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The morbidity and mortality of autoimmune diseases (Ads) have been increasing
worldwide, and the identification of novel therapeutic strategies for prevention and
treatment is urgently needed. Sirtuin 1 (SIRT1), a member of the class III family of
nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been
reported to participate in the progression of several diseases. SIRT1 also regulates
inflammation, oxidative stress, mitochondrial function, immune responses, cellular
differentiation, proliferation and metabolism, and its altered functions are likely involved
in Ads. Several inhibitors and activators have been shown to affect the development of
Ads. SIRT1 may represent a novel therapeutic target in these diseases, and small
molecules or natural products that modulate the functions of SIRT1 are potential
therapeutic agents. In the present review, we summarize current studies of the
biological functions of SIRT1 and its role in the pathogenesis and treatment of Ads.
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INTRODUCTION

Autoimmune diseases (Ads) are characterized by the dysregulation of the immune system, which
results in the overproduction of autoantibodies, an imbalance in tolerance to self-antigens, and
immune-mediated end-organ damage (1). Multiple types of Ads seriously affect the quality of life
and labour ability and impose a substantial economic and psychological burden on society and
families. To date, the etiology and pathogenesis of these diseases have remained invariably
unknown, and complex and diverse elements associated with the environment, genetic risk
factors, mental factors, and infection, which can cause an imbalance in autoimmune processes
and immunological tolerance (2–4).

Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase,
has been reported to participate in regulating various biological processes, such as energetic
homeostasis (5), inflammation, oxidative stress (6), mitochondrial biogenesis (7), cell apoptosis
(8), and autophagy (9). There have been preclinical and clinical studies indicating the significance of
SIRT1 in the pathogenesis of Ads, including rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE), inflammatory bowel disease (IBD), multiple sclerosis (MS), etc. In women
Hashimoto’s disease patients with type 1 diabetes mellitus, SIRT1 contributed to the pathogenesis of
early cardiac dysfunction (10). Agathe et al. performed microarray experiments to identify SIRT1 as
a relevant gene candidate associated with pathological angiogenesis in autoimmune arthritis mice
org November 2021 | Volume 12 | Article 7791771
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(11). The deletion of SIRT1 in endothelial promoted a
proliferative, proapoptotic and activated state of endothelial
cells through the acetylation of p53 and p65, and resulted in
the progress of proangiogenic capacities. The deficiency of SIRT1
in endothelial cells delayed the resolution of experimental
arthritis. DNA hypomethylation was the first epigenetic
pattern determined in SLE patients. The overexpression of
SIRT1 was found in CD4+ T cells of a murine lupus model
(12), however, SIRT1-null mice showed with immunoglobulin
deposition in the kidneys and a high level of serum antinuclear
antibody (13). The activator of SIRT1 plays a protective role in
pristane-induced lupus mice, with the alleviation of proteinuria
and decreased deposition of immune globulin in the kidneys
(14). SIRT1 also may represent a biomarker of relapses and a
potential target for therapeutic intervention in MS (15). The
decreased expression of SIRT 1 has been found to increase the
levels of proinflammatory cytokines that are being involved in
the pathogenesis of IBD. On the contrary, the reduced expression
of SIRT1 1 maintains the gastrointestinal barrier in IBD (16).

SIRT1 is a promising candidate molecule in the treatment due
to different physiological and pathological processes in Ads. In
the present manuscript, we will summarize and discuss the
functions of SIRT1 in Ads and the therapeutic potential of
targeting SIRT1 (Table 1).
SIRTUINS AND SIRT1

Acetylation, an evolutionarily conserved posttranslational
modification of lysine residues, mainly facilitates chromatin
formation and gene transcription. Protein deacetylases
eliminate the effect of protein acetyltransferases by removing
the acetyl groups added to the lysine residues (40). These
enzymes are called histone deacetylases (HDACs), which are
divided into four classes in mammals (41). Class III HDACs or
silent information regulator 2 (Sir2) are NAD+-dependent
HDACs that modify histone proteins and nonhistone proteins
via deacetylation (42). Sirtuins, a family of highly conserved
NAD+-dependent HDACs, share homology with Sir2 of the yeast
Saccharomyces cerevisiae and show no sequence similarity to the
other HDACs (43). According to existing studies, humans have 7
sirtuin paralogues, SIRT1–7, characterized by different binding
targets, tissue specificities, functions, and localization (44, 45).
SIRT1, SIRT6, and SIRT7 are mainly distributed in the nucleus
(46, 47). SIRT2 is mainly found in the cytoplasm. SIRT1 and
SIRT2 also share nuclear-cytoplasmic shuttling (48). SIRT3,
SIRT4, and SIRT5 are located in mitochondria, and SIRT3 is
also expressed in the nucleus under normal conditions (49–51).
SIRT1, the protein with the largest molecular mass (120 kDa)
and member of the sirtuin family with the highest amino acid
sequence homology with yeast SIR2 (52), has been most widely
studied (53).

SIRT1, located on chromosome 10q21.3, consists of 8 introns
and 11 exons. The structure of the SIRT1 protein contains 747
amino acid residues and a catalytic core region flanked by
variable NH2- and COOH-terminal domains consisting of
Frontiers in Immunology | www.frontiersin.org 2
approximately 250 amino acids (54). The variety of terminal
domains is associated with the diversity of sirtuin functions. This
domain forms the hairpin structure that compliments with the b
sheet of the NAD+-binding domain, and the NH2-terminal
domain potentiates the catalytic activity (55). In addition,
extensions of the NH2- and COOH-termini influence the
functions of SIRT1, which are the targets of posttranslational
modifications (56). Through the action of NAD+, SIRT1 removes
the acetyl moieties of ϵ-acetyl-lysine residues of histones and
other target proteins, thereby producing 2’-O-acetyl-ADP-
ribose, nicotinamide, and the deacetylated substrate (57, 58).
SIRT1 not only deacetylates lysine residues of histones, such as
lysine 16 of H4, lysine 26 of H1, and lysine 9 of H3, but also
regulates the activity of a number of transcription factors via
deacetylation (59). SIRT1 epigenetically silences these target
proteins at the transcriptional or posttranslational level, such
as forkhead box class O (FoxOs), p53, nuclear factor-kB (NF-
kB), nuclear factor E2-related factor 2 (Nrf2), HIF1a, AMP-
activated protein kinase (AMPK), b-catenin, mitochondrial
peroxisome proliferator-activated receptor g coactivator 1
alpha (PCG-1a), proliferator-activated receptor gamma
(PPARg), and Notch. SIRT1 participates in a series of
pathological and physiological processes, including cell
metabolism and DNA repair. The regulation of diverse
physiological signalling pathways and targets by SIRT1 makes
it a promising therapeutic target. However, the specific
mechanism of SIRT1 in Ads is unknown.
IMMUNOLOGICAL FUNCTIONS OF SIRT1

Due to continuous exposure to a variety of pathogenic agents,
such as bacteria, viruses, and fungi, the body defends against
these potentially fatal infections through a series of highly
regulated responses known as innate and adaptive immunity.
The targets of SIRT1 can affect immune cells and immune
responses to modulate the progression of chronic autoimmune
and inflammatory diseases (Table 2).
INNATE IMMUNITY

Circulating monocytes from the blood enter the tissue and then
develop into macrophages after differentiation and maturation.
These phagocytes affect the immunopathogenesis of Ads. In
SIRT1-deficient macrophages, hyperacetylation of NF-kB p65
results in increased levels of proinflammatory cytokines, such as
tumour necrosis factor (TNF)-a and interleukin (IL)-1b,
compared to the control (60). Furthermore, mice lacking
SIRT1 in macrophages have high levels of activated
macrophages in the liver and adipose tissues, which promote
insulin resistance and metabolic syndrome. Clearly, p50/p65 is
located in the cytoplasm mainly through an interaction with the
inhibitor protein kB (IkB), and the activation of macrophages
causes the degeneration of IkB, transferring NF-kB to the
nucleus and finally promoting the expression of inflammatory
November 2021 | Volume 12 | Article 779177
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TABLE 1 | The role of SIRT1 modulation on autoimmune diseases.

Diseases Animal
models

Tissue/Cell types Approaches Main mechanisms and effects References

SLE MRL/lpr mice Kidney/
splenic CD4+ T
cells

SIRT1-siRNA SIRT1 expression was suppressed and global histone H3 and H4 acetylation levels
were elevated transiently in CD4+ T cells. Serum anti-dsDNA antibody level, renal IgG
deposition, and renal pathological scores, tubulointerstitial scores, decreased
significantly.

(17)

Pristane
induced
lupus
BALB/c mice
model

Kidney/
splenic CD4+ T
cells and CD19+ B
cells

Resveratrol Proteinuria, immunoglobuin depositon in kidney, and glomerulonephritis as well as
IgG1 and IgG2a in serum decreased. CD4 IFNg+ Th1 cells and the ratio of Th1/Th2
decreased. CD69 and CD71 expression on CD4+ T cells as well as CD4+ T cell
proliferation was inhibited, CD4+ T cell apoptosis increased.

(18)

SIRT1-null
mice

Kidney SIRT1 knockout The immunoglobulin in the kidney was concentrated in the glomeruli. The frequency of
anti-nuclear antibody was much higher.

(19)

RA — RA-FLSs Silence of
SIRT1

FLSs proliferation and leukocytic adhesion to FLSs reduced. (20)

— RA-FLSs Overexpression
of SIRT1

FLSs proliferation, migration, and invasion was inhibited. RA-FLS apoptosis and
caspase-3/8 activity increased.

(21)

— Peripheral blood
monocytes/ RA-
FLSs

Knockdown of
SIRT1

Apoptosis of FLSs increased. IL-6 and IL-8 in FLSs reduced. Lipopolysaccharide-
induced levels of TNFa in monocytes reduced.

(22)

— RA-FLSs Resveratrol Phosphorylation and acetylation of p65, c-Jun, and Fos was inhibited, and expression
of COX-2 reduced.

(23)

CIA mice T cells Resveratrol The incidence and severity of CIA reduced. The translocation of c-Jun into the nucleus
upon T cell activation was inhibited

(24)

CIA rats Synovial tissue/ rat
synovial cells

Resveratrol Levels of cell apoptosis were enhanced. Cell proliferation was inhibited. MAPK
signaling, ROS accumulation, HIF-1a-mediated angiogenesis was inhibited.

(25)

K/BxN
serum
transfer
arthritis

Ankle tissue/
BMMs

mSIRT1 KO IL-1, TNF-a, TRAP-positive osteoclasts, and F4/80+ macrophages in the ankles
increased. Hyperacetylated p65 and increased NF-kB binding activity in BMMs, with
increased M1 polarization, migration, pro-inflammatory cytokine production, and
osteoclastogenesis.

(26)

CIA mice T cells and DCs mSIRT1 KO The mSIRT1 KO mice exhibited less severe arthritis, which was less destructive to the
joints. ROR-gT, Th1 and Th17 cells, and CD80- or CD86-positive DCs reduced. The
DCs showed decreases in T-cell proliferation and the Th1/Th17 immune response.

(27)

IBD DSS-induced
colitis

Colons Resveratrol TNF-a, IL-6, IL-1b, IFN-g and IL-17 increased. The expression of TIMP-3 increased
and TACE was inhibited.

(28)

DSS-induced
colitis

Colons/
macrophages and
Caco-2 cells

SRT1720 Disease activity index, histological score, inflammatory cytokine levels, and apoptotic
cell rate in colon tissues decreased. Levels of occludin and ZO-1 increased. The
expression of GRP78, CHOP, cleaved caspase-12, cleaved caspase-9, and cleaved
caspase-3 in Caco-2 cells and the colon tissues reduced.

(29)

Radiation-
induced
inflammatory
bowel
disease

Intestine tissues Resveratrol The level of bowel inflammation reduced. The activity of NLRP-3 inflammasome was
inhibited.

(30)

C57BL/6 IL-
10 deficient
mice

Colon tissues None The levels of TNF-a increased and expression of SIRT1 decreased. The activation of
the autophagy in mice from all stages.

(31)

Chemically-
induced
colitis (TNBS
or oxazolone)

Inflamed IBD
mucosa

Cay10591 The activation of NF-kB and inflammatory cytokine synthesis was inhibited. (32)

DSS-induced
colitis

T cells from
spleens
and lymph nodes

EX-527 Weight loss and increased iTreg formation. (33)

MS EAE mice Optic nerve and
RGC

Sirtinol/
SRT501

SIRT1 activators, SRT501, significantly attenuated RGC loss in a dose-dependent
manner. This neuroprotective effect was blocked by sirtinol.

(34)

MHV-A59
induced MS.

Optic nerve
and RGC

SRTAW04 SIRT1 activating compounds prevent neuronal loss in viral-induced demyelinating
disease involves increasing mitochondrial biogenesis with reduction of oxidative stress.

(35)

EAE mice Optic nerve and
RGC

SRT501 Oral SRT501 prevented neuronal loss and neurological dysfunction during optic
neuritis, an inflammatory optic nerve lesion in EAE.

(36)

EAE mice Optic nerve and
RGC

Resveratrol Resveratrol prevented neuronal loss in this chronic demyelinating disease model. (37)

EAE mice Cerebellar tissue/
OPCs

Ex527 SIRT1 inhibition may help to expand the endogenous pool of OPCs without affecting
their differentiation.

(38)

(Continued)
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genes (74). In RAW264.7 macrophages, siRNA-mediated
knockdown of SIRT1 increased the expression of activated NF-
kB and inflammatory factors and cytokines (61). Imperatore
et al. reported an essential role for SIRT1 in the self-renewal of
Frontiers in Immunology | www.frontiersin.org 4
macrophages through the regulation of the cell cycle and
longevity pathways (62). Overexpression of SIRT1 in bone
marrow-derived macrophages increases their proliferative
capacity. Silencing and deleting the SIRT1 gene restricts the
TABLE 1 | Continued

Diseases Animal
models

Tissue/Cell types Approaches Main mechanisms and effects References

EAE mice Retina and optic
nerves

Overexpression
of SIRT1 within
RGCs

SIRT1 mediated significant preservation of the OKR. SIRT1 gene augmentation was
not able to suppress optic nerve inflammation or demyelination.

(39)

EAE mice Mononuclear cells
from spleen and
brain, and
peritoneal
macrophages

Resveratrol EAE symptoms were significantly alleviated.
Resveratrol protection against EAE is not associated with declines in IL-17+ T cells
but is associated with rises in IL-17+/IL-10+ T cells and CD4-IFN-g+ and with
repressed macrophage IL-6 and IL-12/23 p40 expression.

(34)

EAE mice Spinal cords Overexpression
of SIRT1

SIRT1 activator suppressed EAE clinical symptoms and prevented or altered the
phenotype of inflammation in spinal cords. Demyelination and axonal injury were
reduced.

(35)

EAE mice NAD+ NAD+ treatment could lessen the severity of EAE and suppress pro-inflammatory T
cell responses. SIRT1 pathway was activated in the NAD+-treated.

(36)
November 2021 | Volume 12 | A
ROS, reactive oxygen species; HIF-1a, hypoxia-inducible factor-1a; MAPK, mitogen-activated protein kinase; NF-kB, nuclear factor-kB; mSIRT1 KO, myeloid cell-specific SIRT1
knockout; CIA, collagen-induced arthritis; DCs, dendritic cells; DSS, dextran sulfate sodium; TACE, TNF-a converting enzyme; TIMP-3, Tissue inhibitor of metalloproteinase-3; BMMs,
bone marrow-derived monocytes/macrophages; ZO-1, zona occludens 1; GRP78, glucose-regulated protein 78; CHOP, CCAAT/enhancer-binding protein homologous protein; TNBS,
2,4,6-trinitrobenzenesulphonic acid; EAE, experimental autoimmune encephalomyelitis; RGC, retinal ganglion cell; OPC, oligodendrocyte progenitor cell; OKR, optokinetic response; NAD
+, nicotinamide adenine dinucleotide.
TABLE 2 | The Immunological Functions of SIRT1.

Immune cell
types

Treatment Activity
of SIRT1

Targets Effects References

Macrophages Knockout of
SIRT1

Deletion NF-kB p65 The expression of TNF-a, IL-1b increased. (60)

Resveratrol Elevated JNK and
IKK

The expression of TNF-a decreased. (61)

Nicotinamide Inhibition E2F1,
Myc,
FoxO1

Cell cycle progression and renewal was inhibited. (62)

siRNA Inhibition c-Fos, c-
Jun

The expression of COX2 and PGE2 decreased. (63)

Dendritic
cells

EX-527 Inhibition HIF1a The expression of IL-12 increased and TGFb-1 decreased. (64)
Cambinol/
sirtinol

Inhibition PPARg,
Th2

Allergic inflammation was inhibited. (65)

Knockout of
SIRT1

Deletion IRF1 IL-27 production and Th17 differentiation was suppressed. (66)

EX-527/
knockout of
SIRT1

Inhibition/
deletion

– Th2 cytokine production enhanced in vivo with EX-527. Inflammatory cytokine gene expression
and autophagy was attenuated in vitro with EX-527 and in vivo with SIRT-null.

(67)

CD4+ T cells Knockout of
SIRT1

Deletion Bclaf1 The levels of IL-2 increased and T cell apoptosis enhanced. (68)

EX-527 Inhibition RORgt The differentiation of Th17 cells and production of IL-17 was inhibited. (69)
Resveratrol/
SRT720

Elevated STAT3 Th17 differentiation was inhibited. (70)

Knockout of
SIRT1

Deletion mTOR,
HIF1a

Th9 cell differentiation was promoted and IL-9 levels increased. (71)

EX-527 Inhibition FoxP3 The differentiation and stability of Tregs was enhanced. (72)
B cells Knockout of

SIRT1
Deletion NF-kB

p65,
DNMT1

Increased AICDA levels, and the induction of antibody maturation. (73)
FOXOs, factor forkhead box protein Os; COX2, cyclooxygenase 2; PGE2, prostaglandin E2; TGF-b, transforming growth factorb; FOXP3, factor fork head box P3; IRF1, interferon
regulatory factor 1; RORg t, retinoid acid receptor-related orphan receptor gamma t; Bclaf1, B-cell lymphoma 2-associated factor 1; DNMT1, DNAmethyltransferase 1; AICDA, activation-
induced cytidine deaminase.
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self-renewal of macrophages. Moreover, SIRT1 inhibition
negatively regulates the G1/S transition, cell cycle progression,
and renewal, which are associated with the inhibition of E2F1
and Myc and the activation of FoxO1. Activator protein-1 (AP-
1), which is composed of c-Fos and c-Jun, is also regulated by
SIRT1 to affect inflammatory gene transcription. SIRT1 binds to
c-Fos and c-Jun and deacetylates c-Jun, thereby inhibiting the
transcriptional activity of AP-1 in peritoneal macrophages and
reducing AP-1-associated expression of inflammatory mediators,
including cyclooxygenase-2 (COX2) and prostaglandin E2 (63).

Dendritic cells (DCs) play a key protective role in promoting
antigen-specific responses by adaptive immune cells and in
producing a variety of chemokines and cytokines that recruit
immune cells into the target tissues following the invasion of
pathogenic microorganisms (75). SIRT1 regulates the generation
of cytokines, such as IL-12 and TGFb-1, by DCs through HIF1a
modulation, which potentially regulates the formation of helper
T (Th)-1 cells and regulatory T cells (Tregs) and the function of
DCs (64, 76). The inhibition of SIRT1 in DCs promotes the
differentiation of Th1 cells while restricting the differentiation of
Tregs. In a mouse colitis model, transferring naïve CD4+ T cells
into mice with DCs with a specific deletion of SIRT1 aggravated
colonic inflammation and promoted weight loss. In cocultures of
activated DCs with CD4+ T cells, pharmacological SIRT1
inhibition increases the Th1/Treg ratio and the expression of
IFN-g and IL-12 and reduces the expression of TGFb1 (77). In a
mouse asthma model, pharmacological inhibition of SIRT1
increases the activity of PPARg and inhibits Th2 cell responses
in allergic airway inflammation, which are associated with an
imbalance in the maturation and migration of lung DCs (65).
The loss of SIRT1 limits DC transfer into the draining lymph
nodes, leading to disrupted Th2 cell differentiation. In a mouse
OVA-induced airway inflammation model with DC-specific
deletion of SIRT1 (66), the maturation and migration of DCs
are reduced. Coculture of activated SIRT1-deficient DCs with
CD4+ T cells inhibits the differentiation of Th17 cells, which is
reversed by anti-IL-27 and anti-IFN-b antibodies. In respiratory
syncytial virus infection, SIRT1 promotes the activation of DCs
to produce efficient antiviral immune responses (78).
ADAPTIVE IMMUNITY

The role of SIRT1 in the adaptive immune response was mainly
identified to be a negative regulator of T cell function. The levels
of SIRT1 are increased in activated T cells and anergic T cells
compared to mature naïve T cells (67). Compared with wild-type
littermates, CD4+ T cells from SIRT1-deficient mice appear to
exhibit greater proliferation and cytokine production (67).
However, mice with a SIRT1 deletion do not present abnormal
T or B cells, suggesting that SIRT1 is unlikely to be a key factor
contributing to the activation of T or B cells. SIRT1 deficiency is
still an important factor associated with a higher risk of Ads (79).

The hyperactivation of T cells with a specific deletion of
SIRT1 is likely to be associated with the loss of inhibition of NF-
Frontiers in Immunology | www.frontiersin.org 5
kB and AP-1 activity. SIRT1 inhibits the AP-1 signalling
pathway mainly through the deacetylation of c-Jun, thereby
inhibiting T cell activation and proliferation. In addition to
directly regulating the activity of transcription factors, SIRT1
regulates related genes that affect T cell proliferation and
function. Bclaf1, initially identified as a Bcl-2-binding protein,
is considered required for T cell activation (80). SIRT1 is a
suppressor of Bclaf1 transcription that inhibits the activity of
NF-kB and deacetylates histone lysine residues. The differences
in Bclaf1 levels and Bclaf1 locus histone deacetylation between
wild-type animals and mice with systemic knockout of SIRT1 are
not significant in naïve, un-activated T cells (81). In the presence
of IL-6, IL-23, and TGFb, naïve T cells cultured with antigen-
presenting cells induce the generation of Th17 cells, which have
been proven to participate in the immunopathogenesis of certain
Ads (68). SIRT1 is expressed at high levels in Th17 cells and plays
an essential role in Th17 cell formation. SIRT1 binds to and
deacetylates the transcription factor retinoid acid receptor-
related orphan receptor gamma (RORgt), promoting the
differentiation of Th17 cells by activating IL-17 and repressing
the IL-2 promoter (82). Mice with a targeted deletion of SIRT1 in
T cells showed a reduction in Th17 differentiation through the
suppression of IL-17 expression and induction of IL-2
expression. Additionally, SIRT1 also limits Th17 differentiation
by deacetylating signal transducer and activator of transcription
(STAT)-3, which is required for RORgt transcription (69).
Several studies found that increasing rather than suppressing
SIRT1 may inhibit Th17 differentiation (70, 83). More evidence
is needed to prove the direct effect of SIRT1 on Th17
development. SIRT1 also functions as a negative regulator in
the differentiation of IL-9-secreting effector cells and Th9 effector
cells, which have been shown to possess antitumour and
antiallergic activities (84). Targeted deletion of SIRT1 in mouse
CD4+ T cells or silencing of SIRT1 in mouse or human T cells
promotes the differentiation of Th9 cells and IL-9 production,
whereas ectopic expression of SIRT1 inhibits IL-9 production
and Th9 differentiation (85). Additionally, IL-9 produced by
SIRT1-deficient T cells protects against tumours and increases
the levels of allergic pulmonary inflammation.

IL-2 plays an important role in the proliferation of activated T
cells and in preventing their apoptosis induced by the high-
affinity IL-2 receptor CD25 through the phosphoinositide-3-
kinase (PI3K)/Akt pathway to suppress FoxO1, 3, and 4 (71).
SIRT1 is a very important deacetylase of FoxO family members.
Normally, SIRT1 is likely to regulate the activation of T cells via
the deacetylation of FoxO proteins and the inhibition of FoxO
apoptotic signalling and the IL-2 signalling pathway.

SIRT1 regulates the acetylation and stability of FoxP3, a
crucial transcription factor involved in the differentiation of
Tregs (86). Hyperacetylation of FoxP3 diminishes its
polyubiquitination and increases its stability. The inhibition of
sirtuins downregulates the acetylation of FoxP3 and promotes
the ubiquitination and degeneration of FoxP3. In addition, the
Notch receptor in Tregs plays an essential role in the survival of
Tregs and is associated with the antiapoptotic effect of the
Notch1 intracellular domain. SIRT1 was shown to stabilize the
November 2021 | Volume 12 | Article 779177
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Notch1 intracellular domain proximal to the membrane to
promote Treg survival (87). However, in contrast, SIRT1
inhibition promotes the formation of FoxP3+ Tregs with
elevated immunosuppressive activity (88). Beier et al. reported
that conventional CD4+FoxP3- T cell-specific deletion of SIRT1
in mice rarely affected the numbers of T cells and their activation
and proliferation but increased the expression of FoxP3 and
suppressive activity of Tregs in vitro and in vivo (72). Compared
to wild-type mice, mice with specific deletions of SIRT1 in
FoxP3+ Tregs survived significantly longer with mismatched
heart allografts. Wild-type mice treated with SIRT1 selective
inhibitors (splitomicin and EX-527) showed similar results.
Another study reported that mice with a SIRT1 deletion and
mismatched renal allografts experienced longer survival than
wild-type mice (89). CD4+ T cells isolated from a cervical
heterotopic heart transplantation mouse model treated with
sirtinol (sirtuin inhibitor) showed significantly lower
expression of IL-17A and RORgt and higher expression of
FoxP3 (90). In vivo, sirtinol reduces the differentiation of Th17
cells and increases the proportion of Treg cells among
splenocytes. Additionally, co-transfection of SIRT1 with FoxP3
increases FoxP3 proteasomal degeneration, while SIRT1
inhibition increases FOXP3 transcriptional activity in human
Treg (91). SIRT1 inhibition might increase FoxP3 acetylation to
promote the production and functions of FoxP3+ Tregs and
inhibit the acetylation of RORgt and the differentiation of Th17
cells, thereby affecting the Th17/Treg ratio (92, 93). Nonetheless,
SIRT1-/- mice develop spontaneous and severe Ads (67) but not
mice with SIRT1-deficient CD4+ T cells. A potential explanation
for this finding is alterations in thymic T cell selection in SIRT1-/-

mice and the expression of autoimmune regulator (AIRE), which
is required for the former. SIRT1 also plays a key role in
regulating the expression of AIRE (79).

The function of SIRT1 in another group of lymphocytes has
rarely been studied. SIRT1 regulates the activation of B cells
through CD38 and NAD (94). In another study, SIRT1 regulated
antibody maturation in B cells (95). The activation of B cells
resulted in the inhibition of SIRT1 and the upregulation of
activation-induced cytidine deaminase (AICDA). B cells
obtained from mice with B cell-specific deletion of SIRT1
showed reduced deacetylation in activated B cells, increased
AICDA levels, and the induction of antibody maturation. More
studies are needed to clarify the role of SIRT1 in the activation
and differentiation of B cells.
SIRT1 IN AUTOIMMUNE DISEASES

SLE
SLE is a multisystemic and chronic inflammatory disorder
characterized by autoantibody production, immune complex
deposition, inflammation, and damage to multiple tissues and
organs. Levels of the SIRT1 mRNA and protein are significantly
increased in patients with active lupus nephritis (LN) compared
with those in remission or healthy patients (73). Moreover,
Frontiers in Immunology | www.frontiersin.org 6
histological features of LN biopsies were related to increased
SIRT1 expression in proliferative forms. SIRT1 expression
showed a strong power to discriminate kidney damage in
patients with SLE. Hu et al. found that the administration of
SIRT1-siRNA to MRL/lpr mice significantly increases levels of
acetylated H3 and H4 in CD4+ T cells and reduces serum anti-
dsDNA antibody levels and renal pathological scores,
particularly tubulointerstitial scores (12). The results
suggested that the overexpression of SIRT1 in vivo was
associated with lupus pathogenesis and that SIRT1 inhibition
mitigated the damage induced by lupus in MRL/lpr mice.
Consiglio et al. analysed genomic DNA from the peripheral
blood of 367 patients with SLE and 290 healthy controls in a
Brazilian population and found that SIRT1 promoter variant
rs3758391 modifies SLE morbidity, with the rs3758391 T allele
serving as a risk factor for nephritis and a higher systemic lupus
erythematosus disease activity index (SLEDAI) (96).
Nevertheless, researchers have not yet elucidated how the
SIRT1 rs3758391 variant functionally affects SLE severity. In
another study, the activity of DNA methyltransferase 1
(DNMT1) was inhibited in CD4+ T cells isolated from 22
patients with active SLE transfected with si-SIRT1. Ultraviolet
B radiation suppressed SIRT1 mRNA and protein expression by
activating aryl hydrocarbon receptor (AhR) and downregulated
the activity of DNMT1 in CD4+ T cells by binding to the SIRT1
promoter (97). B cell hyperactivity is a major characteristic of
SLE and is involved in the progression of SLE. Wang et al. (17)
transfected mouse B cells BaF3 with a SIRT1 vector or shRNA
targeting SIRT1, and the results showed that SIRT1
overexpression promotes BaF3 cell proliferation and increases
the expression of proinflammatory cytokines (IL-6 and TNF-
a). In addition, p65 was significantly activated and
phosphorylated, and the expression of B cell CLL/lymphoma
3 (Bcl-3) was increased. SIRT1 might be a potential risk factor
for the development of SLE.

In contrast, the activation of SIRT1 by resveratrol, a SIRT1
activator, attenuates proteinuria, glomerulonephritis, and the
serum levels of IgG1 and IgG2a in mice with pristane-induced
lupus (14). Furthermore, resveratrol also suppresses CD69 and
CD71 expression on CD4+ T cells, as well as CD4+ T cell
proliferation, induced CD4+ T cell apoptosis, and decreased
the number of CD4 IFNg+ Th1 cells, the proliferation of B
cells, and the ratio of Th1/Th2 cells in vitro (as shown in
Figure 1). Resveratrol protects against lupus-induced tissue
damage and may represent a potential therapeutic agent for
the treatment of SLE. Moreover, SIRT1 knockout mice show
higher levels of anti-dsDNA and anti-nuclear antigen IgG and
IgM immunoglobulin than wild-type mice (13). A potential
explanation is that histone modification dysregulation is
related to the incidence of SLE (98). The deletion of SIRT1 in
activated B cells results in the production of autoantibodies
targeting nuclear antigens, dsDNA, and ribonucleoprotein (95).
Compared to healthy controls, B cells obtained from mice and
patients with SLE exhibit increased expression of AICDA, which
is related to decreased SIRT1 expression. However, the
occurrence of SLE is also related to the increase in SIRT1
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levels, which may be due to the overall imbalance of transcription
and hyperacetylation.

RA
RA is one of the most prevalent chronic disorders defined as a
systemic breakdown of self-tolerance and immune-mediated
inflammation characterized by cartilage/bone destruction and
joint dysfunction (99). The inflammatory proliferation of RA
fibroblast-like synoviocytes (FLSs) is the most important
pathological feature of RA, which generates invasive synovial
pannus and a series of pro-inflammatory cytokines and produces
proteases that directly destroy bone and cartilage. Therefore, an
effective method to slow the progression of RA is to promote
apoptosis and inhibit the proliferation, invasion, and migration
of FLSs, which suppress synovial inflammation and alleviate joint
deformation. SIRT1 activation induces the apoptosis of FLSs
through the activation of caspase-3 and the PI3K/Akt signalling
pathway. Engler et al. found that SIRT1 silencing promotes the
proliferation and adhesion of FLSs (100). SIRT1 overexpression
not only reduces the production of proinflammatory cytokines
but also inhibits the proliferation, invasion, and migration of
Frontiers in Immunology | www.frontiersin.org 7
FLSs, thereby effectively alleviating RA synovial inflammation
(18, 19). These effects are associated with the activation of NF-kB
(as shown in Figure 1). The upregulation of SIRT1 reduces
COX2 levels in RA-FLSs by inhibiting the activation of AP-1 and
NF-kB (101). The DNA binding activity of AP-1 is significantly
increased in the synovial tissues of patients with RA and
positively correlates with the disease activity of RA. Inhibition
of AP-1 activity helps alleviate the disease (102).

SIRT1 activation by resveratrol reduces the activation of T
cells, the production of TNF-a and IL-12, and the expression of
CD28 and CD80 and upregulates CTLA4 expression in collagen-
induced arthritis (CIA) mice and T cells. SIRT1 inhibition in T
cells suppresses the resveratrol-induced inhibition of T cells and
increases the acetylation of c-Jun and the incidence and severity
of CIA (20). Resveratrol inhibits the activation of the MAPK
signalling pathway and the expression of IL-1b in synovial tissues
of CIA rats and exerts a positive regulatory effect on the
development of arthritis (21). In mice with myeloid cell-
specific deletion of SIRT1, an arthritis model (serum transfer
from K/BxN arthritis mice) showed more severe inflammatory
responses and pathological changes, including increases in IL-1b
FIGURE 1 | A schematic diagram illustrating the major mechanisms of SIRT1 in selected autoimmune diseases. The activation of SIRT1 reduces the acetylation and
activation of transcription factors, such as NF-kB, STAT3, AP-1, and FoxP3, leading to decreased inflammation, and apoptosis. SIRT1 can inhibit inflammation and
oxidative stress through the deacetylation of FoxO1. SIRT1 also regulates DC-mediated Th1, Th2, and Treg immune responses. All these processes interact each
other and contribute to the progression of Ads.
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and TNF-a levels, as well as increases in the number of TRAP+

osteoclasts in the ankles (22). Compared to wild-type mice,
macrophages obtained from mice with selective deletion of
SRIT1 show increased migration, polarization, and
proinflammatory cytokine production, which are associated
with hyperacetylation of p65 and activation of NF-kB. Based
on these results, SIRT1 suppresses the activation of innate
immune cells, leading to less joint inflammation and damage.
In contrast, Woo et al. (23) observed less joint inflammation and
damage in myeloid cell-specific SIRT1 knockout arthritis mice
than in wild-type mice with CIA. SIRT1 inhibition in CIA mice
also reduces the production of inflammatory cytokines, MMPs
and RORgt and decreases the proliferation of Th1, Th17, and
DCs. In addition, impaired DC maturation and a reduction in
the Th1/Th17 immune response are observed in these mice. The
explanation for these differences among different studies may be
attributed to the different pathogeneses in different arthritis
models. The serum transfer model from K/BxN arthritis mice
does not require the participation of T, B, and innate immune
cells, which are required to produce autoantibodies in the
CIA model.

Patients with RA suffer from multiple cartilage/bone erosion
events and osteoporosis in the middle and late stages, a common
clinical complication that can lead to joint deformity, severe
dysfunction, and disability. SIRT1 heterozygous female mice show
a significant decrease in bone density, suggesting that SIRT1 plays a
role in regulating bone metabolism (103). Osteoblast-specific
deletion of SIRT1 in mice significantly reduces osteoblast
differentiation and bone mass and promotes the activation of the
NF-kB signalling pathway and the differentiation and maturity of
osteoclasts (24). Activated SIRT1 deacetylates NF-kB and p53 and
reduces IL-1b, iNOS, and IL-6 levels and the inflammation and
apoptosis of articular chondrocytes (25). Therefore, SIRT1
modulates the erosive destruction of articular cartilage and bone
by regulating the differentiation, maturation, and apoptosis of
osteoblasts, osteoclasts, and chondrocytes, reducing the disability
rate of individuals with RA.

IBD
IBD is characterized by chronic relapsing intestinal inflammation
and gastrointestinal bleeding, and includes two main types:
Crohn’s disease and ulcerative colitis. IBD has received
increasing attention in recent decades due to its increasing
incidence rate worldwide (more than 2 million individuals have
been diagnosed with IBD), especially in China. Although the exact
pathogenesis of IBD is not fully understood, genetics, intestinal
microbiota, and environmental factors have been considered as
main regulators. The identification of new targets and definitive
methods for IBD treatment is urgently needed. Several studies
have reported that decreases in SIRT1 expression are critical for
the development of IBD.

Sharma et al. (26) used dextran sulfate sodium-induced (DSS)
IBDmice, which are the most commonly used IBDmodel because
they share many manifestations and pathological characteristics
with human disease, to explore the role of SIRT1 in the
development of colonic inflammation. Treatment with
Frontiers in Immunology | www.frontiersin.org 8
resveratrol significantly improves DSS-induced colitis and
restores the SIRT1 mRNA levels. Ren et al. (27) found that the
SIRT1 activator SRT1720 decreases the disease activity index,
inflammatory cytokine levels, and colon histological score in mice
with DSS-induced colitis, whereas nicotinamide (SIRT1 inhibitor)
administration exerts the opposite effects. Resveratrol suppresses
the activation of the NLRP-3 inflammasome and alleviates bowel
inflammation in mice with radiation-induced IBD (104). SIRT1
also participates in the development of chronic spontaneous colitis
in an IL-10-deficient mouse model (105). Talero et al. found that
IL-10-deficient mice are characterized by increased levels of
cytokines and decreased SIRT1 mRNA levels in the colonic
mucosa, which are associated with the upregulation of the
autophagy pathway, promoting inflammation and dysplasia in
mice. Caruso et al. (106) detected reduced levels of the SIRT1
mRNA and protein in colon tissues from mice with 2,4,6-
trinitrobenzenesulfonic acid-induced colitis. The administration
of a SIRT1 antagonist, EX-527, to mice increased the disease
severity and infiltration of CD3+ T cells in the colon. Cay10591, a
SIRT1 agonist, decreased the generation of proinflammatory
cytokines. Moreover, the expression of the SIRT1 mRNA and
protein was decreased in lamina propria mononuclear cells from
patients with IBD, while treatment with a SIRT1 activator
inhibited the activation of NF-kB and the generation of
proinflammatory cytokines. Taken together, SIRT1 activation
attenuates colitis, and SIRT1 may represent a promising target
for treating IBD.

In contrast, several studies also found that SIRT1 may
stimulate the pathogenesis of IBD. In one study, intestinal-
specific deletion of SIRT1 protected mice from the
development of colitis (28). DSS did not induce colitis
successfully in SIRT1-deficient mice with decreased expression
of inflammatory genes. Thus, the deletion of SIRT1 in the
intestine exerts a positive effect on the development of IBD. In
another study, Akimova et al. primarily determined the role of
SIRT1-targeted T cells in the development and pathogenesis of
chronic colitis in mice (29). The authors reported that adoptive
transfer of CD4+ CD25- Foxp3- T effector (TE) cells from wild-
type mice into B6/Rag1-/-mice induced chronic colitis, which was
related to the expansion of disease-producing Th1 effector cells
that promoted increases in weight loss and the infiltration of T
cells into the colon. Moreover, the adoptive transfer of TE cells
from SIRT1-deficient mice into B6/Rag1-/-mice resulted in lower
colitis disease activity and reduced weight loss, as well as a 2.8-
fold increase in the formation of iTregs, compared with mice
receiving wild-type T cells. Therefore, naïve T cells tend to
differentiate into iTregs in the absence of SIRT1. In a second
mouse model, treatment with a SIRT1 inhibitor, EX-527,
reduced weight loss and colonic inflammation and increased
iTreg differentiation. The deletion of SIRT1 may inhibit the
development of colitis through the induction of Tregs.

Both protective and deleterious effects of SIRT1 have been
reported on individuals with IBD. The protective actions of
SIRT1 are associated with decreased acetylation of NF-kB,
which results in increased expression of proinflammatory
cytokines. In contrast, the deletion or silencing of SIRT1
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inhibits colitis through the induction of Tregs, which are
essential for the maintenance of gastrointestinal homeostasis.

MS
MS is a chronic neuroinflammatory and demyelinating disease.
Genetic and environmental factors may influence the
susceptibility to and progression of MS. Several recent studies
have provided evidence supporting the beneficial effects of SIRT1
on demyelinating and inflammatory diseases, such as MS.
Compared with patients with MS who are in remission and
healthy controls, SIRT1 activity is significantly decreased in
patients with active MS (30). In addition, SIRT1 colocalizes
with CD4+, CD68+, oligodendrocytes (OLGs), and glial
fibrillary acidic protein-positive cells in MS lesions. Although a
wide distribution of cells expresses SIRT1, higher SIRT1
expression was detected in the MS lesions than in the area
adjacent to the MS lesions. Moreover, peripheral blood
mononuclear cells (PBMCs) from patients with active MS
expressed higher levels of the SIRT1 mRNA and protein than
those from patients in remission and healthy controls. Based on
these results, SIRT1 may represent a biomarker of relapse (15).
Ciriello and Hewes et al. (31, 32) found that phosphorylated
SIRT1 (p-SIRT1) and H3K9me3 are possible biomarkers for MS
relapse, and SIRT1 and H3K9me3 potentially predict the
response to glatiramer acetate (GA, a widely used drug in
patients with MS) therapy. Higher SIRT1 mRNA and
H3K9me2 levels are detected in responders to GA treatment
than in nonresponders.

Shindler et al. tested whether activators of SIRT1, namely,
SRT647 and SRT501, prevent neuronal loss caused by optic
neuritis in an SJL/J model of experimental autoimmune
encephalitis (EAE) (107). Activated SIRT1 inhibits retinal
ganglion cell loss in a dose-dependent manner. In contrast, the
inhibition of SIRT1 with sirtinol blocks the neuroprotective
effects. In addition, activated SIRT1 increases the axonal
density, protecting against neuronal damage and long-term
neurological dysfunction. However, treatment with an activator
does not reduce the disease index of EAE or attenuate optic nerve
inflammation, indicating that neuroprotection is not associated
with immunosuppression (as shown in Figure 1). In another
study, SIRT1 activation attenuated optic neuritis induced by a
neurotropic strain of hepatitis virus and MHV-A59 and reduced
ROS levels (33). In addition, the activation of SIRT1 by oral
resveratrol reduced disease severity in a mouse model of chronic
EAE (108) and decreased neuronal loss and paralysis (109).
SIRT1 protein expression was upregulated in the nuclei of NG2+

or PDGFRa+ oligodendrocyte progenitor cells in demyelinated
brain lesions, which may inhibit the regeneration of functionally
competent oligodendrocytes (110). McDougald et al. investigated
the neuroprotective potential of SIRT1 using adeno-associated
virus vector gene transfer in an EAEmouse model. Vector-SIRT1
improved the optokinetic response and protected retinal
ganglion cells compared to Vector-eGFP controls (111).
Treatment with resveratrol also reduces the production of
proinflammatory cytokines, such as IL-6 and IL-12/23 p40, in
EAE mice (34). SIRT1 overexpression in EAE mice significantly
Frontiers in Immunology | www.frontiersin.org 9
decreases the clinical score, inflammation, and myelin loss and
improves axon preservation and neuronal survival (35). The
neuroprotective effects appear to be associated with upregulated
levels of NAD+ and brain-derived neurotrophic factors.
Treatment with NAD+ for EAE in C57BL/6 mice alleviates the
severity of EAE and activates SIRT1 (36). T cells are involved in
regulating SIRT1 expression and the pathogenesis of most
autoimmune syndromes, including MS. However, the
regulatory effects of T cells on MS are not fully understood.
Zhang et al. reported that adiponectin inhibits Th17 cell-
mediated mouse autoimmune CNS inflammation. This process
might be associated with increases in SIRT1 and PPARg levels
and the inhibition of RORgt and Th17 cell differentiation (37).
Wang et al. reported that methylene blue reduces the clinical
indices of mouse EAE models and attenuates pathological
injuries in the spinal cord. The protective effects are associated
with activation of SIRT1 and the Th17/Treg balance (38). SIRT1
inhibition increases the expression of FasL and promotes the
apoptosis of CD4+ and CD8+ cells from patients with MS (39).
CONCLUSIONS

In recent years, the function of SIRT1 has expanded far beyond
its initial impression as a prominent NAD+-dependent class III
HDAC of the sirtuin family. SIRT1 participates in the complex
coordination of the immune system and Ads. Although various
articles have examined the roles of SIRT1 in suppressing the
promotion of autoimmune diseases, many studies described in
this review support the hypothesis that SIRT1 represents a
possible biomarker of relapses and a potential target for
therapeutic intervention in multiple Ads, including SLE, RA,
IBD, MS, regardless of whether it functions as an activator or
inhibitor. SIRT1 regulates the expression and activity of some
transcription factors and genes, affecting immune cell activation,
differentiation, and function.

SIRT1 not only affects histones deacetylation, but also
deacetylation of various transcription factors, including p65,
p53, FoxO family, STAT3, PGC1a, and PPARg, leading to
transcription repression. SIRT1 regulates the activity of p53
and FoxO3 through deacetylation and promotes cell survival
via suppression of apoptosis and cell death in response to DNA
damage and oxidative stress. The deficiency of SIRT1-mediated
deacetylation of FoxO3a causes increased etoposide-induced
apoptosis. On bone tissues, SIRT1 maintains its “self-renewal”
ability through the inhibition of inflammation, oxidative stress,
and senescence. SIRT1 also exerts anti-inflammatory effects
through the inhibition of NF-kB, AP-1, and STAT3 pathways.
SIRT1 causes the deacetylation and inactivation of STAT3
during caloric restriction. SIRT1 inhibits the NF-kB pathway
through deacetylation of p65 and regulates cellular response to
hypoxia via deacetylation of HIF-1a. However, loss of SIRT1
might lead to improved immune surveillance against pathogenic
infection and nonself antigens, not all diseases benefit from the
activation of SIRT1 or might even worsen Th2-mediated
immune responses. All these highlight an important
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transcription modulatory function by SIRT1 activity, and the
essential roles of SIRT1 in different Ads and different stages of
the disease.

Although substantial progress has been achieved, the study of
SIRT1 functions in the immune response is still in the early stage
(Figure 1). In future studies, experiments are designed to
understand how SIRT1 affects different cell types in a
coordinated manner within the immune system and the
different roles of SIRT1 in different subsets of T cells, B cells,
and dendritic cells will be valuable. The precise function of SIRT1
in the development of Ads remains unclear, and future studies
are also required to elucidate the molecular pathways and targets
Frontiers in Immunology | www.frontiersin.org 10
regulated by SIRT1 and their roles in treating Ads, which can be
used to design precise and more efficient therapies with limited
detrimental or unwanted effects. However, new models,
methods, and techniques for investigating SIRT1 must be
developed to promote its clinical application.
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