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The subgingival biofilm attached to tooth surfaces triggers and maintains periodontitis.
Previously, late-onset periodontitis has been considered a consequence of dysbiosis and
a resultant polymicrobial disruption of host homeostasis. However, a multitude of studies
did not show “healthy” oral microbiota pattern, but a high diversity depending on culture,
diets, regional differences, age, social state etc. These findings relativise the aetiological
role of the dysbiosis in periodontitis. Furthermore, many late-onset periodontitis traits
cannot be explained by dysbiosis; e.g. age-relatedness, attenuation by anti-ageing
therapy, neutrophil hyper-responsiveness, and microbiota shifting by dysregulated
immunity, yet point to the crucial role of dysregulated immunity and neutrophils in
particular. Furthermore, patients with neutropenia and neutrophil defects inevitably
develop early-onset periodontitis. Intra-gingivally injecting lipopolysaccharide (LPS)
alone causes an exaggerated neutrophil response sufficient to precipitate experimental
periodontitis. Vice versa to the surplus of LPS, the increased neutrophil responsiveness
characteristic for late-onset periodontitis can effectuate gingiva damage likewise. The
exaggerated neutrophil extracellular trap (NET) response in late-onset periodontitis is
blameable for damage of gingival barrier, its penetration by bacteria and pathogen-
associated molecular patterns (PAMPs) as well as stimulation of Th17 cells, resulting in
further neutrophil activation. This identifies the dysregulated immunity as the main
contributor to periodontal disease.

Keywords: dysbiosis, dysregulated immunity, NET formation, caspase 4, caspase 11, bacterial membrane vesicles,
outer membrane vesicles
Abbreviations: BMVs, bacterial membrane vesicles; CGD, chronic granulomatous disease; DAMPs, damage-associated
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INTRODUCTION

Periodontitis is a collective term for disorders of the tooth
supporting tissues with various aetiologies (1). In general, the
most frequently forms of periodontitis can be divided into two
main categories triggered by (I) the biofilm attached to the outer
tooth surface and (II) by dental pulp necrosis, respectively (1). The
latter is also denoted “endodontic-periodontal lesions” (1) and is
also a subject of endodontology. The most frequent form of
biofilm-triggered periodontitis is the late-onset, formerly referred
to as “chronic periodontitis”. The quite common denoting “late-
onset” is not a diagnosis, but just tagging the periodontal
disorders, which are an age-related condition occurring in
humans after the age of 30 (2–4). Late-onset periodontitis is
characterised by the formation of a periodontal pocket, a
pathological formation of a duct-like space (periodontal crevice)
between the pocket epithelium and the subgingival biofilm
attached to the tooth root (5). The subgingival biofilm
continuously disperses planktonic bacteria, pathogen-associated
molecular patterns (PAMPs), and periodontal pathogenic bacteria
(6). These afflict the epithelium in order to get internalised and
PAMPs impair the epithelial barrier (7). The crevice is filled with
the gingival crevicular fluid (GCF) and is where the periodontal
pathogens are initially encountered by the first line of host defence,
the crevicular neutrophils and the humoral components of innate
and adaptive immunity (8). Late-onset periodontitis is
characterised by the inability to efficiently control subgingival
biofilm (9), damage of the host tooth supporting tissues (5) and
transmigration of periodontal pathogens into blood circulation
(10). That the late-onset periodontitis is triggered by subgingival
dental biofilm is beyond doubt. One may argue that the dental
biofilm is also the cause for this disease, or at least the dysbiosis of
the subgingival dental biofilm. Currently, some observations
relativise the etiological role of subgingival dysbiosis: (I) the age-
association of late-onset periodontitis in susceptible individuals
and (II) the neutrophil hyper-responsiveness in late-onset
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periodontitis, (III) the responsiveness of biofilm-induced
periodontitis to anti-ageing therapy (11–13) and (IV) a
microbiota shift by dysregulated immunity (14, 15).

The aim of this review was to investigate the role of
neutrophils in periodontal disease. We consider the factors
responsible for resistance, induction, clearance failure and
maintenance of this disease and discuss the role of neutrophils
in its aetiopathogenesis.
PERIODONTITIS PATHOLOGY

Maintenanceof tissuehomeostasis is imperative tohost survival. This
fundamental process relies on a complex and coordinated set of
innate and adaptive responses that calibrates responses against self,
food, commensals, and pathogens (16). In health, homeostasis
between gingiva and microbiota exists, i.e. the microbiota is
controlled by the immunity (17) (Figure 1). In patients with
neutropenia and defects of leukocyte adhesion early-onset
periodontitis inevitably develops (18). Similarly, dysregulating the
immunity via intra-gingival application of lipopolysaccharide results
in experimental periodontitis without the contribution of any
additional bacterial pathogens (19, 20). Patients with late-onset
periodontitis have systemic low-grade inflammation and
neutrophil hyper-responsiveness (21–25). Taken together, all forms
of periodontitis are characterised with either neutrophil defects or
dysregulated immunity, in particular neutrophil dysregulation.
Periodontitis is not a consequence of basic alteration of the oral
microbiota, but rather of the inability of the host immunity to resolve
chronic inflammation (26, 27). The capacity of certain bacteria to act
as a commensal or pathogen is highlydependenton thehost immune
conditions (28).

The development of a periodontal pocket marks the point of no
return to homeostasis. The pocket reflects an impairment of the
innate immunity to control the subgingival microbiota, as this
pathological structure provides anaerobic conditions and
FIGURE 1 | Relationship between host and dental biofilm.
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mechanical protection for the accumulation of subgingival biofilm.
It hampers the GCF flow through the prolonged duct-like crevice
and facilitates the accumulation of PAMPs, proteases and is
accompanied by an excess of reactive oxygen species (ROS). The
periodontal inflammation can temporarily be suppressed by
antimicrobials that reduce the dental biofilm (29), but not on
permanent basis. Conservatively treated periodontal sites are
subject to recolonization with a microbiota similar to that prior to
therapy. The degree and speed of recolonization depends on the
treatment protocol and the distribution patterns of periodontal
microorganisms elsewhere in the oral cavity. It is further influenced
by the quality of the patient’s oral hygiene (29). Nevertheless, the
surgical elimination of periodontal pocket does not eliminate the
proneness to relapse and does not substantially alter themicrobiota
(30). Albeit the sulcular microbiota in orally healthy subjects has
been considered symbiotic, the differences between oral symbiotic
and dysbiotic microbiota remain elusive (26, 27). The symbiosis
between the microbiota and its mammalian host encompasses
various forms of relationships, and how members of the
microbiota interact with their host can be highly contextual with
the same microbe developing as mutualist, commensal, or
pathogens according to the genetic landscape and immunity of
the host (16, 28). Increased inflammation in periodontitis is not
associated with a distinct microbiome; it rather corresponds with
higher dental biofilm biomass (31). Indeed, the higher biofilm
biomass produces more PAMPs, hence a stronger inflammatory
response and more host damages, as the lipopolysaccharide (LPS)-
induced experimental periodontitis shows (19, 20). These findings
support the alternative notion that the microbiota shift is due to
dysregulated immunity (14, 15). Indeed, neutrophil hyper-
responsiveness has been reported in late-onset periodontitis (21–
25). The neutrophil hyper-responsiveness remains in edentulous
patients with a history of late-onset periodontitis (21–23, 25),
despite the disappearance of the bacteraemia after teeth
exfoliation (32). Its control by the immune response is obviously
insufficient in periodontitis-susceptible modern humans, who also
have dissimilar diet and lifestyle than their pre-modern ancestors
(33). The role of dental biofilm overgrowth is crucial (29), but it
appears to be the consequence of dysregulated immunity (27); the
aberrant responsiveness of neutrophils in periodontal disease
supports this possibility (21–25). Lastly, the majority of modern
people over 30 years remain periodontitis resistant (34).

Human beings are domestic beings seemingly eluding the
“natural selection” and some of their evolutionary adaptations,
like oral hygiene and professional dental treatment are artificial.
The same applies to the pets. In comparison, advanced late-onset
periodontitis has not been reported in wild-living Mammalia.
Periodontitis completely lacks in rhinoceros (35), or is rare in
marmosets (36). In wild-living apes, only occasional and mild
forms of periodontitis have been reported (37).
DENTAL BIOFILM

Biofilm Basics
Biofilms are aggregates of interface-associated sessile bacteria,
Candida, and viruses (38), all embedded within a matrix of
Frontiers in Immunology | www.frontiersin.org 3
extracellular polymeric substances (EPS) (39–41). Horizontal
transfer of EPS genes (42) plays an important role in the multi-
species consortia of dental biofilm (43, 44). Each oral biofilm
consists of five main components: (I) bacteria, (II) bacterial
membrane vesicles (BMVs), (III) macromolecules like proteases
and toxins, (IV) immune cell and their remnants, all encapsulated
by (V) EPS. The biofilm EPS offers protection from the
surrounding environment and provides certain advantages to
the embedded sessile bacterial community that planktonic
bacteria do not possess (45). Biofilms go through a life cycle of
planktonic cell attachment to an interface, micro-colony
formation, biofilm maturation, and finally dissemination (46).
Each phase of this circle is characterised by distinct bacterial
phenotype. Thus, the biofilm is a complex microbial community
characterised by attributes not seen in planktonic bacteria:
(I) primitive homeostasis and metabolic cooperativity (47)
(II) cell-to-cell signalling (39) (III) essentially higher resistance
to antibiotics (48) (IV) dissemination by dispersion (49)
(V) detachment of bacteria (50–52) and last not least
(VI) resistance to the host defence (40). Thus, many oral
pathogens are protected from crevicular neutrophils within the
bulky dental biofilm and can rely on nutrition from ingredients of
GCF diffusing through the EPS. Thereby, the gingivitis is beneficial
to the biofilm, as the first host response of gingivitis involves
increased flow rate of the GCF (53). The role of dental biofilm
is beyond doubt, as its removal efficiently prevents gingivitis
and periodontitis. Importantly, even a short-term biofilm
accumulation is sufficient to induce gingival inflammation (53).
Dental biofilm is a conditio sine qua non for biofilm-induced
periodontitis (29). In individuals without gingivitis and
periodontitis, biofilm might be partly removed via mastication,
but the artificial biofilm destruction, i.e. teeth brushing, is by far
more efficient (54). The abundance of carbohydrates and the soft
consistency of the diet in post-industrial revolution societies lead
to biofilm overgrowth as mechanical biofilm destruction is
insufficient and carbohydrates foster biofilm accumulation (55).
Surviving some biofilm parts enables the biofilm maturing. This is
characterised by phenotype transition into the so-called state of
persisters, bacteria highly resistant to antibiotics and neutrophil
killing (see § 3.3). Both persisters and EPS hinder neutrophil
killing and prevent destruction of the biofilm by crevicular
neutrophils (56). Modern humans attempt to compensate for
this failed biofilm removal by targeting dental biofilm through
oral hygiene and professional treatment. These are the new
evolutionary strategies of the post-industrial age. However, only
susceptible individuals are affected by periodontal disease; most
humans, i.e. nearly 60%, are resistant and remain periodontally
healthy lifelong (34). This fact suggests the existence of unknown
immune mechanisms, able to completely protect orally healthy
individuals from oral microbiota.

Heritability of Oral Microbiota
and Shift Due to Diet
Oral microbiota is primarily inherited from caregivers (17).
Genetic studies in twins have shown that host-related microbial
communities depend on both host genetics and environmental
factors (57). Oral microbiome similarity increases with shared host
November 2021 | Volume 12 | Article 788766
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genotypes. Highly heritable oral taxa have been identified,
although most of the variation of the oral microbiome has been
determined by environmental factors (57). These findings indicate
that the hosts control almost half of their oral microbiota. The
remaining half differs due to differences in diet, lifestyle and
environment (29) and hence are “independent” of the host
genotype. From the microbiologic perspective, the environment
shapes the microbiota (17). The environment of supragingival
biofilm microbiota is determined by both host and diet. That of
subgingival biofilm predominantly by host, as the subgingival
effects of diet are minor However, a discrimination between
supragingival and subgingival biofilm has been rarely reported
in oral microbiome studies (31). Subgingival biofilm is found in
the gingival sulcus of people without and in the pocket of people
with periodontal disease. Discrimination between supragingival
and subgingival biofilm in fossils of individuals without
periodontitis is not possible and only partly feasible in living
animals for technical reasons. The fact that no discrimination has
been reported in studies on fossils and animals (33, 58) strongly
suggests that the examined biofilm was either supragingival or
mixed, thus limiting the usefulness of these studies on oral
microbiome concerning periodontitis.

With the establishment of the agricultural and industrial lifestyle
and diet alteration, there was a shift in the oral microbiota and the
number of oral pathogens increased, especially of Porphyromonas
gingivalis (P. gingivalis) (33). However, not only the carbohydrate-
rich Neolithic diet, but also the low chewing resistance leads to the
formation of biofilm. The importance of the mechanical
destruction of dental biofilm in modern humans is beyond doubt
and they solve this problem artificially, at least in part, by brushing
teeth, flossing and professional oral hygiene (59).

Planktonic Bacteria and Biofilm Differ
A fraction of biofilm bacteria evolves into persister cells that are
genetically nearly identical, but phenotypically distinct from
their parent cells. Persisters are metabolically inert, replicate
slowly, modulate the toxin-antitoxin system, upregulate DNA
repair and anti-oxidative machinery, have enhanced phosphate
metabolism, and exhibit unresponsiveness towards minimal
inhibitory concentrations of antibiotics (60). Drug treatment
normally kills planktonic cells and the majority of biofilm cells.
Nevertheless, EPS and drug tolerant persisters remains
unharmed. The latter repopulate the biofilm, disseminate into
planktonic forms and start a new cycle of biofilm development
(60–62). This perpetuates diseases caused by biofilm forming
pathogenic microorganisms. For this reason, the biofilm is
considered of “pseudo-organismic nature” (27). Therefore, new
strategies aiming at EPS destruction have been introduced (41).
IMMUNITY DYSREGULATION AS
INSTIGATOR OF PERIODONTITIS

Many features of periodontitis appear to be unrelated to the
composition of oral microbiota. They can be used to examine to
what extent the oral microbiota determines development and
maintenance of periodontitis.
Frontiers in Immunology | www.frontiersin.org 4
Heritability of Periodontitis: Dysbiosis as a
Consequence of Immune Deficiency
The genetic backdrop of all forms of early-onset periodontitis is
based on inborn neutrophil defects (18, 63) or on other inborn
genetic defects leading to neutrophil activation (64). The
concomitant dysbiosis in early-onset periodontitis is hence a
consequence of inborn immune deficiency. The genetic
predisposition of late-onset periodontitis is beyond doubt (65).
However, the association of genetic polymorphisms in PAMP-
sensing and PAMP-signalling genes with the microbiota
composition has been detailed studied only in gut.
Importantly, host cells sense bacteria via their PAMPs by
pattern recognition receptors (PRRs) (66–73). PRRs include
several families of receptors: toll-like receptors (TLRs),
nucleotide-binding oligomerisation-like (NOD-like) receptors,
RIG-I-like receptors, and C-type lectin receptors. Thus, gut
dysbiosis has been demonstrated in studies on knockout
TLRs in mice (67). Nod2-deficient mice showed an increased
load of commensal resident bacteria, a reduced ability to
prevent intestinal colonisation by pathogenic bacteria (69, 70),
and an increased susceptibility to bacterial infections (71).
Inflammasome-deficient mice have an impaired host/
microbiome interaction causing an increased intestinal
inflammation (66, 72, 73). A locus containing the Irak4 gene, a
kinase that activates the nuclear factor-kB pathway in TLR-and T
cell receptor-signalling pathways is associated with certain
bacterial species (74). Several bacteria are associated with the
locus that contains the Irak3 gene, another regulator of TLR-
signalling pathway (75). Consistent findings have been observed
for the association of PRR genes with microbiome composition
and microbiome-associated disease (76). So, single-nucleotide
polymorphisms in the NOD1 gene are associated with bacterial
pathways and gene groups specific for E. coli (68). Genetic
variants in NOD2 are strongly associated with Crohn’s disease,
an inflammatory condition of the gut associated with dysbiosis
(77, 78)]. Carriership of the NOD2 genetic risk for Crohn’s
disease is associated with an increased relative abundance of
Enterobacteriaceae (77). An increased risk of periodontitis
among patients with Crohn’s disease has been well established
(63, 78).

The host genetic backdrop of dysbiosis indicates that it is in
many cases a consequence of immune defects respectively
dysregulation. In addition, the inability to transfer oral
pathogens within the family (79) or the merely transient effect
of a single oral microbiota transplant in dogs (80), supports the
concept that the dysbiosis of dental biofilm is a result of the
dysregulated host immunity and not vice versa. Neither
microbiota transplantation (80) nor probiotics have any effect
on periodontitis (81) and gingival inflammation (82).
Ageing. Periodontitis as a Common
Mammalian Age-Related Disease
Postnatal development of an individual is followed by a “middle”
period of relative stability, when changes in physical and
cognitive function are small and only detectable by very
sensitive tools or challenging tests. During that period, most
November 2021 | Volume 12 | Article 788766
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individuals in the population are free of diseases (83). This also
applies to people who develop late-onset periodontitis over the
age of 30 (2–4). Underneath this apparent stability, several
compensatory and homeostatic mechanisms continuously
operate to preserve the biochemical balance and prevent
phenotypic derangements, as well as functional decline (84).
These mechanisms are initially effective and provide a robust
homeostasis, but start to fade later in life. Ageing is a complex
process involving various mechanisms that lead to the
accumulation of subcellular, cellular and intercellular damages
as well as other age-related deleterious changes, together
representing the organisms’ “deleteriomes” (85). Unrepaired
damage accumulates beyond the functional threshold (84). On
the molecular level, the most precise biomarker of ageing is based
on DNA methylation profiling and is known as the “epigenetic
clock” (86).

Periodontitis is a common mammalian disease affecting
humans, non-human primates (87), ruminants (88, 89),
rodents (11, 90), and pets (91, 92). Periodontitis has been
reported in Palaeolithic, Mesolithic, Neolithic and post-
industrial revolution humans (93). An important question is,
whether the prevalence of periodontitis increases in Neolithic
and post-industrial revolution or just the average human
longevity. This question cannot be answered without doubt.
The synchronous increase of average human longevity and the
accompanying increase in prevalence of periodontitis creates the
impression of genuine increase in prevalence in post-industrial
humans. This has been mainly explained as a consequence of
altered diet and lifestyle (33). However, the accumulation of
somatic mutations dysregulates the immunity and results in a
plethora of age-related diseases (94), which become flashier with
the lifespan increase in both humans (34) and domestic
mammalians (90) during the post-industrial revolution. The
prevalence increase of late-onset periodontitis underlies the
same kinetics. It can be deduced that anti-aging therapies
should alleviate periodontal disease. Indeed, the good
responsiveness of periodontitis to anti-ageing therapies (11–13)
scrutinise the role of dysbiosis in periodontitis and highlights the
role of dysregulated immunity. On cellular level, Porphyromonas
gingivalis causes in vitro cell senescence, which is reversed by
anti-ageing treatment (95).

Dysbiosis and Immunity
The capacity of certain bacteria to act as a commensal or pathogen
is highly dependent on the host immune conditions, genetic
predispositions, and coinfections (28). The host poses a complex
regulatory system, involving epithelial cells, IgA, AMPs, and an
array of innate and adaptive immune cells to control the
composition and distribution of the microbiota (16). Thus,
periodontitis heritability, ageing relatedness and neutrophil
hyper-responsiveness (10) are consequences of immunity
dysregulation. This underscores the role of immunity and
enables a new perspective on periodontal disease, independently
of the dysbiosis tenet. The common definition of dysbiosis is an
imbalance between beneficial and harmful microorganisms (96–
98). This requires the existence of “healthy” microbiota in healthy
individuals that can be used as a reference pattern for
Frontiers in Immunology | www.frontiersin.org 5
differentiation between health and disease. However, a “healthy”
microbiota pattern has never been established (99, 100). Especially
in oral microbiota, where the diversity is very high (101), and
strongly differs depending on culture, diets, regional differences,
age, social state etc. The lack of “healthy” oral microbiota
relativises the pathogenic role of oral dysbiosis. Recently, the
dysbiosis in general (but not the oral one) has been
hypothesised to be a consequence of the dysregulated immunity
(14, 15, 102), and a new environmental concept of microbiota
regulation by the host as its environment has been established
(16, 17, 28). In knocked out CXCR2-/- mice, which are
characterised by the absence of gingival neutrophils, the oral
microbiome undergoes a significant shift in total load and
composition as compared to that of wild type CXCR2+/+ mice
with normal levels of neutrophil recruitment into the gingival
tissues. This dysbiosis in CXCR2-/- mice is accompanied by a
significant increase in periodontal bone pathology (103). However,
transfer of the oral microbiome of CXCR2-/- mice into germ free
CXCR2+/+ mice led to restoration of the microbiome to the wild
type CXCR2+/+ composition and the absence of pathology. These
data demonstrate that the composition of the oral microbiome is
governed to a significant extent by the genetically determined
immunity of the host organism (103).
DYSREGULATED IMMUNITY

Neutrophil Functions in Gingiva
Neutrophils play a central role in the control of bacterial infections.
Neutrophils are also the effector immune cells responsible for the
antimicrobial defence in the gingiva and the first defenders to face
the bacterial invasion. Thus, the tissue neutrophil density increases
at least 150-fold in the first 4 h after intradermal inoculation of
healthy rabbits with E. coli, since a certain neutrophil density is
required to counter bacterial invasion (104). The indispensable role
of neutrophils in periodontal health is evident from development
of early-onset periodontitis in patients with neutropenia and with
defects of leukocyte adhesion (18). Neutrophils do not recognise
individual pathogens or pathogen species, but just danger signals,
(I) chemokines, (II) cytokines, (III) immune complexes, (IV)
PAMPs, (V) damage-associated molecular patterns (DAMPs),
(VI) C3a or 5a, and (VII) complement C3 and C4 and their
derivatives (105). Intra-gingivally injecting LPS is sufficient to
cause experimental periodontitis and is routinely used as animal
model (19, 20). Vice versa to the surplus of PAMPs, the increased
PMN responsiveness characteristic for late-onset periodontitis
(21–24) may effectuate the same result. Thus, neutrophils
can turn from bacterial defender into tissue devastators
independently from the bacterial challenge (105, 106). In
particular, components of exaggerated NETs harm and even kill
epithelial cells (107) and promote tissue damage (108, 109).

Trained Immunity: Neutrophil Hyper-
Responsiveness and NET Aggregation
The neutrophil hyper-responsiveness in late-onset periodontitis
is also an aspect of dysregulated immunity (21–25); it persists in
edentulous patients with a history of periodontitis (21–23, 25).
November 2021 | Volume 12 | Article 788766
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Certain microbial challenges promote the response of myeloid
cell populations to subsequent infections either with the same or
with other pathogens. This phenomenon involves changes in the
cell epigenetic and transcription, and is referred to as ‘‘trained
immunity’’ (110). It acts via modulation of hematopoietic stem
and progenitor cells (HSPCs). A main driver of modulation is the
sustained low level transfer of lipopolysaccharides from the
periodontal pocket to the peripheral blood. Dysregulated
trained immunity misleads the neutrophils to a non-resolving
inflammatory state with elevated and reduced levels of
inflammatory and homeostatic mediators, respectively (111).
In general, trained neutrophils are prone to increased NET
formation (112, 113). The neutrophil hyper-response aims to
destroy the pocket pathogens, but they appear to be resistant to
NET killing (114). So, bystander damages, due to the surplus of
NET proteases and histones, are responsible for lessening the
epithelial barrier and formation of ulceration (see §4.4). Both
sorts of epithelial damage compromise the gingiva defence. Thus,
the exaggerated NET formation in late-onset periodontitis (115)
may also be a result of trained immunity. Trained immunity
gives neutrophils a partial “autonomy” that does not underlie the
direct control of adaptive immunity (10).

NET Response in Periodontitis
Dental biofilms communicate with the crevicular neutrophils via
soluble excretions of dental biofilms, mostly PAMPs, recognised
by neutrophil surface receptors (116). However, in periodontitis
neutrophil toll-like receptors (TLRs) may be degraded by the
increased concentrations of crevicular neutrophil proteases
(117–121). Interestingly, when neutrophils are stimulated in
vitro with oral pathogens, TLR inhibitors have no effect on
ROS and NET release (114); this indicates that TLRs are not
involved in the activation of crevicular neutrophil. An alternative
bacterial recognition takes place via outer membrane vesicles
(OMVs) (122). These are endocytosed by neutrophils and
activate caspase-4/11 (123). Gram negative bacteria prevail in
subgingival biofilms. Thus, the main share of BMVs from dental
biofilm in periodontitis are OMVs that are heavily loaded with
LPS (122). OMVs are released into the GCF by bacterial biofilms
during normal cell growth without affecting cell viability; but
growth conditions have a profound effect on the release of OMVs
(124, 125). Two main mechanisms are responsible for bacterial
and OMV dissemination from biofilms: (I) bacterial dispersion, an
active process controlled by various biofilm-intrinsic mechanisms,
like quorum sensing (49) and (II) detachment, a passive process
driven by mechanical forces (46). During mastication and hygiene
procedures, subgingival dental biofilms are exposed by a pump-like
action of the periodontal pocket. It is accompanied by bacterial
translocation, a clear indication of a biofilm detachment (50–52).
Indeed, free LPS is recognised by membrane-borne TLR4 and
induces NET formation via the MEK/ERK pathway (126); this is
similar to the action of PMA (127) and activates several
transcriptional nuclear factors. OMVs function as vehicles that
deliver LPS into the cytosol.When endocytosed, OMVs release LPS
fromthe early endosomal compartments into the cytosol (122).The
host is thus capable of TLR4-independent cytosolic recognition of
Frontiers in Immunology | www.frontiersin.org 6
LPS (128, 129). Inflammatory caspases, namely murine caspase-11
and human caspase-4 and caspase-5 serve as receptors for cytosolic
LPS (130). The latter also induces caspase 4/5/11-dependent
cleavage of gasdermin D (GSDMD) and thus promotes suicidal
NET formation,whereas caspase1 isnot activated (123).Otherwise,
NET induced by canonical stimulants proceed caspases-
independently but share the morphological features of NET
formation induced by caspase-4/5/11/GSDMD signalling (123).

Another possibility to trigger NET formation when TLRs are
proteolytically degraded involves the cleavage of the protease
activated receptor (PAR2) on neutrophils surfaces, e.g. by
gingipain. Importantly, NETs formed in this way are deficient
in antibacterial activity (131), hence it is evident that the PAR2-
based responses do not orchestrate the host’s defence but drive
gingival damage (131).
Neutrophil-Induced Gingival Damages
Hyper-responsive neutrophils and in particular exaggerated NET
formation cause tissue damage (108). Abundant crevicular
neutrophils and NETs overload the pocket with neutrophil-
derived proteases (118, 120, 132) and cause epitheliopathy via
Oncostatin M (133). This correlates with the epithelial ulceration
in periodontitis (5, 134). NET-derived components such as
histones (107, 135–137) and myeloperoxidase (MPO) (107) are
cytotoxic to epithelial cells; neutrophil proteases damage and
even kill epithelial cells. High NET levels reportedly suppress
keratinocyte proliferation, delay wound closure (138, 139) and
chronifies ulcers. In contrast, aggNETs proteolytically inactivate
several soluble pro-inflammatory mediators over time (140).
Neutrophil activation due to plasminogen (Plg) deficiency
causes periodontitis in both humans (known as ligneous
periodontitis) (141) and Plg-/- mice (64). The neutrophil
activation in Plg deficiency is effected via fibrin polymer
binding motif recognisable by the integrin amb2 (CD11b/
CD18) (142) and results in exaggerated NET formation in
Plg-/- mice. The exaggerated NET formation effectuates heavy
periodontitis, which can be suppressed by DNase I in a mouse
model (64). Exaggerated NET formation is concomitant with
heavy purulent periodontitis (6).

Gingival homeostasis does not require oxidative burst, as
periodontitis occasionally occurs in patients with chronic
granulomatous disease (CGD), a rare primary immunodeficiency
that affects the innate immune system. It is caused by mutations in
any of the four genes encoding the subunits of the superoxide
generating phagocyte NADPH oxidase; CGD displays no or very
low levels of enzyme activity (143). Some isolated cases of
periodontitis have been reported in CGD patients (144–146). A
surveyon368CGDpatientshas reported just ninecasesofgingivitis
or periodontitis (147). However, excess of ROS characterises
periodontitis-related neutrophil hyper-responsiveness (21–25).
Consequently, the deleterious effects of ROS on host tissues (148)
are boosted in periodontitis. NETs entrap oral bacteria, but do
not kill them (114). Thus, the surplus of both ROS and proteases
in periodontitis harms the host, a clear indication of
dysregulated immunity.
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Neutrophil Orchestration by Gingiva and
the Adaptive Immunity
Oral epithelial cells are sentinel cells provided with a multitude of
PRRs and upon PAMP stimulation produce interleukins (ILs), in
particular IL-8 (149). IL-8 is mostly recognised via the neutrophil
chemokine receptor CXCR2, which play a crucial role for the
neutrophil recruitment into periodontal crevice (150). After
penetrating the epithelial barrier, lipopolysaccharides mount
a strong inflammatory response of gingival fibroblasts via
their surface-expressed TLR-4 (151). In periodontitis, there is
extensive inferred communication between stromal and immune
cells (152). Of interest and consistent with pathways upregulated
in disease, stromal and epithelial cells appeared to promote
adhesion of immune cells, while fibroblasts displayed a
potential toward recruitment of inflammatory cells. Gene-
expression signatures indicate an active role for stromal cells in
the recruitment of immune cells to the site of disease (152).
Fibroblasts are particularly transcriptionally active in the
production of chemokines. Fibroblasts expressed a broad array
of chemokine ligands exclusive in their potential to recruit
neutrophils (CXCL1, 2, 5, 8) as well as chemokines with the
potential of recruiting several types of leukocytes, e.g. CXCL12,
CXCL13, CCL19. Taken together, these data suggest that stromal
cells utilize intercellular signalling to drive immune cell
recruitment and tissue transmigration in periodontitis (152)
(152).Though the gingival inflammatory response is dominated
by neutrophils (153), the entire immune response is involved.
Within the crevice, IgA binds to neutrophil Fc-alpha receptors;
thus the adaptive immunity guides the neutrophil response
(154–156). Once the adaptive immunity has developed, the
neutrophil response in periodontitis is orchestrated by Th17
cells (32, 157).
CONCLUSION

Dental biofilms are aggregates of tooth surface-associated sessile
bacteria. They are characterised by phenotype transition of a few
bacteria into the so-called state of persisters, cells highly resistant
to antibiotics and neutrophil killing. Both persisters and EPS
hinder neutrophil killing and prevent destruction of the
subgingival biofilm by crevicular neutrophils. Each microbiota
depends on environmental factors, so host-related microbiota
Frontiers in Immunology | www.frontiersin.org 7
depends on host genetics and immunity. Ageing of persons
developing late-onset periodontitis is a complex process
involving various mechanisms that lead to the accumulation of
subcellular, cellular, intercellular and other deleterious changes
of immunity. Due to neutrophil defects or immunity
dysregulation, both a shift in oral microbiota and periodontal
damage occur, the homeostasis between host and microbiota is
disbalanced and the latter is no more under the complete control
of immunity. The inability of immunity to control the biofilm
results in biofilm overgrowth and increased number of
periodontal pathogens. As a consequence of dysregulated
trained immunity, the neutrophils become hyper-responsive.
The neutrophil hyper-response is aimed to destroy the pocket
pathogens, but they appear to be resistant to NET killing, so
gingiva damage occurs, due to the excess of NET proteases and
histones. The last two are blameable for damages of epithelial
barrier, its penetration by bacteria and PAMPs as well as the
stimulation of Th17 cells, resulting in further neutrophil
activation and host tissue damage.
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