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Both RNA N6-methyladenosine (m6A) modification of SARS-CoV-2 and immune
characteristics of the human body have been reported to play an important role in
COVID-19, but how the m6A methylation modification of leukocytes responds to the virus
infection remains unknown. Based on the RNA-seq of 126 samples from the GEO
database, we disclosed that there is a remarkably higher m6A modification level of blood
leukocytes in patients with COVID-19 compared to patients without COVID-19, and this
difference was related to CD4+ T cells. Two clusters were identified by unsupervised
clustering, m6A cluster A characterized by T cell activation had a higher prognosis than
m6A cluster B. Elevated metabolism level, blockage of the immune checkpoint, and lower
level of m6A score were observed in m6A cluster B. A protective model was constructed
based on nine selected genes and it exhibited an excellent predictive value in COVID-19.
Further analysis revealed that the protective score was positively correlated to HFD45 and
ventilator-free days, while negatively correlated to SOFA score, APACHE-II score, and crp.
Our works systematically depicted a complicated correlation between m6A methylation
modification and host lymphocytes in patients infected with SARS-CoV-2 and provided a
well-performing model to predict the patients’ outcomes.
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INTRODUCTION

Recently, a total of seven internal modifications have been discovered on mRNA: N1-
methyladenosine (m1A), N4-acetylcytidine (ac4C), 5-methylcytidine (m5C), N6-methyladenosine
(m6A), N7-methylguanosine (m7G), ribose methylations (Nm), and pseudouridine (Y) (1). mRNA
modification is a reversible process mediated by “writers,” “readers,” and “erasers”, and m6A, which
was first reported by Desrosiers in 1974, is the most common type of mRNA modification (2).
mRNA can be methylated by the writers (METTL3 and METTL14), and translated into protein
efficiently with the help of the readers (YTHDF1 and YTHDF2), while the erasers (FTO and
ALKBH5) demethylate the residues (3–7). On the molecular level, m6A can affect RNA structures,
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influence the accessibility of RNA-binding motifs to their RNA-
binding proteins, promote the initiation of miRNA biogenesis,
and facilitate the translation of proteins (8). With respect to
biological function, m6A has been shown to affect individual
development, infertility, carcinogenesis, stemness, meiosis,
circadian rhythm, and control various aspects of immunity,
including immune recognition, activation of innate and
adaptive immune responses, and cell fate decisions (9, 10). For
instance, deletion of YTHDF2 delays mouse neuronal
development through impaired proliferation and differentiation
of neural stem and progenitor cells (11). In addition, the function
of m6A can be induced by environmental stimuli or cellular
signaling pathways. When monkey kidney cells were infected
with enterovirus type 71, YTHDF1 and YTHDF2 were
upregulated and distributed into both the cytosol and the
nucleus (12).

Patients infected with severe acute respiratory syndrome
coronavirus clade 2 (SARS-CoV-2) exhibited various changes
in the immune system such as those on immune cell fractions,
the expression level of the immune checkpoint, cytokine storm,
and so on. During the early stages of COVID-19 infection,
lymphocyte fractions might change, for example, the numbers
of CD4+ and CD8+ T cells are significantly elevated due to
immune defense against the virus (13). Another report noted
that mild cases of COVID-19 had a greater proportion of CD8+ T
cells than CD4+ T cells (14). Apart from the activated T cells,
antibody responses in the extrafollicular zone were also
stimulated to protect the organism against SARS-CoV-2
invasion (15). Moreover, some immune function assays were
also conducted on macaques infected with SARS-CoV-2, and
researchers obtained significant results such as a delayed
immune response, increased inflammatory cytokine storm, and
declined T cell function during the infections (16).

Recent studies have unveiled the alteration of m6A
modification in host cells and SARS-CoV-2. Li et al. noted that
METTL3 and METTL14 gene expression in lung tissues was
significantly downregulated, whereas the expression levels of
most of the inflammatory genes and insulin stimulated genes
(ISGs) were increased in COVID-19 patients than in healthy
individuals. The SARS-CoV-2 virus utilizes host METTL3 to
modify viral RNA and to evade host cell immune responses (17).
SARS-CoV-2 infections were also found to trigger m6A
modification machineries re-localization and enhance the
abundance of m6A in Vero and Huh7 cells (18). Although
these findings provide evidence of the m6A methylome
interaction between host cells and SARS-CoV-2, current
studies focused primarily on a few m6A-related genes and
nearly all were performed using model cells such as Caco2 and
Huh7, which may not adequately reflect the actual situation of
m6A methylome modifications in immune cells in patients with
SARS-CoV-2 infection. Consequently, there is an urgent need to
explore the m6A methylome modification profile in immune
cells and the cross-talk between m6A modification and immune
functions. Our aim is to explore whether there is a discrepancy in
the expression levels of m6A regulators between patients with
Frontiers in Immunology | www.frontiersin.org 2
and without COVID-19, and how m6A methylome modification
affects the immune function of lymphocytes.

In this study, we systematically depicted the immune profiles
in patients with and without COVID-19 and the correlation
between m6A and lymphocytes between these groups. Based on
the expression levels of 20 m6A regulators, we discovered two
distinctive m6A modification patterns in blood lymphocytes of
COVID-19 patients. Surprisingly, there were differences in
metabolism, immune cell compositions, and immune
checkpoints between the two groups of patients. To better
quantify the m6A modification level in each patient group, we
established a scoring system termed the m6A score. This system
was further analyzed between two m6A patterns and different
clinical manifestation groups. Finally, we generated a protective
model to accurately predict the clinical outcomes of patients
and to determine the presence of SARS-CoV-2 infection
among patients.
MATERIALS AND METHODS

Processing of Data Obtained From a GEO
Dataset
RNA-seq data of 126 samples, including those of 100 patients
with COVID-19 and 26 patients without COVID-19 were
obtained from a GEO dataset (GSE157103) (19). Clinical
information obtained included age, diabetic status, ICU status,
and hospital-free days at day 45 (HFD45). The HFD45 assigns a
zero value (0-free days) to patients who remained admitted for
over 45 days or to those who died while they were admitted, and
higher HFD45 values are assigned to patients with shorter
hospitalization times and milder disease severity.

GSVA Analysis and Functional Annotation
To estimate the biological function between different m6A
clusters or between patients with or without COVID-19, we
conducted GSVA enrichment analysis using the “GSVA” R
package, which estimates the variations of pathway activity
over a sample population in an unsupervised manner (20). The
“h.all.symbols” and “c5.go.bp.symbols” were downloaded from
the MSigDB database for GSVA analysis. The significantly
enriched pathways were filtered by an adjusted P value
of <0.05. To investigate the potential biological functions of
DEGs of two m6A clusters and of individuals with or without
COVID-19, the “clusterProfiler” package in R was used to
perform enrichment analysis (21).

Estimation of Immune Cell Infiltration
Fractions
The abundance of immune cells was determined by cell type
identification by “CIBERSORT”, an algorithm that combines
support vector regression from purified leukocyte subsets
(https://cibersort.stanford.edu/). The LM22 signature gene
matrix served as an input of the “CIBERSORT” algorithm to
November 2021 | Volume 12 | Article 774776
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analyze the RNA-seq data of 126 samples, and all samples with a
P value of <0.05 were included (22).

Generation of m6A Score
To quantify the m6A modification level per individual, we
established an evaluation index called the m6A score.

1) Acquisition of significant DEGs. TPM data were log2-
transformed, and the DEGs were acquired from the two
m6A clusters using the “limma” package. We used
HFD45 = 26 as the cutoff value and categorized COVID-19
patients into two groups. Each gene with differential
expression between the two groups was analyzed by the t-
test. The significant DEGs were extracted for further analysis.

2) Construction of the m6A score. A PCA analysis was adopted
to focus on the well-correlated genes in the set. PC1 and PC2
were extracted to form signature scores. Later, we applied a
method similar to GGI to construct the m6A score (23).

m6A score = S(PC1i + PC2i)

Unsupervised Clustering of COVID-19
Patients
A total of 20 m6A genes were obtained from the GEO dataset,
including eleven readers (YTHDC1, YTHDF2, YTHDF1,
ELAVL1, YTHDC2, FMR1, HNRNPA2B1, IGF2BP1, LRPPRC,
YTHDF3, and HNRNPC), seven writers (ZC3H13, RBM15B,
RBM15, CBLL1, WTAP, METTL14, and METTL3), and two
erasers (ALKBH5 and FTO). An unsupervised clustering
algorithm performed by the “ConsensusClusterPlus” package
was used on the basis of the m6A genes to classify COVID-19
patients into different subtypes (24).

Construction of the Protective Model
Comparison of the two groups yielded a total of 4,565 genes with
differential expression. We constructed the LASSO model in the
patient’s cohort on the basis of these DEGs by using the “glmnet”
package. The final signatures were filtered by determining the
appropriate l value with 20-fold cross-validation and “deviance”
as the target parameter. The coefficients of the final signatures
were used to calculate the protective score as follows: protective
score = ∑i Coefficientsi × Expression level of signaturei. The
patients were divided into two clusters: the training cohort
consisted of 70% of the patients while the validation cohort
consisted of 30% of the patients. The model constructed in the
training cohort was validated in the validation cohort. Receiver
operating characteristic (ROC) curves were plotted with AUC
scores using the R package “plotROC” to evaluate the
performance of the model.

Statistical Analysis
Differences between the two groups were compared using the
Wilcoxon sum-rank test and the t-test. The protective score,
HFD45, SOFA score, APACHE-II score, crp, and ventilator-free
days were subjected to correlation analysis using the Pearson
correlation test with the “pancor” package (https://github.com/
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xuzhougeng/pancor/tree/master/R). All statistical tests
conducted were two-sided, and a p value of <0.05 was
considered statistically significant.
RESULTS

Upregulation of m6A Regulators and
Activation of the Immune System in
COVID-19 Patients
A sketch map was depicted to reflect the m6A modification of
blood lymphocytes of patients infected with SARS-CoV-2
(Figure 1A). The gene expression profiles and corresponding
clinical data of patients with or without COVID-19 were
downloaded from the Gene Expression Omnibus (GEO)
database for subsequent analyses. Figure 1B shows the
workflow. We curated and analyzed a set of 20 acknowledged
m6A regulators (11 writers, 7 readers, and 2 erasers) to identify
distinct m6A methylation modification patterns. Expression
profiling of blood leukocytes revealed that the expression levels
of all m6A regulators were significantly upregulated in patients
with COVID-19 (P <0.05) (Figure 2A). To explore the
association between different m6A regulators, we depicted the
correlation patterns between three types of m6A regulators
(Figure 2B). Surprisingly, m6A regulators of the same type,
such as YTHDF2 and YTHDC1, show strong antagonistic
action (coefficient = −0.6). Simultaneously, m6A regulators
from different types, such as HNRNPC and WTAP, can also
exhibit synergistic effects (coefficient = 0.94). We further
analyzed the relevance of the co-expression of regulators and
found a significant correlation between YTHDF2 and other
regulators, with the highest correlation coefficient between
YTHDF2 and ALKBH5 (coefficient = 0.82). Of course, these
are predicted interactions that provide a theoretical basis for later
experimental validation. The above results provide evidence to
the regulatory balance among the 20 m6A regulators.

To determine whether there are alterations in the immune
system between the COVID-19 and non-COVID-19 patient
groups, gene set variation analysis (GSVA) was conducted to
show a difference in well-defined biological states or processes
between patients with or without COVID-19, indicating that
interferon responses were remarkably upregulated in COVID-19
patients (Figure 2C). We simultaneously analyzed the fraction of
22 immune cell types between the two groups based on the
CIBERSORT algorithm (Figure 2D), and the results revealed
that COVID-19 patients had higher infiltration levels of memory
B cells, plasma cells, naïve CD4 T cells, activated CD4 memory T
cells, and gamma delta T cells (Figure 2E). These findings
suggested that SARS-CoV-2 infection remarkably activates the
immune system. Moreover, correlation analysis underlined that
activated CD4 memory T cells were positively correlated with
m6A regulators (Figure 2F). Combined with the above results, it
can be inferred that the high level of activated CD4 memory
T cells in COVID-19 patients may be due to the elevated
expression level of m6A regulators. The above results suggested
November 2021 | Volume 12 | Article 774776
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that m6A regulators may play a pivotal role in the molecular
traits and immune infiltration phenotype in COVID-19 patients.

Patterns of m6A Regulators and Biological
Function of Each Pattern
A consistent unsupervised methodology was employed to obtain
a clustering result for subsequent analysis. The consensus matrix
showed that the unsupervised algorithm based on the 20
regulators could clearly distinguish the samples, and each
sample in a cluster possessed a high correlation (Figures 3A,
S1A–C). The consensus distributions and delta area for k (2–5)
are displayed in the empirical cumulative distribution function
(CDF) plots (Figures S1D–E). Given the consensus matrix for
the analysis, k = 2 seemed to be the most suitable choice.
Accordingly, in this study we clustered COVID-19 patients
into two groups, and the principal component analysis (PCA)
revealed that the two groups were distinguished clearly (Figure
S1F). Moreover, compared to the expression levels of m6A
Frontiers in Immunology | www.frontiersin.org 4
regulators, a unique m6A transcriptional profile was generated
between the two m6A patterns (Figure 3B). m6A cluster A
showed high expression levels of CBLL1, HNRNPC, and
ZC3H13, while m6A cluster B was characterized by elevated
expression of IGF2BP1, METTL3, and RBM15B (Figure 3C).
METTL3, which was previously reported by Hu, was considered
to be an important part of the methyltransferase complex (5),
suggesting that the m6A cluster B might have a higher level of
m6Amethylation modification in lymphocytes compared to m6A
cluster A. Some host proviral genes that are essential for the
survival of SARS-CoV-2 have been reported (25–31). We
examined the expression levels of these genes in the two
clusters. As shown in the result (Figures S2A–C), proviral
genes were significantly upregulated in m6A cluster A relative
to m6A cluster B. The hospital-free day 45 (HFD45) between the
two clusters was compared, and the results revealed a better
prognosis for m6A cluster A (Figure 3D). Thus, we speculated
that the upregulated expression of proviral genes might be
A

B

FIGURE 1 | The diagram and workflow of the project. (A) The overview of m6A RNA methylation modification in blood lymphocytes of patients infected with SARS-
CoV-2, including ‘writers’, ‘readers’, and ‘erasers’. (B) The study flow chart.
November 2021 | Volume 12 | Article 774776
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associated with a low level of m6A methylation modification in
lymphocytes, leading to better outcomes in COVID-19 patients.
We subsequently explored effectors downstream of the innate
immune pathways between the two groups, and the results
showed that IFN genes and IFN-stimulated genes were
significantly upregulated in m6A cluster A (Figure 3E),
implying that lymphocytes of this cluster were significantly
stimulated to release antiviral proteins such as IFN.

GVSA analysis was applied to further explore the biological
differences between the two groups. The results revealed that KRAS
and TGFb signaling was upregulated in m6A cluster A while PI3K-
AKT-mTOR signaling was downregulated in m6A cluster B
(Figure 3F). Otherwise, the significant pathways also focused on
metabolism and immune system activation. m6A cluster B was
Frontiers in Immunology | www.frontiersin.org 5
remarkably related to oxygen transport, fatty acid b-oxidation,
aerobic respiration, cellular metabolism compound salvage, and
nucleotide salvage. T cell pathways, such as T cell activation, T cell
differentiation, T cell chemotaxis, and T cell proliferation, were
significantly enriched in m6A cluster A (Figure 3G). Thus, we
hypothesized that m6A cluster A might be involved in various
processes in T cells, such as development and function.

Immune Infiltration and Immune
Checkpoint Characteristics in
m6A Patterns
Recent studies have shown that m6Amodification of RNA plays an
essential role in the formation of immune responses and the
immune environment. In order to further define the role of m6A
A B

D

E F

C

FIGURE 2 | COVID-19 patients were characterized by upregulated m6A genes and activation of the lymphocytes. (A) The expression of 20 m6A genes of blood
leukocytes between patients with or without COVID-19. (B) Correlation plot of 20 m6A genes. The positive correlation was marked with blue, and negative correlation
was marked with red. The size of circle represents the absolute value of correlation coefficients. (C) GSVA enrichment analysis showing activated interferon pathways
in COVID-19 patients. Red represents high expression, blue represents low expression. (D) The abundance of leukocytes in patients with or without COVID-19.
(E) The significant leukocytes fractions in patients with or without COVID-19. (F) The heatmap of correlation between leukocytes and m6A genes. The positive
correlation was marked with blue, and negative correlation was marked with red. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance.
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modification patterns in the immune environment, we compared
the components of different lymphocytes between twom6A clusters
by using the CIBERSORT method (Figure 4A). We found that
m6A cluster A had higher expression of CD8+ T cells and activated
NK cells than m6A cluster B, which is consistent with the above
results. To better illustrate the level of infiltration in the two
clusters, we leveraged the ESTIMATE algorithm to evaluate the
infiltration level of immune cells. The results revealed that m6A
cluster A exhibited a high immune score, which suggested that
m6A cluster A had prominently elevated infiltration of immune
cells (Figure 4B). These results illustrated the differences in
immune infiltration between the two modification patterns.

We further analyzed the expression of typical immune-related
genes and immune checkpoint-related genes in the groups with
different modification patterns. The results uncovered that
stimulator, inhibitor, and MHC-related genes were remarkably
elevated inm6A cluster A than inm6A cluster B (Figures S3A–C),
suggesting that m6A cluster A had a higher immune response than
m6A cluster B. Interestingly, m6A cluster A could be remarkably
distinguished from m6A cluster B in the immune checkpoint. In
particular, we found that the expression of checkpoint inhibitor-
related genes, such as HAVCR2, TIGIT, PD-L1, ICOS, CTLA4,
CD86, LFA-3, and CD40, in the m6A cluster A was prominently
higher than that in m6A cluster B, which meant that the former
Frontiers in Immunology | www.frontiersin.org 6
cluster might benefit from immune therapy (Figure 4C). To better
illustrate the biological behaviors between the two groups, Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment was
performed using the “clusterProfiler” package. Surprisingly,
immunity- and metabolism-related genes were primarily
enriched (Figure 4D), which is the same as the biological
process between patients with and without COVID-19. Based on
the above results, it could be said that there were distinct immune
infiltration and immune checkpoint characteristics between the
two groups with different modification patterns.

Construction of m6A Signatures
To further verify the reasonability of classification based on m6A-
related genes, we first analyzed the differentially expressed genes
(DEGs) using the “limma” package (32). DEGs were identified
with cutoff criteria of |logFC| >1 and P <0.05, and finally we
screened 6,771 DEGs. Subsequently, unsupervised consensus
clustering analysis was conducted on the basis of the DEGs
using the R package “ConsensusClusterPlus” to categorize the
patients into different genomic subtypes. The delta area and
consensus distributions for k (2–5) are displayed in the
empirical CDF plots (Figures S4A–E). Consistent with the
classification of m6A modification patterns, the unsupervised
algorithm clustered two unique genomic subtypes. We designated
A B

D E

F G

C

FIGURE 3 | Biological progression between the two m6A clusters. (A) Consensus clustering matrix for k = 2. (B) The heatmap of m6A genes between the two m6A
clusters. Red represents high expression, blue represents low expression. (C) Expression levels of significant m6A genes between the two m6A clusters. (D) The
HFD45 between the two m6A clusters. (E) The innate immune pathways-related genes between the m6A clusters. (F, G) GSVA analysis showing the activation of
classical pathways and distinct biological processes in metabolism and immune response. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance.
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these subtypes as “Gene cluster A” and “Gene cluster B”, and this
classification was further confirmed by PCA (Figure S4F).
Coincidently, there were more m6A-related genes in Gene cluster
A than in Gene cluster B (Figure S5G), although there were no
significant differences in the HFD45 score (Figure S5A). These
analyses indicated that the two m6A modification models existed in
COVID-19 patients and that the classification based onm6A-related
genes was reasonable and could be explained. Furthermore, we
analyzed the overall expression of the DEGs, and the results are
depicted in a heatmap (Figure 5A), which illustrates the existence of
a distinct genomic expression profile between the two groups. Later,
we observed the proportions of clinical manifestations of the
COVID-19 patients between the two m6A clusters (Figure 5B). It
indicated that the patients in m6A cluster B were more likely to be
admitted to the ICU or have diabetes than patients in m6A cluster
A. Concomitantly, patients in Gene cluster A were characterized by
an age of <65 years.

Considering the unique heterogeneity of m6A modification
patterns, we defined an indicator to establish a scoring system to
comprehensively quantify the m6A modification pattern of
patients with COVID-19, which is termed as the m6A score.
Further analysis revealed a lower m6A score in m6A cluster A
than in m6A cluster B (Figure 5C). Combined with the
conclusion that the m6A cluster A had a higher HFD45 than
m6A cluster B, it can be inferred that the m6A score was
associated with poor survival. However, there was no
Frontiers in Immunology | www.frontiersin.org 7
significant difference in the m6A signature between Gene
clusters A and B (Figure S5B). Similar results were discovered
between different clinical groups (Figures S5C–F). To better
illustrate the potential function of the m6A score, we analyzed the
correlation between the m6A score and common pathways.
Based on the results of the correlation analysis, the m6A score
was mainly positively correlated with glycerolipid metabolism
and autoimmune thyroid disease, and negatively correlated with
the regulation of autophagy, peroxisome, drug metabolism,
glycerophospholipid metabolism, and RNA degradation
(Figure S5G). These results demonstrated that the m6A score
might be closely related to metabolic pathways.

Construction and Validation of an m6A-
Related Protective Model
In view of the necessity to detect COVID-19 in individuals and the
importance of m6A regulators, an accurate predictive model needs
to be built. We analyzed the intersections between DEGs of two
m6A clusters and DEGs of COVID-19 and COVID-19 individuals,
and acquired a total of 4,565 overlapped DEGs (Figure 6A). These
DEGs were regarded as candidate genes for least absolute shrinkage
and selection operator (LASSO) regression analysis based on the
least square method. In the cross-validation process, lambda-min
was regarded as the optimal value (Figure 6B). Figure 6C presents
the calculated regression coefficient. Finally, nine model-related
genes were obtained, which were then used to construct a
A

B D

C

FIGURE 4 | Immune characteristics between the two m6A clusters. (A) The abundance of leukocytes between the m6A clusters. (B) The immunoscore between the
two m6A clusters. (C) Expression levels of immune checkpoint genes between the m6A clusters. (D) The KEGG enrichment analysis based on DEGs of the two
clusters. The color bar represents the p values of the pathways. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance.
November 2021 | Volume 12 | Article 774776
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protective model. The against-COVID-19 signature was as follows:
protective score = (−0.40363 × CHEK1) + (−0.00647 × NDC80) +
(−0.03129 × PBK) + (−0.27285 × H2BC11) + (−0.06532 ×
TMSB4X) + (−0.04487 × RPH3A) + (−0.19111 × EEF1D) +
(0.083252 × SNAPC2). Further analysis demonstrated that both
in the training and validation sets, patients with high protective
Frontiers in Immunology | www.frontiersin.org 8
scores had a higher level of HFD45 and were more likely to protect
themselves against COVID-19 infections than those with low
protective scores (Figures 6D, E). Moreover, the area under the
ROC curve (AUC) values of the model in the training and
validation sets were 0.822 and 0.705, respectively (Figures 6F, G),
suggesting the excellent performance of the protective model. The
A

B

C

FIGURE 5 | Clinical manifestations and m6A modification levels between the two m6A clusters. (A) Heatmap of the DEGs between the gene clusters. m6A cluster
and clinical feature annotation was used. (B) ICU, age, and diabetes proportions between the m6A clusters. (C) m6A score between the m6A clusters.
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heatmaps of the model-related genes were plotted, which indicated
a distinct difference in expression levels between the patients with
and without COVID-19 in both sets (Figures 6H, I).
Frontiers in Immunology | www.frontiersin.org 9
To delineate the role and potential mechanisms of the
predictive performance of the model, we conducted gene
ontology (GO) and KEGG analyses of model-related genes.
The results of the analyses revealed that the model was mainly
A B

D E

F G

IH

C

FIGURE 6 | Construction of a protective model to predict patients with COVID-19. (A) Venn plot between DEGs of COVID-19 and DEGs of clusters. (B, C)
Construction of a protective model based on intersecting DEGs. (D, E) The HFD45 of patients in the training set and testing set ranked by protective score. (F, G)
AUC of patients in the training set and testing set. (H, I) The heatmap of the model genes in the training set and testing set.
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related to external factors, cell cycle, and viral carcinogenesis
(Figure 7A). These findings indicated that the protective model
can precisely predict the probability of patients infected with
SARS-CoV-2. Later, we studied the correlation between the
protective score of the model and clinical information
(Figures 7B–F), which illustrated that a high protective score
was positively correlated with HFD45 and ventilator-free days,
whereas a high protective score was negatively correlated with
SOFA score, APACHE-II score, and C-reactive protein (crp).
Frontiers in Immunology | www.frontiersin.org 10
Taken together, our findings demonstrated the outstanding
predictive value of the newly developed protective model and
the clinical prognostic value of the protective score.
DISCUSSION

SARS-CoV-2 is responsible for the severe acute respiratory
syndrome. Sokal et al. found that memory B cells in patients
A B

D

E F

C

FIGURE 7 | The enrichment of model genes and correlations between protective score and clinical information. (A) The biological process of the model-related
genes. (B–F) The correlations between protective score and HFD45 (B), SOFA score (C), APACHE-II score (D), crp (E), and ventilator-free days (F).
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responded to COVID-19, while Grifoni et al. and Bert et al.
demonstrated that COVID-19-specific CD4+ and CD8+ T cells
are generated during the course of COVID-19 disease (13, 15, 33).
Interestingly, SARS-CoV-2 spike-reactive CD4+ T cells, which
focus on C-terminal S epitopes, can be detected both in patients
with COVID-19 and in healthy donors (34). Moreover, a robust
CD4+ T cell response to SARS-CoV-2 spike (S) protein and
nucleoprotein (N) can be observed in individuals who have
recovered from SARS-CoV-2 infection (14, 35). Although the
phenotype of lymphocyte responses to COVID-19 has been
unraveled by researchers, the underlying mechanism of
lymphocyte activation in this disease remains obscure.

RNA modification is diverse and vital in the activation and
differentiation of lymphocytes. m6A methylation can control T cell
and B cell homeostasis (36, 37). T follicular helper cell differentiation
can also be managed by m6A mRNA methylation (38). The above
studies primarily focused on communication between tumor and
lymphocytes, but whether m6A mRNA methylation was altered in
the lymphocytes of COVID-19 patients and the potential function
of m6A modification during infection remains unclear. Thus, there
is an urgent need to identify the possible mechanisms and promote
our understanding of lymphocyte m6A modification in COVID-
19 patients.

In this study, we systematically analyzed the m6Amodification
landscape in blood lymphocytes of COVID-19 patients. The m6A
expression level was significantly upregulated in the blood
lymphocytes of COVID-19 patients than in those of patients
without COVID-19, suggesting that m6Amodification might play
a vital role in the blood lymphocytes of patients with COVID-19.
Later, the correlation between m6A regulators was calculated to
explore the intricate relationship between the regulators in
patients infected with SARS-CoV-2 and uninfected individuals.
We discovered a negative correlation between m6A regulators of
the same type, which proved the existence of an m6A
modification dynamic balance in COVID-19 patients. The
lymphocyte fraction was altered between patients with and
without COVID-19. COVID-19 patients had higher levels of
B cells and CD4+ T cells, which were consistent with the
findings reported by Goel et al. and Kared et al. (39, 40).
Further, to explore the different m6A modification patterns in
COVID-19 patients, unsupervised cluster analysis of the
expression values of m6A regulators identified two distinct
modification patterns. m6A cluster A exhibited T cell activation
and differentiation, while m6A cluster B was characterized by
metabolism-related biological processes such as fatty acid b-
oxidation and nucleotide salvage. Essig et al. and Cortez et al.
reported that TGF-b signaling and PI3K-AKT signaling are
necessary for T cell differentiation (41, 42). Consistent with the
above studies, m6A cluster A had a higher level of TGF-b
signaling and PI3K-AKT-mTOR signaling, which explained the
mechanism of T cell activation and differentiation. Together, it
would be reasonable and reliable to state that m6A cluster A
which had activated T cell function to fight against SARS-CoV-2
could exhibit a better prognosis.

Due to the remarkably different mRNA profiles between m6A
cluster A and m6A cluster B, DEGs between the two clusters were
Frontiers in Immunology | www.frontiersin.org 11
labeled as m6A-DEGs, which were tightly associated with m6A
modification. Consistent with the m6A classification, two
genomic subtypes were identified by m6A-DEGs based on the
unsupervised classification. Moreover, patients in m6A cluster B
were more likely to be admitted to the ICU than m6A cluster A
patients. Considering the individual heterogeneity of the
immune system, it is necessary to establish an evaluation
signature to reflect the individual m6A pattern. Here, based on
m6A-DEGs, we defined an “m6A score” to quantify the m6A
pattern for each COVID-19 individual. Patients in m6A cluster A
presented higher HFD45, which meant that they had a better
prognosis. In addition, similar to previous results, the m6A score
was positively correlated with glycan metabolism, highlighting
the core role of the m6A score in glucose metabolism.
Furthermore, the clinical value of the m6A score was evaluated.
Patients who were not admitted to ICU, did not have diabetes,
or had not been treated by mechanical ventilation presented
a relatively low median m6A score. These results further
confirmed that the m6A score could serve as a satisfactory
prognostic indicator.

Finally, we constructed a protective model with nine
identified genes (CHEK1, NDC80, PBK, H2BC11, TMSB4X,
RPH3A, TM9SF1, EEF1D, and SNAPC2) to predict patients
who had COVID-19. Coincidently, some of the genes are
linked to viruses infecting humans. CHEK1, which is a gene
that is necessary for responding to DNA damage, was reported to
be a potential target of saikosaponins which might function as an
adjuvant therapy for COVID-19 patients (43). Bioinformatics
analysis revealed that NDC80 and PBK can serve as biomarkers
for HBV-associated hepatocellular carcinoma (44). Studies have
reported that H2BC11 is associated with interferon signaling
during viral infections (45). EEF1D, which serves as a guanine
nucleotide exchange factor, can inhibit the nuclear import of the
nucleoprotein and PA-PB1 heterodimer of the influenza A virus
(46). Additionally, some of the genes are essential for immune
system activation. For instance, RPH3A is known to be
important for neutrophil integrin activation and TM9SF4 is
required for cellular immunity in Drosophila (45, 47). The
enrichment analysis revealed that external stimulation, cell
cycle, and viral carcinogenesis might be the mechanisms
underlying this protective model.

The model achieved a high AUC value in the training and
validation sets. More importantly, patients without COVID-19
displayed higher protective scores compared to patients with
COVID-19. In addition, previous studies have reported that
patients with severe COVID-19 had relatively high crp and higher
SOFA and APACHE-II scores (48–50). Consistent with the above
findings, the results of the correlation analysis suggested that
protective score was negatively correlated with the crp, SOFA
score, and APACHE-II score. At the same time, protective score
was positively correlated with HFD45 and ventilator-free days, both
of which are indicators of favorable outcomes. These findings
demonstrate that the protective score is an excellent indicator of
clinical outcomes and prognosis in COVID-19 patients.

One limitation of our study was the lack of additional clinical
confirmation for the expression levels of m6A-related genes and
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performance of the protective model. Furthermore, due to the
vague survival information provided in the GSE157103 dataset,
we could not analyze the precise prognostic value for the m6A
score and protective model. Nevertheless, HFD45 can reflect a
rough prognostic condition to some extent.

In conclusion, this study revealed the correlation between
m6A regulators and lymphocytes and discovered the discrepant
immune infiltration characteristics among COVID-19 patients
with different m6A modifications. The m6A scoring system can
effectively predict the clinical outcomes of patients with COVID-
19. Importantly, the protective model based on nine signatures
was capable of accurately identifying patients with COVID-19.
In summary, our work provided novel insights into m6A
modification in blood lymphocytes of patients infected with
SARS-CoV-2 and an evaluation system to predict the clinical
prognosis and possibility of contracting the COVID-19. Based on
these findings, m6A DEGs can serve as biomarkers to detect
suspected or confirmed SARS-CoV-2 carriers; however, further
research is required to uncover the mechanism underlying
elevated expression of m6A methylation modification in the
lymphocytes of infected individuals.
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