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Idiopathic inflammatory myopathy (IIM) is a heterogeneous group of acquired, autoimmune
muscle diseases characterized by muscle inflammation and extramuscular involvements.
Present literatures have revealed that dysregulated cell death in combination with impaired
elimination of dead cells contribute to the release of autoantigens, damage-associated
molecular patterns (DAMPs) and inflammatory cytokines, and result in immune responses
and tissue damages in autoimmune diseases, including IIMs. This review summarizes the
roles of various forms of programmed cell death pathways in the pathogenesis of IIMs and
provides evidence for potential therapeutic targets.

Keywords: idiopathic inflammatory myopathy (IIM), programmed cell death (PCD), apoptosis, autophagy,
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HIGHLIGHTS

• Dysregulated cell death in combination with impaired elimination of dead cells, get involved in
the pathogenesis of IIMs.

• Programmed necrosis, such as NETosis and pyroptosis, seems to play a more important role in
the pathogenesis of IIMs, which contribute to the release of autoantigens, damage-associated
molecular patterns and proinflammatory cytokines.

• The mechanisms of PCD seem to vary among different subtypes of IIM and require even more
precise studies according to different myositis-specific antibodies.
INTRODUCTION

Idiopathic inflammatory myopathy (IIM) is a heterogeneous group of acquired, autoimmune muscle
diseases characterized by production of a spectrum of autoantibodies [including myositis-specific
autoantibodies (MSAs) and myositis-associated autoantibodies (MAAs)], aberrant regulation of
inflammatory responses, and tissue damage of different organs. The most common subtypes of IIMs
are represented by dermatomyositis (DM), polymyositis (PM), inclusion body myositis (IBM),
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immune-mediated necrotising myopathy (IMNM), antisynthetase
syndrome (ASSD) and overlapmyositis (1). The exact pathogenesis
of IIMs has not been fully elucidated, but was reported to be related
to genetic and environmental factors, abnormal immune responses
and non-immune responses (2).

Almost exclusively found in IIM patients, MSAs include
antisynthetase autoantibodies (ARS), anti-Mi-2, anti-signal
recognition particle (SRP), anti-melanoma differentiation-
associated gene 5 (MDA5), anti-nuclear matrix protein 2
(NXP2), anti-transcription intermediary factor 1g (TIF1g), anti-
small ubiquitin-like modifier activating enzyme (SAE), and anti- 3-
Hydroxy-3-methylglutaryl CoA reductase (HMGCR). Their
targeting antigens are ubiquitously expressed and are involved in
key cellular processes, including gene expression and
developmental regulation (3), but how these intracellular
components get exposed to the immune system, elicit immune
responses and lead to the generation of MSAs, remain unclear.
Besides, overexpressed cytokines have been found in the serum and
diseased muscle tissues of IIM patients. For instance, the level of
type I interferon (IFN) is increased significantly in the muscles of
DM patients (4). Therefore, it is reasonable to speculate that
abnormal cell death may play a role in the pathogenesis of IIMs.
Currently, accumulating evidences have revealed that excessive cell
death in combination with impaired elimination of dead cells and
debris contribute to the release of autoantigens, danger-associated
molecular patterns (DAMPs) and proinflammatory cytokines, and
consequently, the over-activated immune and inflammatory
responses in IIMs (5). According to functional aspects, cell death
can be classified into programmed cell death (PCD) and accidental
cell death (ACD) (6). Used to be mistaken for the synonyms of
apoptosis, essentially PCD also incorporates autophagy-dependent
cell death and programmed necrosis (7) (such as NETosis,
pyroptosis, ferroptosis and necroptosis) (Figure 1).

In this review, we focus on recent research progression of
PCD pathways in the pathogenesis and progression of IIMs to
provide evidence for potential therapeutic targets.
Frontiers in Immunology | www.frontiersin.org 2
APOPTOSIS AND SECONDARY
NECROSIS AFTER APOPTOSIS

Apoptosis is a genetically-controlled non-lytic cell death
pathway, designed to dismantle and remove senescent and
injured cells, thereby preventing unwanted inflammation
during development, homeostasis, and infection (8). The main
features of apoptosis are cytoplasmic shrinkage, membrane
blebbing, chromatin condensation and nuclear fragmentation
(6). Two distinct apoptotic signaling pathways, intrinsic (also
called the mitochondrial pathway) and extrinsic pathways, have
been defined. The extrinsic pathway can be triggered by death
factors of the tumor necrosis factor (TNF) family [including Fas
ligand (CD95L, FasL), TNF-a, and TNF-related apoptosis-
inducing ligand (TRAIL)], while the intrinsic pathway is
activated by microenvironmental perturbations including
endoplasmic reticulum stress (ERS), reactive oxygen species
(ROS), or lack of nutrient support (9). Mitochondrial outer
membrane permeabilization (MOMP) is the critical and
irreversible step for intrinsic apoptosis, which is regulated by
Bcl-2 family members (10). Both apoptotic pathways are
mediated by specific sets of caspases which act in cascades,
among which caspase-8 and caspase-9 being the initiators for
the extrinsic pathway and the intrinsic pathway, respectively.
Once activated, either caspase-8 or caspase-9 activates
executioner caspase-3 and caspase-7 and leads to apoptosis of
the doomed cell (11). Macrophages engulf these dead cells in a
process called efferocytosis by recognizing “find me” signals
[such as ATP, UTP, sphingosine-1-phosphate (S1P) and
CX3CL1 (fractalkine)] and “eat me” molecules (such as
phosphatidylserine, oxidized LDL-like molecules and C1q-
bound serum proteins) released by these cells (10). However,
when apoptotic cells are not engulfed efficiently and timely, they
undergo secondary necrosis, which is featured with
permeabilization of plasma membranes and release of
intracellular contents that may activate the immune system (7).
FIGURE 1 | Classification of cell death.
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Peripheral T cell lymphopenia has been reported in some
patients with DM, which is associated with the increased Fas-
mediated apoptosis of T cells. The overexpression of retinoic
acid-inducible gene I (RIG-I) could induce T cell apoptosis, but
the mechanism is far from clear (12). Also, lymphopenia may be
resulted from the decreased autophagy, which is discussed later
below (13). Noteworthily, in patients of IIM, T cells infiltrating in
the muscles are dominated by CD28null T cells, partly due to
chronic antigenic stimulation (14), which show an increased
percentage in peripheral blood mononuclear cells (PBMCs) as
well (15–18). CD28null T cells infiltrating in IIM muscles are
generally regarded as terminally differentiated and apoptosis
resistant with properties of replicative senescence (16, 17, 19,
20), because of decreased expression of Fas (21), and increased
expression of antiapoptotic molecule Bcl-2 (22), Bcl-x1 and
cyclin-dependent kinase inhibitors p16 and p57 (20),
upregulation of the phosphoinositide 3-kinase pathway (23)
(which inhibits Fas-initiated apoptosis), and upregulation of
various inhibitory natural killer cell receptors (iNKRs) (24)
(such as CD94/NKG2A). CD28null T cells are not capable of
costimulatory interaction with CD80 and CD86, but this does
not represent a global loss of costimulatory receptor expression.
The upregulation of alternative costimulatory molecules, such as
inducible costimulator (ICOS), CD134 and CD137, has been
reported in CD28null T cells after CD3 ligation (25). Moreover,
this T-cell phenotype is suggested to be treatment-resistant for its
persistence in muscle tissue after high doses of glucocorticoids
and other immunosuppressive treatment, which is correlated
with a poor clinical response (17), and could be due to a
significant loss of glucocorticoid receptors (GCRs) (26).
Therefore, CD28null T cells are an emerging target of interest
for treatment in refractory myositis patients. Existing drugs that
could downregulate T cells include calcineurin inhibitors (e.g.,
tacrolimus and cyclosporine) and abatacept. Calcineurin
inhibitors could prevent calcineurin from dephosphorylating
nuclear factor of activated T cell (NFAT) proteins and then
repress transcription of IL-2, and thereby restraining the
differentiation and survival of T cells (27). A single-arm
prospective clinical trial revealed that initial combination
treatment with tacrolimus and GCs could improve short-term
mortality of PM/DM-ILD patients with satisfactory safety (28).
Abatacept, an agonist of cytotoxic T-lymphocyte antigen-4
(CTLA-4), could interfere with the activation of T cells by
binding CD80/CD86 on the surface of antigen‐presenting cells
(APCs). A phase IIb, delayed-start clinical trial of abatacept was
conducted in 20 refractory DM/PM patients. Decreased disease
activity was observed in 42% of the patients, as well as
upregulated Foxp3+ regulatory T cells in repeated muscle
biopsies (29). There is a phase III, randomized, double-blind
trial underway to further evaluate abatacept for myositis
treatment (Clinical Trial Identifier NCT02971683).

In PM, CD28null T cells have been demonstrated to be able to
exert direct cytotoxicity towards myocytes by polarizing perforin
and secreting granzyme B, and indirectly contribute to myotube
cell death by releasing proinflammatory cytokines IFN-g and
TNF which could induce surface expression of MHC, rendering
Frontiers in Immunology | www.frontiersin.org 3
the myocytes more sensitive to cytotoxic attacks (30). An in vitro
study also identified that culturing myoblasts with IFN-g or TNF
alone could upregulate inflammation related transcription
factors (NF-kB, nuclear factor-kB) and induce apoptosis (31),
implying that extracellular inflammation induces further
inflammatory changes and forms a sustained loop of
inflammation leading to cell death. One study on IBM showed
that the combination of b-amyloid (Ab) with IFN-g stimulating
pathogenic NO−

2 production via induction of iNOS gene
expression could induce apoptosis of myocytes (32), while the
other found Ab alone is sufficient for myofiber apoptosis (33). In
hereditary IBM, mutations in gene GNE could lead to impaired
apoptotic signaling, thus causing degenerative process and
muscle loss (34). Moreover, the expressions of Fas and
cytoplasmic caspase-8 and -3 of myocytes could be upregulated
by proinflammatory cytokines as well (35), but whether
myocytes apoptosis mediated by Fas/FasL interaction is
involved in the pathogenesis of IIM is controversial. Fas
expression in muscle fibers has been reported with very
different frequencies (36–39). The presence of myocytes with
TUNEL positive nuclei has been reported in IIMs but was very
rare. As for this phenomenon, some researchers consider that the
frequencies of apoptosis are too low to prove the relevance to
pathopoiesis, while others believe that it is attributed to the
prompt efferocytosis. These rare apoptotic myocytes were
surrounded by CD8+ T cells and granzyme B+ cells with
absence of Fas and upregulating MHC-I, favouring a cytotoxic
mode of apoptosis induction rather than a Fas-mediated
mechanism (37), which is in line with an earlier study,
suggesting Fas expression may be attributed to the new gene
expression in regenerating fibers (38). The resistance of myocytes
to apoptosis is attributable to anti-apoptotic intracellular
proteins, such as Bcl-2 (36), FLICE (Fas-associated death
domain-like IL-1-converting enzyme)-inhibitory protein (FLIP)
(40) and human IAP-like protein (hILP) (41). Notably, in
contrast with previous study, Bcl-2 has been reported to
exhibit lower expression in diseased muscle compared with
normal muscle (39). Therefore, the mode of myocyte death
needs to be further investigated.

Nevertheless, some therapeutic strategies regarding apoptosis
have been identified. Resistance exercise (RE) has been
demonstrated to reduce Ab accumulation in chloroquine (CQ)-
induced ratmodel of IBM, thus inhibitingmitochondrial-mediated
apoptosis of myofibers and improving mitochondrial function
through increased mitochondrial biogenesis, upregulated
mitophagy, and activated sirtuin 3 signaling (42). Alemtuzumab,
a recombinant DNA-derived humanized monoclonal antibody
targeting CD52, was also beneficial for IBM patients, as it lowered
the count of peripheral and endomysial T cellswith reducedmRNA
expression of Fas (43). It could enhance apoptosis in B cells by
upregulating the expression of caspase-8 and caspase-3 in chronic
lymphocytic leukemia as well (44), which may provide a valuable
reference for IIM.Besides, pro-senescent interventionsconsistingof
exercise and AMP-activated protein kinase (AMPK) activation
induced apoptosis of fibro-adipogenic progenitors (FAP) and
promoted muscle regeneration in a murine chronic inflammatory
November 2021 | Volume 12 | Article 783616

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shi et al. PCD in IIM
myopathy (CIM) model, suggesting that the FAP-targeted
intervention may be therapeutic (45). In PM/DM, expressions of
cathepsin B (CB) and calpain are increased in muscle and lung
tissues,whichpromotes cell apoptosis and inflammation.Calpeptin
(calpain inhibitor) amelioratedmorphological changes of apoptosis
in IFN-g or TNF-a treated myoblasts through both mitochondrial
pathway andERSpathway (31, 46). Also, the administration ofCA-
074Me, a specific inhibitor of CB, could attenuate apoptosis of
myocytes and lung epithelial cells, and reduce lung interstitial
inflammation and fibrosis in the guinea-pig model of PM (47, 48).
AUTOPHAGY AND AUTOPHAGIC
CELL DEATH

Autophagy is a highly conserved catabolic and homeostatic process
by which subcellular components are secluded and degraded via
lysosomes under stress conditions, such as ERS, nutritional
deprivation, mitochondrial injury, and inflammation (49). It is
featured with vacuolization of the cytoplasm and accumulation of
double-membranedvacuoles (i.e., autophagosome) inmorphology.
According to the modes of cargo transferring to the lysosome,
autophagy is classified as macroautophagy, microautophagy and
chaperone-mediated autophagy (CMA). In addition to elimination
of intracellular aggregates anddamagedorganelles, autophagyplays
crucial roles in inflammation and immune-system function,
mediating cytoprotective rather than cytotoxic effects. The
interplay between autophagy and cytokines is fundamental to
modulate inflammatory as well as immune responses. For
instance, TNF-a can induce autophagy and in turn, whether
autophagy up- or down-regulates TNF-a formation depends on
the cellular context (50). Autophagic cell death is a type of PCD that
relies upon the autophagic machinery or constituents thereof, with
massive autophagic vacuolization of the cytoplasm but without
chromatin condensation (51).

Most IIM studies with regard to autophagy focus on IBM. Rare
missense variants in autophagy-related genes, such as VCP,
HNRPA2B1, BAG3, SQSTM1, FLNC and ZASP have been
identified to occur at a higher frequency in IBM patients than in
control populations (52). VCP mutations could result in defective
myotube formation, increased apoptosis and increased autophagy
(53). Moreover, a study based on whole exome sequencing (WES)
identified missense variants in FYCO1, which encodes for an LC3-
binding protein accumulating at rimmedvacuoles and is implicated
in microtubule transport of autophagosomes, were statistically
enriched in IBM patients (54). Collectively, these findings
revealed a strong tie between IBM susceptibility and autophagy.
In IBM muscle tissues, increased formation of vacuolar
autophagosomes has been identified along with massive protein
aggregation, as indicated by increased levels of p62, LC3, mTOR-
mediatedphosphorylationofp70SK,a-synuclein andTDP-43 (55–
57). These markers could be ancillary tools to differentiate IBM
from other IIMs (56). In the inflammatory milieu in muscle, the
upregulated proinflammatory cytokines, such as IL-1b (58), TNF-
like weak inducer of apoptosis (TWEAK) (59) and TRAIL (60), get
involved in stimulating autophagic cell death. Besides, the
Frontiers in Immunology | www.frontiersin.org 4
overexpression of MHC-II in inflamed muscle fibers, partly on
account of the increased cytokine TNF-a, could induce autophagy
and interact with IFN-g to translocate intracellular MHC-II to the
myocyte surface further (61). Also, defective autophagy could drive
increased MHC-I expression because of the weakening ability of
MHC-I internalization for degradation (62). All the evidence
revealed that dysregulated autophagy might contribute to antigen
presentation for MHC-I and II, and maintain the inflammatory
response in a vicious circle (63).

The overmuch autophagy reflected by overexpression of
autophagic proteins in muscle, and impaired protein degradation,
contributing importantly to consequent accumulation of
multiprotein aggregates, are key factors in the myofiber
degeneration characteristic of IBM (55, 64, 65). Specially, the
accumulation of amyloid-b42 oligomers, could cause reduction
in muscular peak force and amplitude of Ca2+ transients in mouse
models of IBM (66), suggesting that their cytotoxicity contribute
importantly to IBM pathogenic cascade. Cylindromatosis (CYLD),
a deubiquitinating enzyme, co-expressed with autophagy-related
proteins in IBM, contributed to muscle damage by attenuating
autophagic clearance of protein aggregates (67). Cacciottolo et al.
found the upregulation of CMA components in sIBM muscle
fibres, which revealed cellular attempts to activate CMA and
remove protein aggregates (68). However, this attempted
compensation might not fully work because of the decreased
activity of proteolytic enzymes in lysosomes (55). Arimoclomol,
an inducer of heat shock response, can upregulate chaperone
expression, thereby promoting CMA in stressed cells and curbing
the formation of protein aggregates. Treatment with arimoclomol
ameliorated IBM-like pathology in myoblasts and mutant VCP
mice, and it was safe and well tolerated in a proof-of-concept
clinical trial of IBM patients (69). To further evaluate the efficacy of
this drug in IBM, a multisite phase II clinical trial has been
completed (Clinical Trial Identifier NCT02753530). Moreover,
RE could facilitate fusion between autophagosomes and
lysosomes in IBM animal models, hence improving impaired
macroautophagy (70).

In addition to IBM, autophagy activation could also be detected
in PM, DM and IMNM muscle tissues, whereas the autophagic
activation, modulation and interaction with the immune system,
are different in each type of IIM (60, 71, 72). In IBM, lysosomal
enzymes Cathepsin B and D, are inhibited, while in PM, their
activities were actually increased (55). Dysfunctional CMA (73)
and mitophagy (a specific autophagic elimination of
mitochondria) (74), were reported to occur in IMNM muscles.
The decreased autophagy and increased apoptosis of circulating
CD3+ T cells have been demonstrated in PM/DM patients, and
this phenomenon could be turned around by the treatment of
autophagy inducer rapamycin, hence preventing lymphopenia,
which suggested that autophagy may play a potential
cytoprotective role in PM/DM via inhibition of apoptosis in
CD3+ T cells (13). Intravenous immunoglobulin (IVIG) therapy
has been demonstrated to induce autophagy in PBMCs and reduce
circulation proinflammatory cytokines in IIM by activating
AMPK and inhibiting mTOR phosphorylation, thus mediating
anti-inflammatory effect (75).
November 2021 | Volume 12 | Article 783616
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NETS AND NETOSIS

Neutrophils are critical immune cells at the frontline of immune
defense, responsible for eliminating pathogens by multiple
mechanisms, including phagocytosis, production and release of
antimicrobial proteins, and formation of neutrophil extracellular
traps (NETs) (76). NETs are web-like structures composed of
histones, granular proteins and decondensed chromatin, which
could be autoantigens and DAMPs to break immune tolerance in
predisposed hosts (77–79). NET-derived mitochondrial DNA
could induce type I IFN production through the DNA-sensing
cGAS-STING pathway in myeloid cells (80). Antimicrobial
peptide LL-37 could activate type I IFN as well (81). Also, the
components of NETs are detrimental to vessels and muscles (82–
86). Citrullinated histones exerted toxic effect to decrease the
viability of myotubes (87). Accompanied by the formation of
NETs, neutrophils die, which is called the NETosis. Essentially,
the internal environment homeostasis of IIM patients is
disrupted with abnormal cytokine levels (88), which may
generate unexpected NETs formation. These NETs irritate
more production of proinflammatory cytokines, maintaining a
vicious circle of sustained NETosis. For instance, this lytic
process could promote the production of IL-6 and IL-1b in
macrophages (89). If excessive NETs cannot be cleared timely
and efficiently by DNase I and macrophages, inflammation and
autoimmunity will ensue (90).

IIM patients exhibited significant increased NETs, especially
in individuals with ILD, which is resulted from decreased activity
of DNase I (91). Low-density granulocytes (LDGs), a unique
subset of neutrophils with proinflammatory phenotype, are
prone to commit NETosis and secrete proinflammatory
cytokines (92). LDGs have been reported to display an
increased percentage in PBMCs in DM patients, especially
those complicated by ILD, along with increased NETs, which
may further contribute to the progression of ILD (93). Abnormal
regulation of NETs has been reported to be associated with
MSAs. An in vitro study showed that anti-MDA5 Ab+ serum
could directly induce NET formation (94). Interestingly, NET
levels exhibited a significant rise in patients with anti-MDA5 or
anti-TIF1 antibodies, yet not in patients with anti-Jo-1 positive
(87). Contradictorily, Zhang et al. found patients with anti-Jo-1
antibodies exhibited lower DNase I activity than those without
anti-Jo-1 antibodies (91). Therefore, studies with larger sample
sizes are needed to clarify the association between MSAs and
NETs. NETosis may be related to prognosis as well. Anti-MDA5
antibody positive and hyperferritinemia have been identified as
the poor prognostic factors of DM. The level of serum cfDNA,
which is the product of NETosis, was reported to significantly
increase in anti-MDA5 Ab+ subset and hyperferritinemic subset,
hence it may be a potential indicator of prognosis (94).

A recent report described the presence of calcium crystal–
induced NETosis in JDM. The engulfment of calcium crystals by
tissue-infiltrating neutrophils, triggeredNETosis which is NADPH
oxidase- and complement–dependent (95). Also, circulating
immune complexes may contribute to the elevated NET levels in
JDM (95). JDM patients can develop atherosclerosis during
progression into adulthood. Such IIM-associated cardiovascular
Frontiers in Immunology | www.frontiersin.org 5
disease may be related to the oxidation of high-density lipoprotein
(HDL) through NETs-derived MPO (96).
PYROPTOSIS

Pyroptosis is a lytic andproinflammatory formofPCDdependingon
gasdermin family.Threepathwayshavebeen identified, including the
caspase-1-mediated canonical pathway stimulated by PAMPs or
DAMPs, the noncanonical pathway requiring caspase-4, 5 (for
human) or caspase-11 (for murine) triggered by lipopolysaccharide
(LPS), and caspase-3-dependent pathway. The best-studied
pyroptosis pathway is that mediated by gasdermin D (GSDMD)
with downstream of nucleotide-binding and oligomerization
domain-like receptor family pyrin-domain containing 3 (NLRP3)
inflammasome activation, which can recruit and activate
inflammatory caspases. The activated caspase-1 or caspase-4/5/11,
cleaves GSDMD and exposes its N-terminal domain, which binds to
phosphoinositides in the cell membrane and forms large pores, thus
drivingcytoplasmic swelling, cytolysis, andreleaseof cellular contents
(97). Also, caspase-1 cleaves IL-1b and IL-18 to produce mature
cytokines, but whether these cytokines are actively secreted or
released via pyroptotic membrane rupture remained unclear (98).
Other released contents, including cleaved GSDMD, chemokines,
ATP and HMGB1, recruit immune cells and expand tissue
inflammation (99). Caspase-3, recognized as the apoptotic
executioner by convention, has been reported to specifically cleave
gasdermin E (GSDME), thereby initiating pyroptosis, and whether
cells with caspase-3 activated undergo apoptosis or pyroptosis,
depends on the expression level of GSDME (100).

Currently, the three mentioned pathways have all been
demonstrated in muscle tissues of IIMs. Liu et al. first reported that
the GSDME-dependent pyroptosis got involved in the pathogenesis
of perifascicular atrophy (PFA), a pathognomonic histologic feature
ofDM(101). Soonafterwards,Maet al. demonstrated the implication
of noncanonical pathway in the animal model of experimental
autoimmune myositis (EAM) as well, and glyburide and brilliant
blue G (BBG) could lower the levels of pyroptotic markers and
alleviate symptoms (102). However, these two studies verified
pyroptosis by detecting the full length of GSDME or GSDMD,
rather than the cleaved forms. Besides, upregulated glycolysis has
been reported in the lesioned muscle tissues of DM/PM, which
further promoted myocyte pyroptosis by activating the NLRP3
inflammasome and exposing N-GSDMD. Treated IFN-g-
stimulated-myotubes with shikonin, a pyruvate kinase isozyme M2
(PKM2) inhibitor, could mitigate NLRP3 inflammasome activation
and suppress pyroptosis (103). Intriguingly, the levels of PKM2 and
IL-1bwere related toMSAs, andwere especially high in patientswith
anti-SRP autoantibody (103).
OTHER FORMS OF PCD: FERROPTOSIS
AND NECROPTOSIS

Ferroptosis
Ferroptosis is a newly proposed cell death with unique
morphological structures and biochemical expressions, caused
November 2021 | Volume 12 | Article 783616
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by oxidative damage due to the excessive accumulation of iron-
dependent lipid peroxidation products. It usually shows
necrosis-like morphological changes with mitochondrial
abnormalities, such as condensed membrane and reduced or
absent crista (104). Whether a cell will undergo ferroptosis is
linked with many factors, such as its level of polyunsaturated
fatty acid (PUFA), iron metabolism, and glutathione (GSH)
biosynthesis. The inhibition of cystine-glutamate antiporter
(system Xc-) and the inactivation of GSH peroxidase-4 (GPX4)
lead to the depletion of cellular GSH, and the impaired clearance
of ROS, thus causing collapse of cellular redox homeostasis and
accumulation of ROS from lipid peroxidation or Fenton reaction,
ultimately resulting in lipid membrane damages and cell death
(7). Ferroptotic peroxidation products are powerful inducers of
autophagy (e.g., reactive aldehydes) (104), and excessive
autophagy promotes ferroptosis in turn, by degrading iron-
storage protein ferritin and hence increasing cellular iron
concentration (105). This specific autophagic process is called
ferritinophagy. Of note, hyperferritinemia is frequently
accompanied by IIM-ILD, and is associated with disease
severity and prognosis (106). Moreover, mitochondria play a
proactive role in cysteine-deprivation-induced ferroptosis by
fueling metabolism and lipid ROS production (107). Besides,
mitochondrial abnormalities and increased level of ROS, have
been reported in IIM, proposed to be vital mediators in IIM
pathophysiology (108–110). Taken together, it is logical to
hypothesize that ferroptosis is implicated in the development
of IIM, so further in-depth studies are necessary to elucidate the
exact role of ferroptosis in IIMs.

Necroptosis
Necroptosis is an inflammatory form of PCD characterized by
receptor-interacting protein kinase 3- (RIPK3-) mediated
activation of mixed lineage kinase domain-like protein (MLKL)
and permeabilization of the plasma membrane (111). Although
apoptosis and necroptosis frequently share common triggers,
including death receptors and IFN, downstream signaling
pathway of these triggers leading to survival, apoptosis or
necroptosis depends on the availability of cellular inhibitor of
apoptosis (cIAPs), FLIP, or caspase-8 (112). In the absence of
caspase-8, the necrosome (i.e., RIPK1/RIPK3 complex) activates
necroptotic pathway, thus promoting the recruitment and
phosphorylation of MLKL, and then, the activated MLKL
translocates to the cell membrane and damages the integrity,
leading to the release of cell contents and generating
inflammation (113). In addition, necroptosis regulators RIPK3
and MLKL have been reported to play an independent role in
inflammation irrespective of cell death – promoting NLRP3
inflammasome activation and IL-1b secretion (114, 115).
Collectively, these results indicated that necroptosis can
enhance inflammation and may be implicated in the
pathogenesis and progression of autoimmune diseases. For
instance, necroptosis has been reported to contribute to B-cell
lymphopenia in systemic lupus erythematosus (116). IFN-g
could downregulate necroptosis by inhibiting MLKL and
cFLIP, thereby exerting protective effects in autoimmune
arthritis (117). GSK2982772 is a highly selective inhibitor of
Frontiers in Immunology | www.frontiersin.org 6
RIPK1, while a latest randomized, placebo-controlled study
found GSK2982772 no meaningful clinical improvement of RA
compared with placebo (118). No studies investigate the
association between IIM and necroptosis currently.
CROSSTALK BETWEEN PCD PATHWAYS

The PCD pathways are tightly connected and the cross
regulation between them is complex. In most circumstances,
apoptosis and autophagy are mutually inhibited. Autophagy can
reduce the abundance of pro-apoptotic proteins in the cytosol
(e.g., caspase-8), while activated caspases can degrade essential
autophagic proteins (e.g., BECN1) (119). On the contrary, there
is a mutual promotion between ferroptosis and autophagy, which
is discussed above in the ‘Ferroptosis’ section.

Different cell death pathways can be activated with the same
signal. For example, disturbed redox homeostasis and excessive
ROS attributed to sustained activation of ER stress pathway,
which is clearly of etiological relevance in IIM (120), could
activate all the PCD pathways aforementioned. Moreover,
biochemical and cellular consequences of one type of cell death
can have profound influence on the activity of another type of
cell death (121). GSDMD, the executor of pyroptosis, also plays a
crucial role in NETosis. During NETosis, serine proteases
released from neutrophil granules could cleave GSDMD, and
then activated GSDMD in turn permeabilizes granules to
enhance proteases release and promotes nuclear expansion.
Further, activated GSDMD forms pores in the plasma
membrane, promoting NET release (122).

Various cell death modes can coexist, and cells can switch
between one death pathway to another. Caspase-8 is a crucial
molecular switch for apoptosis, necroptosis and pyroptosis. It can
not only directly cleave caspase-3 to induce extrinsic apoptosis, but
also get involved in other cell death pathways. When TGF-b
activated kinase-1 (TAK1, cell survival kinase) is inhibited,
caspase-8 could cleave GSDMD and induce pyroptosis (123).
The loss of caspase-8 or its enzymatic activity could lead to
MLKL-dependent necroptosis. If necroptosis is blocked,
enzymatic inactive caspase-8 could indirectly activate GSDMD
and cause pyroptosis by driving ASC (apoptosis-associated speck-
like protein, adaptor protein of NLRP3 inflammasome) speck
formation, which leads to caspase-1 activation (124). Overall,
increasing evidence points to caspase-8 as a central regulator of
cell death, and it promotes apoptosis, necroptosis, or pyroptosis
depending on its posttranslational state, the cell type, and the
stimuli (125). The intricate crosstalk between pyroptosis,
apoptosis, and necroptosis has led to the proposal of
PANoptosis. It is regulated by the PANoptosome complex, a
molecular scaffold for the contemporaneous engagement of key
pyroptotic, apoptotic, and necroptotic machinery (125).
PANoptosis has been reported in microbial infection,
inflammatory diseases, cancer and cytokine storm. For instance,
in COVID-19, increased circulating levels of TNF and IFN-g
synergistically induce PANoptosis characterized by activation of
pyroptotic (GSDME), apoptotic (caspase-8/3/7) and necroptotic
(pMLKL) molecules, facilitate further pathogenic cytokine release
November 2021 | Volume 12 | Article 783616
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FIGURE 2 | PCD pathways in the pathogenesis and progression of IIMs. The immune homeostasis of IIM patients is disrupted with activation of immune cells and
release of proinflammatory cytokines, which could lead to dysregulated cell death. T cells infiltrating in the muscles are dominated by CD28null T cells, which are
apoptosis-resistant, and could exert polarize perforin and secrete granzyme B to induce myocyte apoptosis, or release IFN-g and TNF to induce surface expression
of MHC, rendering the myocytes more sensitive to cytotoxic attacks. Overmuch autophagy and impaired protein degradation result in accumulation of multiprotein
aggregates, which causes myocyte degeneration characteristic of IBM. Excessive programmed necrosis (such as NETosis and pyroptosis) contribute to the release
of proinflammatory cytokines, and DAMPs, and activation of NLRP3 inflammasome, further amplifying immune responses.
TABLE 1 | Factors inducing abnormal myocyte death in IIMs.

Factors Death pathways Effects Year References

Perforin, granzyme B Apoptosis Exert direct cytotoxicity 2016 (30)
IFN-g, TNF Apoptosis,

autophagy
Induce surface expression of MHC 2011, 2016 (30, 31, 61)

Ab, IFN-g Apoptosis Stimulate NO−
2 production via induction of iNOS gene expression 2000, 2001 (32, 33)

Mutations in gene GNE Apoptosis Increase caspases-3 and -9 expression 2007 (34)
IFN-g, TNF, IL-1b Apoptosis Increase Fas, caspases-3 and -8 expression 2009 (35)
Mutations in gene VCP Autophagy,

apoptosis
Lead to impaired protein degradation 2009 (53)

Missense variants in gene
FYCO1

Autophagy Lead to impaired microtubule transport of autophagosomes 2017 (54)

IL-1b, IFN-g Autophagy Increase phosphorylation of the mitogen activated protein kinases and induce
accumulation of amyloid

2017 (58)

TRAIL Autophagy Induce NF-kB activation and autophagic cell death 2011 (60)
MSAs NETosis Unclear 2014, 2018,

2020
(87, 91, 94)

Calcium crystal, immune
complexes

NETosis Induce formation of NETs 2020 (95)

PKM2 Pyroptosis Activate NLRP3 inflammasome 2021 (103)
Frontiers in Immunology | www.fr
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iNOS, inducible nitric oxide synthase; Ab, b-amyloid; VCP, valosin containing protein; FYCO1, FYVE and coiled-coil domain containing 1; TRAIL, TNF-related apoptosis-inducing ligand;
PKM2, pyruvate kinase isozyme M2.
rticle 783616

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shi et al. PCD in IIM
through membrane pores and cell lysis, culminating in a life-
threatening cytokine storm (126). Whether PANoptosis occurs in
anti-MDA5-associated ILD, which is prone to be complicated by
cytokine storm, remains uninvestigated.

Therefore, due to the intricacies and connections between each
PCD pathways, which death pathway is dominant, and whether
there is synergy and the simultaneous activation of multiple
pathways in IIM need to be considered. Taking an integral view
ofcelldeath in IIMmay improveourunderstandingofpathogenesis
and aid in the development of therapeutics.
CONCLUSION

Immune and non-immune factors contribute to abnormal cell
death in IIMs (Table 1), and dysregulation of PCD further
amplifies inflammatory responses, playing an important part in
Frontiers in Immunology | www.frontiersin.org 8
the pathogenesis and progression of IIM (Figure 2), although it
has not been unveiled clearly. Further in-depth studies on these
PCD pathways will extend our knowledge on the pathogenic
mechanism of IIMs, and targeting different steps to inhibit PCD
processes and promoting the clearance of death materials may be
promising therapeutic strategies for IIMs (Table 2). In addition,
the particularity of autoantibodies is noteworthy, as patients with
diverse autoantibodies exhibit different clinical manifestations,
prognosis, organ involvements, and treatment responses,
suggesting that potential immunopathogenic mechanisms may
be different. Besides, targeted antigens by MSAs are intracellular
components, so we speculate that their exposure to immune
system and followed generation of MSAs are attributed to the
dysregulation of PCD. Therefore, it’s reasonable to put emphasis
on the association of distinct MSAs with PCD pathways in
further studies. Also, PCD pathways are intimately linked and
interdependent, making it necessary to take a comprehensive
approach to investigate PCD pathways.
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