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COVID-19 is characterized by virus-induced injury leading to multi-organ failure, together
with inflammatory reaction, endothelial cell (EC) injury, and prothrombotic coagulopathy
with thrombotic events. Complement system (C) via its cross-talk with the contact and
coagulation systems contributes significantly to the severity and pathological
consequences due to SARS-CoV-2 infection. These immunopathological mechanisms
overlap in COVID-19 and pre-eclampsia (PE). Thus, mothers contracting SARS-CoV-2
infection during pregnancy are more vulnerable to developing PE. SARS-CoV-2 infection
of ECs, via its receptor ACE2 and co-receptor TMPRSS2, can provoke endothelial
dysfunction and disruption of vascular integrity, causing hyperinflammation and
hypercoagulability. This is aggravated by bradykinin increase due to inhibition of ACE2
activity by the virus. C is important for the progression of normal pregnancy, and its
dysregulation can impact in the form of PE-like syndrome as a consequence of SARS-
CoV-2 infection. Thus, there is also an overlap between treatment regimens of COVID-19
and PE. C inhibitors, especially those targeting C3 or MASP-2, are exciting options for
treating COVID-19 and consequent PE. In this review, we examine the role of C, contact
and coagulation systems as well as endothelial hyperactivation with respect to SARS-
CoV-2 infection during pregnancy and likely development of PE.
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INTRODUCTION

The first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection,
responsible for the coronavirus disease 2019 (COVID-19) outbreak, was reported in the Chinese
town of Wuhan in the late 2019 (1). The emerging coronavirus spread worldwide over the following
months has been officially recognized as a global pandemic since 11th March 2020 (2).

SARS-CoV-2 resembles several characteristics and pathways of infection with other two
members of the Coronaviridae family: the SARS pandemic in 2002 and the Middle East
respiratory syndrome (MERS) in 2012, with a fatality rate of 10% and 36%, respectively (3).
CoVs encompass a group of enveloped and single-stranded RNA viruses identified in birds and
mammals, and can cause gastrointestinal, central nervous system, and respiratory tract infections
(4). The main structural proteins, encoded by specific genes in open reading frame (ORF)-1
org November 2021 | Volume 12 | Article 7751681

https://www.frontiersin.org/articles/10.3389/fimmu.2021.775168/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.775168/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:abalduit@units.it
https://orcid.org/0000-0001-5902-3205
https://doi.org/10.3389/fimmu.2021.775168
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.775168
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.775168&domain=pdf&date_stamp=2021-11-17


Agostinis et al. Complement in COVID-19 and Pre-Eclampsia
downstream regions, include Spike (S), Envelope (E), Membrane
(M), and Nucleocapsid (N), S protein being responsible for
SARS-CoV-2 invasion of the host cells (5, 6). Among the
different receptors identified as cellular entry mediators,
the main target receptor of the SARS-CoV-2 virus is the
angiotensin-converting enzyme 2 (ACE2) (7), which plays an
important role in the renin-angiotensin-aldosterone system
(RAAS) for the regulation of blood pressure and electrolyte
homeostasis (8), and is widely expressed by most tissues,
accounting for the high tropism of the virus. SARS-CoV-2 cell
entry also depends on the cellular transmembrane serine
protease 2 (TMPRSS2), responsible for S protein priming (7).
Extracellular matrix metalloproteinase inducer (EMMPRIN, also
known as basigin or CD147), a cell surface glycoprotein that
belongs to the immunoglobulin superfamily and activates
metalloproteases, has been regarded as a target for SARS-CoV-
2 attachment and entry into the host cell (9, 10). In addition, the
receptor for Semaphorin-3, named neuropilin-1, has also been
demonstrated to facilitate SARS-CoV-2 infection (11).

The SARS-CoV-2 infection damages various organs via
different pathogenic mechanisms, including direct viral damage
to the host cells/tissues through pneumocyte syncytia formation
(12) and Golgi apparatus rupture (13), RAAS disruption and
endothelial cell (EC) damage resulting in inflammation,
endotheliitis and thrombosis (14). Moreover, an unfavorable
dysregulation of immune response characterized by
lymphopenia and cytokine storm has been reported as a key
pathogenic mechanism in COVID-19 (15, 16). In this context,
the complement system (C) primary role as a first line of defense
against infectious agents would suggest for a protective function
in enhancing virus neutralization and phagocytosis. However, C
activation has been proposed as a contributor in disease
progression to a more severe and lethal stage, which shares
important pathophysiological features, in particular endothelial
damage, with a pregnancy disorder called pre-eclampsia (PE)
(17, 18). This review aims to shed light on the role of the C in
pregnant women with COVID-19 developing PE.
THE COMPLEMENT SYSTEM

The C, as a powerful arm of the innate immunity, has a pivotal
role in the recognition of potential danger signals and in the
clearance of pathogens, apoptotic and necrotic cells (19). The C
acts as a functional bridge between innate and adaptive
immunity, being a system that “complements” the function of
antibodies in the modulation of an integrated host defense (20).
The C is comprised of over 50 plasma and cell surface proteins,
including activation effectors, regulators and cell surface
receptors (21). These proteins are organized to take part in
three independent but interactive activation pathways
(Figure 1): classical, lectin and alternative, converging on the
common activation of the major component C3 and in the
production of proinflammatory mediators, opsonization,
membrane attack complex (MAC) formation, and target cell
lysis (22).
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Classical Pathway
The classical pathway is mainly triggered by the interaction
between the C1 and immune complexes, apoptotic and necrotic
cells (23). C1 complex consists of three sub-components: the
classical pathway recognition molecule C1q and the serine
proteases C1r and C1s. The activation process is initiated by
C1q recognition of the Fc domain of an array of IgM or IgG bound
to an antigen. The consequent C1q conformational change is
responsible for the activation of C1r serine-protease activity (24),
which, in turn, acts as a trigger to the proteolytic activity of C1s,
inducing C4 and C2 cleavage into two active components (C4b
and C2a) and two small fragments released in the fluid phase (C4a
and C2b) (25). C4b is able to covalently bind to membrane
proteins and carbohydrates (26), and non-covalently to C2a
inducing the C4b2a complex formation, also known as C3
convertase of the classical pathway (25). C3 convertase, attached
to the target surface, is responsible for C3 cleavage into C3b and
C3a anaphylatoxin (Figure 1).

Lectin Pathway
The lectin pathway is an antibody-independent route in which
mannan-binding lectin (MBL), ficolins (ficolin-1, -2 and -3) or
collectin-11 act as pattern-recognition molecules through their
binding to mannose residues and other carbohydrate ligands in
the form of pathogen-associated molecular patterns (PAMPs), or
damage-associated molecular patterns (DAMPs) (27). This binding
triggers MBL interaction with MBL-associated serine proteases
(MASPs), a family of serine proteases including three enzymatic
proteins (MASP-1, MASP-2 and MASP-3) and two non-enzymatic
factors (Map19 and Map44). MASP-3 is mainly involved in the
alternative pathway activation (28), whilst MASP-2 activation by
MASP-1, forming a dimer, activate the lectin pathway via C4 and
C2 cleavage and C3 convertase formation (29).

Alternative Pathway
The initiation of the alternative pathway is independent of immune
complexes, being constitutively active at basal levels in the so-called
“tick-over”mechanism and assuring a rapid and robust C activation
in the presence of pathogens (30). Under normal physiological
conditions, C3 undergoes constant low-grade activation by
spontaneous hydrolysis, producing the C3(H2O) molecule, which
is rapidly inactivated in the circulation (31). After its binding to C3
(H2O), the plasma protein factor B (FB) is cleaved by the serine
protease factor D (FD), losing the small fragment Ba, whilst the
residual fragment Bb remains bound to C3(H2O) forming the fluid
phase C3 convertase, C3(H2O)Bb. C3(H2O)Bb has the ability to
cleave large amounts of C3 molecules into C3a and C3b. C3b is
partly inactivated by hydrolysis; however, the interaction of C3b
with surface components of microbial agents and damaged host
cells can accelerate the alternative pathway and induce the
association with FB, further cleaved by FD, and generation of the
amplification loop convertase C3bBb. The rapid amplification loop
is also boosted by the C3bmolecules generated by either the classical
or lectin pathway. The alternative pathway C3 convertases are
highly labile, so they need to be stabilized by an up-regulator
called factor P or properdin, increasing its half-life by 10-fold (32).
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FIGURE 1 | Overview of the complement system (C) and its interplay with the coagulation and kallikrein-kinin pathways. The activation of C via three pathways:
classical, alternative and lectin. The recognition and activation phases in each pathway converge on the formation of C3 convertase. The amplification phase is
initiated when the C3 convertase cleaves C3, and C3b attachment to C3 convertases changes their substrate specificity, allowing them to become C5 convertase.
The C5 convertase cleaves C5, starting the last phase (Terminal-Attack phase), in which C5b forms the membrane-attack complex with C6, C7, C8, and C9,
resulting in cell perturbation. Kallikrein exerts its activity on C activation in all these three phases. Factor (F) XIIa activates the classical pathway, whereas plasmin
enhances the amplification loop. Thrombin, FIXa, FXa, FXIa, and kallikrein directly activate C5. AT, Antithrombin; C1-INH, C1-inhibitor; F, Factor; MAC, Membrane
attack complex; MASP, MBL associated serine protease; MBL, Mannose binding lectin; iTCC, Inactive terminal complement complex; TAFI, Thrombin activatable
fibrinolysis inhibitor.
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Membrane Attack Complex Formation
All the three C activation pathways converge on the common C3
convertase formation and C3 cleavage into the anaphylatoxin
C3a and the opsonin C3b (19, 33). The incorporation of the C3b
fragment in the C3 convertase gives rise to the production of C5
convertase, which in turn, cleaves C5 to yield C5b and the
anaphylatoxin C5a. Then, C5b sequentially interacts with the
terminal C components C6, C7, C8, and C9, resulting in
the formation of the C5b-9 terminal C complex (TCC). If TCC
is fully inserted into a cell plasma membrane, it is called the
MAC. MAC-mediated cell death can release DAMPs, which can
result in further C activation. In many clinical conditions
associated with massive C activation, in plasma or other fluids,
the formation of a cytolytically inactive TCC (iTCC)' also called
soluble C5b-9 (sC5b-9) complex, is helpful in several pro-
inflammatory responses acting directly on endothelium (34).

Main Regulators of Complement Activation
Abnormal C activation can be responsible for severe inflammatory
conditions, as hereditary angioedema, paroxysmal nocturnal
haemoglobinuria, and haemolytic uremic syndrome (25, 35).
Several cell membrane-bound or soluble C regulators exist to
control this system. C1-inhibitor (C1-INH) inhibits both classical
and lectin pathway initiation through its action on C1r, C1s and
MASP-2, disassembling C1 or ficolin/MBL-MASP complexes'
respectively (36, 37). Moreover, C1-INH is also able to
downregulate the alternative pathway convertase by interacting
with C3b and inhibiting its binding to FB (38). At the C3
convertase level, the main regulator is FI (39)' a serine protease
responsible for C3b and C4b cleavage. It needs several cofactors
for enhancing its activity. C4b-binding protein (C4bp) represents
the main cofactor of FI for C4b cleavage (40). Another cofactor of
FI is FH that can bind to polyanionic molecules exposed on the
membrane such as glycosaminoglycans, heparin and sialic acid.
FH interacts with C3b promoting its hydrolysis by FI (39). In
addition, the membrane-bound regulatory proteins, C Receptor 1
(CR1, CD35) (41) and Decay Accelerating Factor (DAF; CD55)
(42), participate in C3b and C4b degradation. Membrane Cofactor
Protein (MCP; also called CD46) (43) is involved in the
acceleration of their decay of the C3- and C5-convertases. CD59
(also known as protectin), by binding to C5b-8, limits the
incorporation of the C9 molecules, and consequently, formation
of the MAC (44). If the cell is protected from lysis by CD59 (45),
the sublytic attack can induce the release of inflammatory
mediators (46, 47). When C5b-7, C5b-8 or C5b-9 assemble in
plasma, the binding of the plasma proteins' vitronectin (alternative
names S-protein) (48) and clusterin (49) (also known as SP40.40)'
can lead to iTCC formation, preventing insertion into lipid
bilayers and MAC formation.
ROLE OF COMPLEMENT SYSTEM IN VIRAL
INFECTIONS INCLUDING SARS-CoV-2

Acting in concert, the three pathways of the C cascade are
effective in targeting both cell-free viral particles and virus-
Frontiers in Immunology | www.frontiersin.org 4
infected cells, boosting the anti-viral innate and adaptive
immune responses (50). The antiviral activity of the C system
usually takes place through four different, but not exclusive,
mechanisms of action: C deposition and opsonization, MAC
formation and viral cell lysis, production of pro-inflammatory
anaphylatoxins, as well as enhancement of adaptive immunity
(Figure 2) (51). The ‘eat me’ signal by C1q, C3b, and C4b
components on the non-self-agents prompts opsonization and
enhanced phagocytosis; this process can progress to MAC
assembly and viral envelope lysis. Moreover, C3a and C5a
anaphylatoxins are able to recruit neutrophils, mast cells,
monocytes, macrophages, basophils, eosinophils, T and B cells,
giving an important contribution to chemotaxis, NETosis,
degranulation, production of cytokines, inflammation' and
reactive oxygen species (ROS) production (52–54).

The most striking evidence supporting the importance of C in
viral infection outcome is provided by the evolution of specific
evasion mechanisms employed by viruses for subverting C (55).
First of all, viruses can recruit and exploit soluble and
membrane-bound host C regulators, as well as encode their
own C regulatory proteins (56). Moreover, they are also capable
of using C regulators and receptors for cellular entry or even to
modulate C protein expression through the upregulation of C
regulators or the downregulation of C activators (57).

It is now widely accepted that, during the initial stages of the
infection, SARS-CoV-2 proteins are able to directly activate all
three pathways of C (58): N protein is able to induce the MASP-
2-mediated activation of lectin pathway (59) and S protein is
responsible for the alternative pathway activation (60), whilst
classical pathway is usually activated at advanced stages via
immune complexes and C-reactive protein involvement (61,
62). Evidence so far suggests that C may be beneficial in the
early stages of SARS-CoV-2 infection due to its participation in
virus elimination; however, C activation may be severely harmful
in later phases.

InCOVID-19, the initial viral invasion phase is usually followed
by an immunopathological phase, which is characterized by an
uncontrolled immunological response causing pulmonary, and
sometimes, systemic inflammation, in which C is also involved.
In particular, recent findings indicate that excessive or deregulated
C activation may occur in COVID-19 patients (62, 63), triggering
anaphylatoxin generation and binding to their receptors (64), with
subsequent inflammatory cell recruitment in the lungs and other
organs (65). This contributes to cytokine storm, EC injury,
intravascular coagulation and thrombosis (66, 67).
ENDOTHELIITIS, COMPLEMENT SYSTEM,
AND PATHOGENESIS OF COVID-19

COVID-19 pathogenesis is characterized by an initial virus-
induced injury and consequent multi-organ failure, coupled
with an intense inflammatory reaction, EC injury, and a
prothrombotic coagulopathy with thrombotic events. The
progression from mild to severe COVID-19 is characterized by
the transition from an epithelial to an endothelial disease (14, 68).
November 2021 | Volume 12 | Article 775168
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Indeed, ECs, playing a pivotal role in the regulation of immune
response, initiation, and maintenance of inflammatory process
(69), coagulation, and platelet function, are key players in various
pathological manifestations associated with COVID-19
(Figure 3) (70, 71).

Direct viral infection of ECs, via SARS-CoV-2 receptors, ACE2
and TMPRSS2, present on their surface (7), is able to provoke
endothelial dysfunction and disruption of vascular integrity,
leading to hyperinflammation and hypercoagulability (72). The
binding of SARS-CoV-2 to ACE2 hampers its enzymatic activity,
with consequent enhanced vascular permeability (72) associated
with activation of kallikrein-kinin system and bradykinin (BK)
accumulation (7, 73). Furthermore, reduced ACE2 expression
by binding of SARS-CoV-2 on ECs limits the degradation of
des-Arg9-BK, the active metabolite of BK, into inactive peptides,
increasing prothrombotic signaling via the activation of BK
receptor 1, expressed during inflammatory conditions (72, 74).
ACE2 downregulation determines angiotensin II accumulation,
which enhances vascular permeability through AT1 receptor and
promotes tissue damage, but also reduces Mas activation by
angiotensin 1-7, supporting a local pro-inflammatory and pro-
thrombotic EC phenotype (75, 76).

Not only a direct virus-dependent effect on ECs has been
observed, but also host-specific factors seem to contribute to
Frontiers in Immunology | www.frontiersin.org 5
systemic endothelial dysfunction in COVID-19. The C seems
primarily involved in this process, the activation of its three
pathways and MAC formation as contributors to EC swelling
and even disruption (77). Indeed, in severe disease conditions,
elevated levels of serum MAC (62), as well as a strong
immunohistochemical staining for deposited C5b-9 in the
microvasculature, have been detected (61) in co-localization
studies with SARS-CoV-2 N protein (62, 78). MBL, MASP-2,
C4a and C3 deposits have also been observed (78).

Immune complexes comprising SARS-CoV-2 specific
antibodies and viral antigens may lead to EC injury through
the activation of C1 complex of the classical pathway and
induction of antibody-dependent cytotoxicity. Increased levels
of C3a and C5a, due to C hyperactivation, amplify the vicious
cycle of vascular integrity disruption, promoting infiltration of
neutrophils which potentiates ROS production, degranulation
and NETosis, ultimately provoking further injury to ECs (79).
Elevated serum levels of C5a, the most potent C anaphylatoxin,
have also been reported in severe COVID-19 patients, whereas
circulating C5a levels in patients with mild manifestations are
similar to those of the healthy controls (62). Furthermore, a close
association of C5a-C5aR axis with inflammation and
endotheliitis has been observed in the pathogenesis of severe
COVID-19 (64).
FIGURE 2 | The recognition and binding of S protein to the ACE2 receptor are fundamental key events in SARS-CoV-2 invasion of the host cells. The engagement
of ACE2 receptor and S protein of SARS-CoV-2 induces the fusion of virus and target cell. This process is orchestrated by the cleavage of S protein into S1 and S2
subunits via transmembrane serine protease priming known as TMPRSS. Subsequently, prompt viral replication occurs inside the infected cell, contributing to the
dissemination of infection. The C as a first line of innate immune defence could recognize the virus. SARS-CoV-2 is capable of directly activating the C through the
classical, alternative, and especially lectin pathways. Dysregulated C activation during the SARS-CoV-2 infection can cause serious damage to different organs.
The blockade of C effectors has a potential therapeutic effect through the prevention of the recruitment of immune cell as well as immune activation. ACE2,
Angiotensin-converting enzyme 2; LDA, Low-dose aspirin; LMWH, Low-molecular weight heparin; MAC, Membrane attack complex; MASP, MBL (mannose binding
lectin) associated serine protease; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; TMPRSS2, Transmembrane serine protease 2.
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EC damage, characterized by disruption of cell-cell junctions
and vascular leakage, exposes basement membrane to circulatory
platelets, initiating platelet aggregation, hypercoagulable state
and thrombotic events (72) (Figure 3), which are frequently
observed in severe COVID-19 patients (80).
COMPLEMENT SYSTEM AND ITS ROLE IN
THE THROMBOTIC EVENTS IN COVID-19

The C activation has been associated with COVID-19-related
coagulopathy and thromboembolia (81), suggesting an interplay
between C and coagulation system (Figure 1). Interestingly,
SARS-CoV-2 infection is able to induce the transcription of C
(C1r, C1s, factor B and C3) and coagulation genes (fibrinogen) in
pneumocytes and hepatocytes (81).

C and coagulation systems are evolutionarily linked in terms
of functional similarities and shared structural motifs (82). The
process of coagulation is activated through the contact (intrinsic)
and the Tissue Factor (TF) (extrinsic) pathways, both converging
on factor (F) X activation. The intrinsic pathway starts from FXII
activation by negatively charged surfaces, such as phospholipids
present on activated platelets and exposed subendothelial
collagen (83) (Figure 4). The extrinsic pathway is responsible
for a quick and efficient in vivo hemostasis, once activated by TF
release by damaged cells or expression on the surface of activated
monocytes, ECs, and other non-vascular cells. TF then converts
FVII to FVIIa (82). The common factor X, upon activation, is
then responsible for prothrombin (FII) activation in thrombin
(FIIa), which in turn, triggers the formation of fibrin from the
soluble fibrinogen (84) (Figure 4).
Frontiers in Immunology | www.frontiersin.org 6
When generated, FXIIa is also responsible of the C activation
via C1r and C1s (85), and that of the inflammatory kallikrein-
kinin pathway by converting pre-kallikrein into active plasma
kallikrein, which cleaves FXII into FXIIa and high molecular
weight kininogen to BK and the fibrinolytic system by plasma
kallikrein activation of pro-urokinase into urokinase, which in
turn, cleaves plasminogen into plasmin, an enzyme that degrades
fibrin clots (86, 87) (Figure 5).

The coagulation system is also involved in inflammation
and tissue remodelling through the interaction of coagulation
proteases with four distinct protease-activated receptors (PAR1,
PAR2, PAR3 and PAR4) (83). The interplay between thrombosis
and inflammation is ensured by PAR1 (previously known as the
thrombin receptor) cleavage, upon thrombin-PAR1 interaction,
resulting into an overall pro-inflammatory state characterized by
the release of P-selectin, von Willebrand factor (vWF) and the
disruption of the endothelial barrier function (88).
Complement and Tissue Factor Expression
TF (also known also thromboplastin), a transmembrane receptor
for FVII/VIIa, acts as initiator of the extrinsic coagulation pathway
(89). Several C activation factors induce TF expression on
leukocytes and ECs (90–92). C5a increases TF activity in the
circulation (93). C5a, by interacting with C5aR, mediates the
expression of TF in neutrophils enhancing their procoagulant
activity (93) The TF expression in monocytes can also be induced
by the membrane insertion of the C5b-7 (94). In addition,
the terminal components of the C cascade stimulate the synthesis
and release of TF (90); in fact, sublytic MAC (92) and iTCC (91)
have been shown to stimulate the expression of TF on ECs,
FIGURE 3 | Summary of the elements involved in endotheliitis. COVID-19 pathogenesis is characterized by an initial virus-induced injury leading to multi-organ
failure, coupled with an intense inflammatory reaction, endothelial cell (EC) injury, and a prothrombotic coagulopathy with thrombotic events. The hypercytokinemia
induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the expression by ECs of adhesion molecules such as intercellular adhesion
molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin. Neutrophils are recruited and contribute to this process through the release of
neutrophil extracellular traps (NETs), which directly activate factor XII and, thus, the contact-dependent pathway of coagulation. NETs also bind von Willebrand
factor (vWF) and help to recruit platelets. The feed-forward loop is amplified by the effect of P-selectin, vWF, and fibrinogen expression by ECs in response to
hypercytokinemia, causing platelets to directly bind to ECs leading to their activation and hypercontractility, which can lead to disruption of cell-cell junctions and
vascular leakage. ACE2, Angiotensin-converting enzyme 2; Ang II, Angiotensin II; BK, Bradykinin; MAC, Membrane attack complex; iTCC, Inactive terminal
complement complex; ROS, Reactive oxygen species.
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triggering a prothrombotic state through FVII-dependent
activation of FX.

A C-linked release of TF has been observed in COVID-19,
mainly due to a direct virus-dependent effect on ECs, in which
viral infection of the endothelium provokes release of viral
proteins able to activate C with consequent stimulation of TF
production by neutrophils, monocytes and ECs, as well as causes
endothelial injury that would expose subendothelial TF (66, 67,
95, 96).

Complement and von Willebrand
Factor Interaction
vWF is a complex multimeric plasma glycoprotein critical for
normal haemostatic function; under physiological conditions, it
is synthesized by ECs and stored in the Weibel–Palade bodies,
and by megakaryocytes, being primarily stored in a-granules of
Frontiers in Immunology | www.frontiersin.org 7
platelets, as ultra-large vWF (97, 98). vWF has two main roles in
haemostasis: firstly, to recruit and tether platelets at sites of
vascular injury, facilitating aggregation; secondly, vWF acts as a
protective carrier molecule for procoagulant FVIII. The assembly
of C5b-9 on human ECs results in the secretion of high
molecular weight multimers of vWF and release of membrane
particles from the EC surface, which express binding sites for
FVa, supporting prothrombinase activity (99, 100). Moreover,
ultra-large vWF offers an activating surface for the assembly of
the alternative pathway convertase; FH is able to reduce ultra-
large vWF to smaller forms (101).

Plasma vWF levels are significantly increased in patients with
COVID-19 (102), due to EC activation, thereby facilitating
recruitment and aggregation of platelets (103) and tethering of
leucocytes to the vessel wall (104). A C-linked release of vWF has
beenobserved in response to sublyticMACaddition toECs (99, 105).
FIGURE 4 | Complement Components that act on the coagulation system. The intrinsic (FXII) and the extrinsic (TF/thromboplastin) pathways initiate the coagulation
cascade, both converging at the common point of FX activation. FXa is causes prothrombin (FII) activation in thrombin (FIIa), which leads to the formation of fibrin
from the soluble fibrinogen. MASP-1 and MASP-2 directly activate thrombin by cleaving prothrombin, and MASP-1 is able to cleave fibrinogen to generate fibrin
monomers. C1-INH exerts its inhibitory activity on the coagulation system by acting on FXIIa, FXIa and thrombin. AT, Antithrombin; C1-INH, C1-inhibitor; MASP, MBL
(mannose binding lectin) associated serine protease; TF, Tissue factor; TFPI, Tissue factor pathway inhibitor.
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FIGURE 5 | Interplay between coagulation, fibrinolytic, contact and complement systems. The kinin system is comprised of proteins that participate in the
coagulation and inflammation. In the kinin/contact system activation may occur via auto-activation of FXII in contact with negatively charged surfaces, or the plasma
kallikrein-kinin system, as activation in plasma may be driven by pre-kallikrein activation. Kinins are vasoactive peptides produced by the action of a specific protease,
called plasma kallikrein on kininogens. Plasma kallikrein, through the cleavage of the plasma glycoprotein precursor high-molecular-weight kininogen (HMWK),
produces bradykinin. Bradykinin (BK) causes increase in vascular permeability, contraction of smooth muscle, dilation of blood vessels, and pain when injected into
the skin, with similar effects to histamine. It exerts profibrinolytic properties by stimulating release of tissue plasminogen activator from endothelial cells. BK is quickly
inactivated by redundant membrane and soluble kininase. The coagulation intrinsic pathway of the coagulation system is composed by plasma proteins activated by
FXII, a protein synthesized by the liver that can be activated by collagens, basal membrane and activated platelets. The coagulation system culminates in the
formation of thrombin (FIIa) from prothrombin (FII) and in the formation of fibrin from the soluble fibrinogen. When generated, FXIIa is also responsible of the activation
of other three systems: (a) C, via activation of C1r and C1s; (b) inflammatory kallikrein-kinin pathway by converting pre-kallikrein into active plasma kallikrein, inducing
the cleavage of both FXII into FXIIa and high molecular weight kininogen to BK; and (c) fibrinolytic system by plasma kallikrein activation, in turn cleaving plasminogen
into plasmin, an enzyme that degrades fibrin clots. Several coagulation system enzymes, including thrombin, FIXa, FXa, FXIa, and kallikrein, directly activate C5.
Kallikrein also activates C3 and factor. ACE, Angiotensin-converting enzyme; C1-INH, C1-inhibitor; FB, Factor B.
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Complement and Thrombin Generation
MASPs associated with surface-bound MBL or ficolins exert their
activity also in the coagulation process by cleaving coagulation
factors, despite a slower kinetics as compared to coagulation
proteases (27). MASP-1 and MASP-2 directly cleave prothrombin
causing thrombin generation; MASP-1 is also able to cleave
fibrinogen to generate fibrin monomers. Furthermore, MASP-1 is
able to induce the formationofFXIIIa, afibrin stabilizing factor, and
that of thrombin-activatable fibrinolysis inhibitor (TAFI), an
attenuator of the fibrinolytic rate. Among thrombin inhibitors,
C1-INHand anti-thrombin III+heparin exert their inhibitory effect
also onMASP-1 andMASP-2, whereasa2-macroglobulin does not
abolish lectin pathway activation (37). The key TF Pathway
Inhibitor (TFPI), expressed by microvascular ECs, can interfere
with the lectin pathway by blocking MASP-2 (106). In addition to
MASPs, sC5b-9 can also be involved in thrombin generation and in
the flipping of EC and platelet phospholipid membranes,
supportingprothrombinase assembly (FXaandFVabinding) (107).

It has been shown that thrombin can cleave C3 and C5,
producing biologically active anaphylatoxins, C3a and C5a
(108). Within the context of an overall increased thrombin
generation, as observed in COVID-19, this mechanism accounts
for the amplification of the feed-forward loop between C and
coagulation, linking both cascades viamultiple direct interactions.
Reciprocal Regulation of Complement
and Coagulation Pathways
Several C factors are able to control different steps of the
coagulation pathway and vice versa (Figures 1, 5). C1-INH
can exert a dual inhibitory function on C and coagulation, by
respectively inhibiting C1 complex and FXIIa, which is also
responsible for C activation through C1r and C1s; regulation of
contact system is also C1-INH-dependent through inactivation
of plasma kallikrein (109). Furthermore, C1-INH is able to
inhibit FXIa (110) and thrombin (111). Interestingly, the
interaction of SARS-CoV proteins with C1-INH during viral
infection determines C1-INH blockage (112, 113). Low C1-INH
serum levels were shown as a predictive factor of progression to
respiratory distress in COVID-19 (114).

Among coagulation regulators, an important cross-talk is
represented by thrombomodulin (TM), a cell-bound regulator
with anticoagulant properties, which can interact with FH
enhancing its regulatory activity and consequently accelerating
the degradation of C3b into inactive iC3b (115). Several
coagulation system enzymes, such as thrombin, factor IXa, factor
Xa, factor XIa, and kallikrein, are responsible for direct C5
activation. Kallikrein also activates C3 and factor B. In animal
models of arterial and venous thrombosis, plasmin also exerts C5
convertase activity (116) (Figure 5). TAFI, also known as plasma
carboxypeptidase B2 or R, suppresses fibrinolysis in physiological
conditions. Following activation by thrombin/TM and/or plasmin,
it can inactivate C3a and C5a, potentiating the action of the
constitutive carboxypeptidase N as a supplementary inhibitor
(117). Interestingly, markedly elevated circulating TAFI levels are
reported in COVID-19 patients, being implicated inmicrovascular
fibrin deposition (118).
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Complement-Platelet Crosstalk
Platelet activation is also responsible for the release of C
components, including C1q, C3, C4, and C5b-9 (119, 120).
C3a, C5a and, to a lesser extent, C4a, promote platelet
aggregation and activation through their binding to cognate
receptors C3aR or C5aR1 and C5aR2 (121, 122). Despite the
absence of a specifically recognized receptor for C4a, it is able to
bind to PAR1 and PAR4, participating in platelet activation.
Activated platelets expose P-selectin, which is a receptor for C3b,
providing a site for the assembly of the alternative pathway C3
convertase (123). Concurrently, C5a and the C5b-9 induce the
expression of P-selectin and vWF by ECs (105), promoting
platelet adhesion and aggregation, and release of TM from cell
surface (124), triggering the coagulation cascade.

MAC is able to activate platelets and promote platelet
aggregation (107, 125). The assembly of MAC on human
platelets also results in a dose-dependent increase in the binding
of FVa and FXa, which increases platelet prothrombinase activity.
PRE-ECLAMPSIA IN COVID-19 AND THE
ROLE OF COMPLEMENT SYSTEM

PE is a frequent pregnancy-related disease (2-6% incidence in
healthy nulliparous women), contributing to 20-25% of perinatal
mortality, characterized by the onset of hypertension, proteinuria
and multi-organ impairments. PE has been defined by the
International Society for the Study of Hypertension in Pregnancy
as the manifestation of arterial hypertension and proteinuria
(300mg/d) occurring after 20 weeks of gestation or as new-onset
arterial hypertension combined with organ dysfunctions, such as
renal failure, liver dysfunction, hematological or neurological
abnormalities, intrauterine growth restriction, or uteroplacental
insufficiency (126, 127). Approximately 10-20% of women with
severe PE develop HELLP (hemolysis, elevated liver enzymes and
low platelets) syndrome as a further complication (128).

From an etiological perspective, PE is commonly distinct in
early onset PE (EOPE) and late onset PE (LOPE), occurring
before or after 34 weeks of gestation, respectively. EOPE is
associated with poor trophoblast invasion and inadequate
arterial remodeling and its pathophysiology is considered to be
related to the placental development (129, 130). In physiological
placentation, the maternal spiral arteries are invaded by
extravillous trophoblast cells, which through a process named
endovascular migration, gradually replace decidual ECs, leading
to spiral artery remodeling (131–133) (Figure 6). When this
process is impaired, it causes placental hypo-perfusion, tissue
ischemia, vascular endothelium dysfunction, microangiopathic
thrombosis, oxidative stress, and inflammatory response (134–
136). In general, the cause of PE can be ascribed to an excessive
maternal systemic inflammation in response to pregnancy
through both innate and adaptive immune activation (137).
Excessive inflammation during PE has also been confirmed
through the measurement of procalcitonin, as a marker of
sepsis or severe inflammation (138). The cause of the LOPE is
more debatable, but the basal inflammatory state of the mother
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and the incompatibility between maternal supply and metabolic
needs of the developing fetus (130) are considered key
precipitating factors.

Important Contribution of the
Complement System in the Pathogenesis
of Pre-Eclampsia
The C is an important component of the inflammatory process
in PE (17, 18). Increased levels of C components and their
activation products, including C1q, C3a, C5a and C5b-9
complex, in the circulation of PE patients as compared to
normal pregnancy have been reported (17, 139–141), although
Frontiers in Immunology | www.frontiersin.org 10
the results in this field are quite discordant (141). C activation
products have also been found in the urine of severe PE patients
and are considered a marker of C-mediated renal damage (142).
Elevated levels of the activation fragment Bb of the alternative
pathway have been proposed as a predictive marker for the
development of PE (143). Furthermore, increased C activation
was demonstrated in several models of PE (144–146).

Pre-Eclampsia: Diagnostic Criteria
Despite not sharing common pathological pathways, EOPE and
LOPE are diagnosed by mutual clinical criteria (147).
Uteroplacental under-perfusion, measured by the uterine artery
FIGURE 6 | Schematic representation of the placenta architecture in pre-eclampsia (PE). Overview of the structural organization of the placenta and feto/maternal
interface during the abnormal placentation in PE. The diagram was designed using the Blender 3D (Blender Foundation, Stichting Blender Foundation,
Buikslotermeerplein, Amsterdam, the Netherlands). Edited with permission from Balduit et al. (133).
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pulsatility index (UtAPI), induces placental ischemia, which in
turn, gives rise to oxidative-inflammation cascade activation,
increased production of antiangiogenic factors, such as soluble
fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng),
and reduced production of angiogenic factors, such as placental
growth factor (PlGF) (148, 149), both in the intrauterine
environment and maternal endothelium. Interestingly, low
maternal circulating levels of PlGF are measured prior to the
clinical manifestation of PE and intrauterine growth restriction,
as a marker of abnormal placentation (150). sFlt-1 is a soluble
form of the vascular-endothelial growth factor (VEGF) and a
receptor for PlGF. In the maternal circulation, sFlt-1 is able to
bind to free VEGF and PlGF, reducing their bioavailability for
membrane receptors (151). The use of a diagnostic test based on
sFlt-1/PlGF ratio for the prediction of the short-term risk of PE
may be a useful tool for patient management (152). In fact, with a
sFlt-1/PlGF ratio of ≤ 38 PE occurrence in the next week can be
excluded with a negative predictive value of 99.3% (97.9% for
ruling out within 2 weeks), whereas a ratio of >38 is associated to
an enhanced risk of developing PE in the next 4 weeks (152, 153).

Pre-Eclampsia in COVID-19 Pregnancy
Despite similar clinical manifestations between pregnant and
non-pregnant women with COVID-19 (154), an increased rate
of preterm delivery, PE, and cesarean section has been noticed in
COVID-19 pregnant women (155–158). The INTERCOVID
prospective longitudinal study showed an increased incidence
of PE in pregnant women with COVID-19 (8.1%), as compared
with non-diagnosed COVID-19 (4.4%), especially in nulliparous
women; the association appeared to be independent of
preexisting conditions and other risk factors, such as obesity,
diabetes and hypertension (159). Mendoza et al. reported that a
PE-like syndrome could be manifested in some pregnancies with
critical COVID-19, according to the presence of severe
pneumonia (160). The authors used the term PE-like
syndrome to highlight some diverging aspects as compared to
classical PE; in their cohort' the PE-like syndrome patients
showed PE clinical signs and symptoms but normal
parameters, such as sFlt-1/PlGF ratio, UtAPI and LDH <600
IU/l. This information could improve the management of these
pregnancies since PE-like syndrome alone may not be considered
as an obstetric indication for delivery (160).

Differential diagnosis in COVID-19 pregnant women
developing hypertension, thrombocytopenia, proteinuria, as
well as increased levels of liver enzymes, might be challenging,
since misdiagnosis may occur due to COVID-19 and PE
overlapping clinical features (147). In fact, a recent study
suggested a two-fold increased risk of developing hypertensive
disorders of pregnancy in patients who manifested COVID-19,
especially early in their pregnancy (161); this is considered as a
consequence of COVID-19-mediated modulation of placental
ACE2 expression (162).

A common denominator in the pathophysiology of PE or PE-
like syndrome and COVID-19 is the endothelial injury, due to
disrupted placentation in PE (135, 163) and to directly or
indirectly SARS-CoV-2-mediated damage to ECs in COVID-19
(71, 96, 164, 165). To clarify the extent of endothelial injury, the
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evaluation of two well-studied markers, such as the
antiangiogenic factor sFlt-1 and the angiogenetic factor PlGF
(166–168) can be useful. An imbalance between angiogenic and
anti-angiogenic factors has been observed in COVID-19. Negro
et al. indicated that an increase in sFlt-1 levels could be
considered a good biomarker to predict survival and
thrombotic events in COVID-19 patients (169). Smadja et al.
considered PlGF increase as a relevant predictive factor for in‐
hospital mortality to discriminate COVID‐19 severity (170),
whereas Giardini et al. have used sFlt-1/PlGF ratio as a tool to
stratify the severity of endothelial dysfunction (171).
Interestingly, in PE-like syndrome, Mendoza et al. noted a
normal sFlt-1/PlGF ratio and UtAPI assessment (160),
suggesting normal values of sFlt-1/PlGF and UtAPI in
COVID-19 patients with normal early phase of placental
implantation, despite their symptomatic manifestations. Thus,
an interplay between two different phenomena can be proposed
in the clinical setting of SARS-CoV-2-infected obstetric patients
at risk of developing COVID-19. At one hand, COVID-19 may
mimic PE, particularly in early pregnancy; on the other hand, an
already established PE may act as a risk factor for the
development of severe or critical COVID-19. These two
separate clinical conditions merit further investigation when
clinical and epidemiological criteria indicate patients at risk of
one or the other, or both conditions (172).

Common Pathophysiology of Pre-Eclampsia
and Severe COVID-19
Endothelial damage can be responsible formulti-organ dysfunction
in both PE and COVID-19 (165, 173), as well as for an augmented
risk of non-cardiogenic pulmonary oedema and venous
thromboembolism (165). An increased hypercoagulable state
characterizes PE women as compared to normal pregnancies,
showing a rise in factor VIII, vWF, thrombin-antithrombin
complex, D-dimers, soluble fibrin and TM levels (174). At the
same time, thefibrinolytic systemalsoplaysan important role inPE,
considering the significant increase in plasma plasminogen
activator inhibitor type-1 (PAI-1) (174, 175). COVID-19 is also
linked to a thrombogenic coagulopathy with a wide range of
manifestations. COVID-19 patients commonly manifest mild
thrombocytopenia (176) and increased D dimer levels (177) in
accordance with disease severity, whereas other coagulation
measurements are more variable (178, 179). Another feature
shared between PE and COVID-19 patients is represented by an
overall inflammatory microenvironment, characterized by an
increase in serum and placental levels of pro-inflammatory and
decrease of anti-inflammatory cytokines (180, 181).

In the context of endothelial damage, three commonplayers have
been proposed in PE and severe COVID-19 pathophysiological
mechanisms: NETosis, anti-phospholipid antibodies (aPLAs) and
a-1-antitrypsin (182). However, only the first two aspects concern
an engagement of C.

There is an overwhelming case for the involvement of
neutrophil extracellular traps (NETs) in immunothrombosis
through several mechanisms: (a) NETs bind to vWF and
recruit platelets; (b) NETs are able to trigger platelet activation;
(c) NETs binding to TF provokes extrinsic pathway activation
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and thrombin generation; (d) Cleavage induced by neutrophil
elastase and other neutrophil serine proteases inactivate
anticoagulants, including TFPI and TM; and (e) NETs can
directly support FXII activation mediated by platelet-derived
polyphosphates (183). Interestingly, NETs have also been
reported as contributors to PE pathogenesis, usually associated
with maternal vasculitis, maternal-fetal interface hemorrhage
and laminar decidual necrosis (184), and COVID-19-related
endothelial damage and immunothrombosis through platelet-
neutrophil interactions (185). NETs formation due to SARS-
CoV-2 infection contains C3, factor B and properdin, triggering
and stabilizing the alternative pathway convertase (67). An
hyper-inflammatory immune state in response to abnormal
neutrophil activation and NET formation, together with
excessive or deregulated C activation, contributes to the well-
documented clinical manifestations observed in severe COVID-
19 (186). Moreover, NETs induce an excessive production of
thrombin and the subsequent generation of C3a and C5a (108,
186). Hence, a feed-forward loop beginning with C activation
may proceed with NETosis, consequently increased thrombin
production, further stimulation of the C, and enhanced NET
formation (67).

Another potential link between PE and COVID-19 is the
presence of anti-phospholipid antibodies (aPLAs), since they
have been indicated as an important risk factor for PE,
especially EOPE (187). A recent study has reported elevated
aPLA levels in nearly 52% of COVID-19 patients (188). In
placenta, aPLAs promote platelet and EC activation, directly
inducing procoagulant activity by interacting with factors of the
coagulation pathway. This activity, however, was greatly reduced
in C3 gene knock-out mice (189). Anti-b 2-glycoprotein-I, the
primary pathogenic antibody in anti-phospholipid syndrome
(190), is associated with an increased C activation (191),
amplifying the production of other mediators of effector cell
activation, including C3a, C5a, and MAC, with consequent
thrombosis, tissue hypoxia, and inflammation within the placenta.

Interestingly, several findings suggest that genetic
susceptibility may be involved in the dysregulation of C
activation frequently observed in the progression to moderate/
severe form of COVID-19 and in PE. Pathogenetic mutations or
deletions in C factor and regulatory genes, which predispose to
an increased C activation, have been identified both in pregnant
women with PE/HELLP syndrome and in patient with COVID-
19. C gene mutations were attributed to FH, MCP, FI and C3
(192–194). In COVID-19, gender differences were also observed
in C-related variants, with women more genetically susceptible
to C dysregulation (194).
THERAPEUTIC CONSIDERATIONS

Emerging evidence suggests that C is constantly activated in
severe COVID-19 as well as PE; due to its ubiquity, potency and
rapidity, it is reasonably considered as a potential drug target.

Atpresent, theonly effective treatment forPEremainsparturition,
since therapeutic approaches are mainly symptomatic. However,
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several preventative therapies are effective if administered early in the
pregnancy (before 16 weeks of gestation): Low-dose Aspirin (LDA)
and low-molecular weight heparin (LMWH) are the most common
preventive treatments for PE. Both these drugs also modulate the C
activity: LDA is able to down-regulate the levels of C3 and factor B
expression in placenta (195, 196), whereas LMWH inhibits the
activation of the alternative pathway and directly C5a (197–199).
For its anti-thrombotic, anti-inflammatory, analgesic, and anti-
pyretic effects, aspirin was also proposed in COVID-19 treatment,
despite its clinicaluse forpreventiveor curativepurposeshasnotbeen
accepted yet (200–202). According to the beneficial anticoagulation
effects of heparin observed in COVID-19 patients, with moderate or
severe illness (203), pregnant women with severe COVID-19 should
undergo thromboprophylaxis during hospitalization and at
least until discharge (155). Moreover, in pregnant women with
COVID-19, the use of steroids (dexamethasone followed by
methylprednisolone) is recommended if clinically indicated (155).
Several studies have reported the ability of methylprednisolone to
inhibit C activation, particularly by acting on alternative pathway
amplification (204, 205).

Other drugs are potentially used to prevent PE, especially
targeting immunological conditions. For instance, it is well
known that systemic lupus erythematosus (SLE) and anti-
phospholipid Syndrome (APS) predispose to a higher risk of
developing PE. Hydroxychloroquine (HCQ), an antimalarial
drug, is often used in the treatment of SLE (206), resulting in a
lower incidence of PE (196, 206). The mechanisms of action of
HCQ on the C is debatable, so is its efficacy in the treatment of
COVID-19. Most clinical trials have failed to demonstrate the
efficacy of HCQ treatment in COVID-19 (207).

Recently, Lefkou et al. reported that the use of LDA+LMWH
in addition to pravastatin (HMG-CoA reductase inhibitor) in
APS-affected women at risk of developing PE reduced the onset
of adverse outcomes, increasing placenta perfusion, reducing PE
onset and improving neonatal outcomes (208). In murine
studies, pravastatin inhibited C activation (C5a) by increasing
the expression of C inhibitor, DAF (209).

The first C inhibitor to be approved for clinical trials was
eculizumab, a monoclonal antibody able to block C5 and decrease
C5a and C5b-9 formation (210). The use of eculizumab for C5
inhibition is a reasonable therapeutic option also in PE (196, 210),
as suggested by a case report of a patient with severe PE/HELLP at
26 weeks of gestation, showing an improvement of woman and
foetus clinical endpoints after eculizumab treatment (pregnancy
was prolonged by 17 days, resulting in a reduction of
neonatal morbidity).

There are currently 13 clinical studies investigating the effect
of C inhibitors in the treatment of severe forms of COVID-19,
but none of them include pregnant patients. These are mainly C3
and C5 inhibitors, including zilucoplan, AMY101, APL-9,
eculizumab, and ravulizumab (211–214). In particular,
eculizumab and ruxolitinib (JAK1/2 inhibitor) treatment
resulted in clinical improvement within 3 days; this may be
also due to their inhibitory effect on pathways responsible for
local and hepatic C synthesis, such as NF-kB and STAT1/2 (215).
Compstatin-based C3 inhibitor, AMY-101, showed a satisfactory
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efficacy in the treatment of severe COVID-19 pneumonia (63,
212). The lectin pathway inhibitor, narsoplimab, which exerts
its activity by blocking MASP-2, has been shown to prevent
EC damage and thrombotic microangiopathy; recovery and
survival was observed in all COVID-19 patients treated with
narsoplimab (216).

Despite the promising results in clinical trials, the potential
use of both C3- and C5-targeted therapies in COVID-19 patients
is undermined by some limitations as comparted to selective
inhibitors (217). First, the relevance of C3 inhibitors is
dependent on the timing: blocking the activation of all three C
pathways may undesirably reduce viral clearance during the early
disease, whilst they may be useful in advanced phases preventing
uncontrolled C activation (77). On the other hand, blocking C5
activation prevents the proinflammatory and prothrombotic
actions of the terminal products of the C cascade (C5a and
C5b-9) activated by SARS-CoV-2, whilst preserving the activity
of early C components involved in viral clearance and activation
of the adaptive immune response (218); although, this exposes
patients to the risk of developing other infections, especially
bacterial (219).

Thus, a selective blockage of C5a (vilobelimab) or C5aR
(avdoralimab) could be more beneficial since it preserves the
formation of C5b-9 complex as a crucial player in pathogen
elimination (220, 221). The blockage of C5a-C5aR1 axis limits
the infiltration of myeloid cells in damaged organs, hampers the
production of pro-thrombotic factors by immune cells, platelets,
and ECs, as well as prevents the excessive lung inflammation and
endotheliitis associated with acute respiratory distress syndrome
in patients with COVID-19 (58, 64, 222).

Another interesting therapeutic option under clinical
investigation is the recombinant human C1–INH conestat alfa,
which yielded encouraging results (223). Due to its multifaceted
inhibitory action, C1–INH prevents all three C pathways’
activation (36–38, 113) and inhibits components of the
coagulation cascade, plasmin and kallikrein, reducing C-driven
inflammation and coagulation (113).
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CONCLUSIONS AND PERSPECTIVES

A link between PE and COVID-19 has clearly emerged due to
overarching pathophysiological mechanisms involved, which are
triggered by an interplay between C and coagulation. Mothers or
women who have recovered from COVID-19 need to be
monitored closely during subsequent pregnancies for immune
deviations. A very important question that is not yet solved and
described in the use of C inhibitors for COVID-19 patients is the
definition of the right window of opportunity for treatment. In
these high-risk patients, with a major genetic susceptibility
associated to complement polymorphisms, genetic testing
might be an important tool aiming at intensified monitoring
and early initiation of specific treatment with C inhibitors.
Furthermore, the exact role of the C in severe COVID-19
development is yet to be clarified, which includes C-driven
cytokines and viral protein activation of C–coagulation crosstalk.
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GLOSSARY

ACE2 angiotensin-converting enzyme 2
aPLAs anti-phospholipid antibodies
APS anti-phospholipid syndrome
BK bradykinin
C complement system
C1-INH C1-inhibitor
COVID-19 coronavirus disease 2019
CR1 complement receptor 1
DAF decay accelerating factor
DAMPs damage-associated molecular patterns
EC endothelial cell
EMMPRIN extracellular matrix metalloproteinase inducer
EOPE early onset pre-eclampsia
F factor
HCQ hydroxychloroquine
HELLP hemolysis, elevated liver enzymes and low platelets
iTCC inactive terminal complement complex
LDA low-dose aspirin
LMWH low-molecular weight heparin
LOPE late onset pre-eclampsia
MAC membrane attack complex
MASPs MBL-associated serine proteases
MBL mannan-binding lectin
MCP membrane cofactor protein
MERS middle east respiratory syndrome
NETs neutrophil extracellular traps
PAI-1 plasminogen activator inhibitor type-1
PAMPs pathogen-associated molecular patterns
PARs protease-activated receptors
PE pre-eclampsia
PlGF placental growth factor
RAAS renin-angiotensin-aldosterone system
ROS reactive oxygen species
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
sEng soluble endoglin
sFlt-1 soluble fms-like tyrosine kinase 1
SLE systemic lupus erythematosus
vWF von Willebrand factor
TAFI thrombin-activable fibrinolysis inhibitor
TCC terminal complement complex
TF tissue factor
TFPI tissue factor pathway inhibitor
TM thrombomodulin
TMPRSS2 transmembrane serine protease 2
UtAPI uterine artery pulsatility index
VEGF vascular-endothelial growth factor
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