at day one postinfection to collect BALF samples to measure cytokines and chemokines by the multi-
plex cytokine detection system. The mediators are shown in groups according to their absolute induction in the infected mice with vehicle treatment: 0-200 pg/ml
(E), 400-1400 pg/ml (F), and more than 1500 pg/ml (G). The results, shown as mean ± SE (n = 6 mice/group). Asterisks indicate levels of significance, *P < 0.05 and
**P < 0.01 for comparison to RSV-infected vehicle-treated mice. G-CSF, granulocyte colony-stimulating factor; KC, neutrophil chemokine; MCP-1, monocyte
chemoattractant protein-1; MIP-1, macrophage inflammatory protein-1; RANTES, regulated upon activation, normal T-cell expressed and secreted; TNF-a, tumor
necrosis factor-a; IL, interleukin; IFN-g, interferon-gamma.
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EPAC2 is very limited, but discovered cellular interacting
partners of EPAC2 are very distinct from those of EPAC1 (35).
EPAC2 has been demonstrated to associate with Rab3-
interacting molecule 1 (Rim1), Rim2, Piccolo, and
synaptosome-associated protein of 25 kDa (SNAP-25) to
mediate cAMP-induced PKA-independent exocytosis, which is
important for regulating neurotransmission and insulin
secretion (36, 37). EPAC2 also interacts with the cytoskeleton,
Frontiers in Immunology | www.frontiersin.org 7
controlling vesicle trafficking (38). Currently, we do not know
what EPAC2’s partners are in mice to regulate RSV replication
and innate pulmonary responses to RSV infection.

In this study, we also found that EPAC2 deficiency led to less
hyperresponsiveness of infected mice (Figure 1). Penh is highly
related to airway smoothmuscle relaxation, therefore, it is possible
that EPAC2 deficiency, by either KO or inhibitor treatment, helps
smooth muscle relaxation during the infection. However, it has
A B C

FIGURE 4 | Inhibited RSV replication and pulmonary inflammatory responses by EPAC2 knockout. WT or EPAC2-/- mice were sham infected or infected with RSV
as described in Figure 1. (A, B). On day four p.i., the total RNAs of lungs were prepared, followed by real-time PCR to quantify RSV genome copies (A) and RSV N
gene copies (B). Lungs were also harvested on day five p.i. The infectious particles were quantified in Hep2 cells by immune staining (C). The results, shown as
mean ± SE (n = 6-12 mice/group). Asterisks indicate levels of significance, *P < 0.05 and **P < 0.01 for comparison to RSV-infected WT mice.
A B

C D

FIGURE 5 | MAY0132-suppressed RSV replication. Mice, treated with MAY0132 or vehicle, were infected RSV at the dose of 3×106 pfu, or sham infected, and the
lungs were harvested at day four p.i. (A) The total lung RNAs were prepared, followed by real-time PCR to quantify the viral genome. (B) Viral N gene copies were
also determined by real-time PCR. (C) Lung infectious viral particles were titrated on Hep2 cell monolayers by immune staining assays. (D) The total lungs were also
harvested to determine the viral proteins by Western blot. n = 5-6 mice in each group. The results are from two independent experiments. Asterisks indicate levels of
significance, *P < 0.05 and **P < 0.01 for comparison to RSV-infected compound untreated mice.
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been previously shown that the reduction of EPAC by siRNA was
unable to prevent cell stiffness (39). In addition, EPAC activation
is not involved in smooth muscle relaxation mediated by
dopamine (40). Therefore, the EPAC2-regulated airway
hyperresponsiveness in the context of RSV may not result from
the changes in muscle relaxation. Airway hyperresponsiveness is
also highly related to pulmonary inflammation. EPAC2 has been
previously reported to regulate cigarette smoke (CS)-induced
inflammatory responses, characterized by the change of
immune cells and cytokine release. Compared to wild-type mice
exposed to CS, the number of total inflammatory cells,
macrophages, and neutrophils and total IL-6 release is lower in
EPAC2 KO mice (13). The phospholipase-Cϵ (PLCϵ) is the
effector of EPAC. Suppressed neutrophils and IL-6 are also
observed in PLCϵ-/- mice, supporting the importance of
EPAC2/PLCϵ axis in mediating airway inflammation. Whether
alleviated RSV-induced hyperresponsiveness by EPAC2 KO or
MAY0132 treatment is through EPAC2/PLCϵ/IL-6/neurophils
signaling axis is currently unknown, but we did observe EPAC2
deficiency-caused suppression of IL-6 induction and pulmonary
neutrophil. Decreased neutrophil in the infected lung is indeed
still detectable at day seven p.i. when most cytokines/chemokines
go back to the basal level and infectious particles are not detectable
Frontiers in Immunology | www.frontiersin.org 8
anymore (Figure S2), highlighting the role of EPAC2 in
controlling RSV-induced inflammation.

We recently discovered that EPAC2 deficiency leads to the
suppression of RSV fusion protein translation and viral gene
transcription and genome replication in the airway epithelial cells.
In the meanwhile, the deficiency also inhibits cellular innate
responses to RSV infection in both human lung epithelial cells
and mouse embryonic fibroblasts (MEFs), likely through
attenuating RSV-activated p50 activation (12). Some viral-induced
immune mediators are inflammatory, therefore, detrimental to
airway structure. Some are beneficial as they serve as antiviral
molecules. In the case of EPAC2 deficiency, although suppressed
cytokine/chemokine induction may favor RSV replication, direct
inhibition of viral replication by EPAC2 inhibitor or KO could
make the impact of cytokine/chemokine induction on viral
replication relatively unimportant in this case. In contrast,
decreased cytokine/chemokine induction, either directly by
EPAC2 deficiency or indirectly resulting from suppressed viral
replication, likely contributed to the prevention of inflammatory
immune cell infiltration, hyperresponsiveness, and bodyweight loss,
making the EPAC2 inhibitors therapeutically promising.

Overall, the development of inhibitors specific to cAMP and its
effector molecules has greatly helped researchers to identify essential
A

B

FIGURE 6 | The contribution of EPAC2 to the initial lung inflammation after infection. Mice, treated with or without MAY0132, was sham infected or infected with
RSV. Lungs were collected on day four after infection, followed by formalin fixation for slide preparation. Representative hematoxylin and eosin-stained lung tissue
sections from the indicated treatment. (A) The bar graph represents mean ± SE (n = 3–4 mice/group). **P < 0.001 compared with vehicle/RSV mice. (B) The
representative pathology slides are shown as described.
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cAMP-related signaling pathways under various conditions,
including viral infection. For example, the inhibitors facilitated the
discovery showing that macrophage and T cells respectively use
cAMP/PKA and cAMP/EPAC/Rap1 signaling to control human
immunodeficiency virus type 1 replication (41, 42). In combination
with the gene knockdown and knockout, we also used an EPAC2-
specific inhibitor to define EPAC2 as an essential and novel
determinant of AECs to control RSV replication and associated
inflammatory responses (12). The EPAC isoform in RSV infection
is distinct from the isoform reported to be involved in other viral
infections. While EPAC1 is essential for promoting Ebola, MERS-
CoV, and VSV entry or replication (9–11), herein, we confirmed the
role of EPAC2 in RSV infection in vivo. EPAC2 is not only critical in
RSV replication, but also pulmonary responses and disease
pathogenesis. Compound modification is currently carried out to
make the inhibitor more water-soluble and potent, similar as
described (43). Developing compounds that can control both
replication and inflammation is ideal as accumulating data
support that both direct damages from viral replication and the
host immune-inflammatory response contribute to RSV-induced
respiratory disease, although their relative weight remains
controversial (44–46).

In conclusion, we have shown that pulmonary EPAC2
significantly impacts host responses and viral replication in
two mice models of RSV infection, supporting EPAC2 could
be a promising therapeutic target for RSV infection. In the future,
we will focus on developing potent EPAC inhibitors against viral
infections, studying the antiviral spectrum of EPAC inhibitors,
and the role of EPAC2 in RSV-caused immune cell responses.
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Supplementary Figure 1 | The EPAC2-mediated pulmonary innate response is
replication-dependent. Mice, WT or EPAC2-/-, were infected with UV-inactivated
RSV at the dose of 107 pfu, or sham infected. On day 2 p.i., The BAL fluid samples
were collected at day two p.i., followed by cytokine/chemokines quantification using
Bio-Plex Pro Mouse Cytokine 23-plex kit. Immune mediators, which are not
displayed, were not detectable by kit. n = 10 mice/group. The results, shown as
mean ± SE, are from three independent experiments.

Supplementary Figure 2 | Effect of EPAC2 on lung neutrophiles and
macrophages at day seven p.i. Mice, WT or EPAC2-/-, were infected with RSV at
the dose of 107 pfu, or sham infected. At day seven p.i., pulmonary neutrophils
(A, B) and macrophages (C, D) were quantified by FACS. The cell percentage
(A, C) and total cell numbers (B, D) are presented as mean ± SEM, n = 6 in each
group from two independent experiments. Asterisks indicate levels of significance,
*P < 0.05 for comparison to RSV-infected WT mice.
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