
Frontiers in Immunology | www.frontiersin.

Edited by:
Thomas Wekerle,

Medical University of Vienna, Austria

Reviewed by:
Gerald Brandacher,

Johns Hopkins University,
United States

Pietro E. Cippà,
Ente Ospedaliero Cantonale (EOC),

Switzerland

*Correspondence:
Megan Sykes

megan.sykes@columbia.edu

Specialty section:
This article was submitted to

Immunological Tolerance
and Regulation,

a section of the journal
Frontiers in Immunology

Received: 08 October 2021
Accepted: 15 December 2021
Published: 05 January 2022

Citation:
Podestà MA and Sykes M (2022)

Chimerism-Based Tolerance to Kidney
Allografts in Humans: Novel Insights

and Future Perspectives.
Front. Immunol. 12:791725.

doi: 10.3389/fimmu.2021.791725

REVIEW
published: 05 January 2022

doi: 10.3389/fimmu.2021.791725
Chimerism-Based Tolerance to
Kidney Allografts in Humans: Novel
Insights and Future Perspectives
Manuel Alfredo Podestà1 and Megan Sykes2*

1 Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milano, Italy, 2 Columbia
Center for Translational Immunology, Department of Medicine, Department of Surgery, Department of Microbiology and
Immunology, Columbia University, New York, NY, United States

Chronic rejection and immunosuppression-related toxicity severely affect long-term
outcomes of kidney transplantation. The induction of transplantation tolerance – the lack
of destructive immune responses to a transplanted organ in the absence of
immunosuppression – could potentially overcome these limitations. Immune tolerance to
kidney allografts from living donors has been successfully achieved in humans through
clinical protocols based on chimerism induction with hematopoietic cell transplantation after
non-myeloablative conditioning. Notably, two of these protocols have led to immune
tolerance in a significant fraction of HLA-mismatched donor-recipient combinations,
which represent the large majority of cases in clinical practice. Studies in mice and large
animals have been critical in dissecting tolerance mechanisms and in selecting the most
promising approaches for human translation. However, there are several key differences in
tolerance induction between these models and humans, including the rate of success and
stability of donor chimerism, as well as the relative contribution of different mechanisms in
inducing donor-specific unresponsiveness. Kidney allograft tolerance achieved through
durable full-donor chimerism may be due to central deletion of graft-reactive donor T cells,
even though mechanistic data from patient series are lacking. On the other hand, immune
tolerance attained with transient mixed chimerism-based protocols initially relies on Treg-
mediated suppression, followed by peripheral deletion of donor-reactive recipient T-cell
clones under antigenic pressure from the graft. These conclusions were supported by data
deriving from novel high-throughput T-cell receptor sequencing approaches that allowed
tracking of alloreactive repertoires over time. In this review, we summarize the most
important mechanistic studies on tolerance induction with combined kidney-bone
marrow transplantation in humans, discussing open issues that still need to be
addressed and focusing on techniques developed in recent years to efficiently monitor
the alloresponse in tolerance trials. These cutting-edge methods will be instrumental for the
development of immune tolerance protocols with improved efficacy and to identify patients
amenable to safe immunosuppression withdrawal.
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INTRODUCTION

Renal transplantation is the established treatment of choice for
kidney failure, as it confers both the highest survival and the best
quality of life compared to other renal replacement therapies (1).
Despite continuous advances in the field of solid organ
transplantation, long-term outcomes of kidney allografts have
only modestly improved in the last decades. Immunosuppressive
therapies consistently control acute rejection, but have little effect
on chronic rejection, which leads to graft loss in 50% of cases at
10 years (2). In addition, approximately half of the kidney
transplants lost are due to death with a functioning graft: the
impact of chronic immunosuppression has potentially
devastating consequences in terms of cardiovascular disease,
infection and malignancy (3–5), and may severely impair
recipients’ quality of life.

The induction of tolerance, i.e. the lack of destructive immune
responses to a transplanted organ in the absence of immuno-
suppression, could potentially overcome both of these limitations.
Tolerance in kidney transplantation can be functionally defined by
stable renal function and absence of histologic, immune and
molecular signs of rejection on a kidney biopsy obtained after
complete withdrawal of immunosuppression for at least one year.
Spontaneous tolerance is unfortunately a rare and unpredictable
event that has been described in a small minority among the
patients who choose to discontinue their immunosuppression,
who retained graft function despite complete withdrawal of
immunosuppression (6).

Among the different methods used to induce tolerance in
animal models of kidney transplantation, few have been
successfully translated to clinical application. Those protocols
that have succeeded in patients entail combined kidney and bone
marrow transplantation (CKBMT) as a strategy to induce
chimerism, a state wherein donor hematopoietic cells engraft
into the recipient bone marrow at a level sufficient to be detected
by conventional (as opposed to sensitive PCR-based) methods.

Three centers have developed clinical CKBMT protocols, one
of which has so far succeeded in achieving tolerance only in the
HLA-identical transplant setting (7). Investigators from Stanford
University used total lymphoid irradiation combined with anti-
thymocyte globulin to facilitate the engraftment of donor
hematopoietic stem cells (HSC), which were infused along with
a fixed number of donor T cells after kidney transplantation.
Mixed chimerism persisting for at least 6 months was achieved in
83% of the 29 HLA-matched patients treated with this protocol.
Mixed chimerism was consistently associated with a tolerant
state that allowed safe withdrawal of immunosuppression.
Unfortunately, when a similar protocol was applied to
haplotype-matched donor-recipient pairs, immunosuppressive
drug weaning below therapeutic levels led to loss of chimerism
and rejection episodes (8, 9).

Only two strategies have succeeded in effectively inducing
operational tolerance across HLA barriers so far. As HLA
mismatches are commonly present in solid organ transplantation,
in this review we will discuss the features of these regimens and the
novel mechanistic insights offered by recent studies in the field.
Frontiers in Immunology | www.frontiersin.org 2
CHIMERISM-BASED PROTOCOLS FOR
TOLERANCE INDUCTION ACROSS
MHC BARRIERS
Full Donor Chimerism
Animal Studies. More than 60 years ago, Main and Prehn used
bone marrow infusion following administration of high-dose,
lethal total body irradiation (TBI) to achieve skin allograft
tolerance in recipient mice. In this experimental setting,
semiallogeneic but not isogenic bone marrow infusion
consistently permitted donor-specific skin graft acceptance
(10). Subsequent studies from Cobbold and colleagues showed
that mice treated with T-cell depleting antibodies along with TBI
did not reject MHC-mismatched bone marrow grafts and
developed donor-specific tolerance (11). These mice exhibited
full donor chimerism, i.e. the entire recipient hematopoietic
system was replaced by donor cells (donor cells > 98%), so
“self” tolerance of donor T cells was achieved. Later studies
suggested that incomplete deletional tolerance of these recipient-
reactive donor T cells was achieved, reflecting the absence of a
self-renewing source of recipient APCs to ensure complete
deletion of host-reactive donor T cells in the thymus.
Nevertheless, functional tolerance to the recipient was achieved
by a combination of mechanisms that involve thymic stromal
cells, which are of recipient origin (12, 13) (Figures 1A, B).

Several strategies have been studied to reduce the risk of bone
marrow engraftment failure and to curtail the impact of
myeloablative conditioning regimens that were initially
necessary to allow the engraftment of allogeneic bone marrow
stem cells. Ildstad et al. reported the engraftment-promoting
effects of a cell product termed “facilitating cells” (FC) in mice
treated with high TBI doses. Murine FC include a population of
CD8a+ TCR-, but paradoxically CD3+, plasmacytoid-precursor
dendritic cells and also seem to include populations of B cells,
NK cells, granulocytes and monocytes. Murine FCs have been
reported to provide survival and homing signals to HSC,
induce antigen-specific regulatory T cells (Tregs) and expand
IL-10-producing Tr1 cells (14–17). These cells were also reported
to be present in human bone marrow (18) and have served as the
basis for the proprietary product used in the Northwestern
University clinical protocol described below.

Clinical Protocols. Investigators from Northwestern University
utilized a non-myeloablative conditioning regimen that achieved
durable full donor chimerism in humans, attempting to exploit the
engraftment-promoting and immunosuppressive effect of FC (19,
20). This regimen builds on the Hopkins protocol that uses post-
transplant cyclophosphamide to inhibit GVHD across HLA barriers
(21) and includes pre-transplantfludarabine, cyclophosphamide and
TBI, which “make space” for HSC engraftment and control anti-
donor responses that would otherwise lead to graft rejection
(Table 1). Kidney transplantation is followed by infusion of a G-
CSF+/-plerixafor-mobilized apheresis product treated to retainHSC
and FC, as well as a controlled number of donor T cells. While the
proprietary method for apheresis product treatment has not been
disclosed, the full chimerism achieved in most of these patients,
despite non-myeloablative conditioning, suggests a major role for
January 2022 | Volume 12 | Article 791725
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GVH-reactive donor T cells in destroying recipient hematopoietic
cells in the bone marrow.

Out of the 37 patients transplanted, 26 exhibited durable
donor chimerism (23 developed full-donor chimerism) and were
Frontiers in Immunology | www.frontiersin.org 3
successfully weaned off immunosuppression after one year from
transplant. These subjects showed significantly better kidney
function compared to matched controls receiving conventional
immunosuppression. Two graft losses due to opportunistic
A B

DC

FIGURE 1 | Schematic representation of the mechanisms involved in chimerism-based tolerance to kidney allografts. (A) The induction of full-donor chimerism through
hematopoietic stem cell (HSC) infusion along with facilitating cells (FC) after non-myeloablative conditioning results in destruction of host HSC, presumably by graft-versus-
host reaction (GvHR) from infused donor T cells, and durable engraftment of donor hematopoietic precursors. After thymic repopulation by donor-derived dendritic cells
(dDC), donor-reactive T cells from the donor (dR-dT) undergo clonal deletion in the thymus (central tolerance). Host-reactive donor T cells (hR-dT) are incompletely
deleted, reflecting the absence of a self-renewing source of recipient APCs, but functional tolerance to the recipient may be achieved by a combination of mechanisms
(anergy and selection of host-specific Tregs) that involve recipient thymic epithelial cells (hTEC). (B) Destruction of hTEC and thymic structure by GvHR may cause failure
of negative selection and precipitate graft-versus-host disease (GVHD). (C) In durable mixed chimerism, donor-derived precursors populate the host thymus and
differentiate into DC (dDC) without depletion of their host-derived counterparts (hDC). Donor- and host-reactive T cells from both the donor and the host undergo negative
selection, allowing allograft tolerance without GVHD. Treg-mediated suppression may also play a role in experimental regimens where clonal deletion is incomplete. (D) In
CKBMT patients receiving a siplizumab-based conditioning regimen and unprocessed bone marrow, transient mixed chimerism promotes peripheral tolerance. Host
Tregs are relatively spared from global T cell depletion, and donor-reactive host Tregs (dR-hTreg) are expanded by antigenic pressure from the graft. Emerging donor-
reactive T cells, which are not subjected to central deletion, are suppressed by dR-hTreg and ultimately undergo peripheral deletion over time.
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infections were recorded in the first year after transplantation,
and one tolerant recipient died due to sepsis. Studies in mice
have highlighted that full donor chimeras are somewhat
immunoincompetent (22, 23) due to the absence of recipient
APCs in the periphery, which are needed to optimally present
antigens to T cells that are positively selected by recipient thymic
epithelium. Indeed, cytotoxic T cells generated in chimeric mice
lacking shared MHC alleles between the donor and recipient are
unable to clear virally infected donor cells (24), which thereby
serve as a viral reservoir that can result in chronic illness (23).
While viral reactivation and other opportunistic infections
occurred quite frequently in patients on this study, patients
with full donor chimerism nevertheless could be successfully
vaccinated after immune cell reconstitution, likely reflecting, at
least in part, persistence of immune memory and immunity
carried by donor T cells in the hematopoietic cell transplant (25).
Additional complications included acute rejection in two
patients with transient chimerism that were non-compliant
with medications, and one death due to lung cancer. A
potentially alarming toxic effect was recorded after a longer
observation period: despite the use of post-transplantation
cyclophosphamide, two subjects ultimately developed graft-
versus-host disease (GVHD). One patient was diagnosed with
grade 3 intestinal GVHD and CMV infection that led to a fatal
outcome. Although relatively limited in frequency (5% of treated
patients), the risk of GVHD in our view outweighs the benefits
obtained with approaches based on full donor chimerism for
tolerance induction.

Mixed Chimerism
Animal Studies.Mixed chimerism defines a state wherein, unlike
full donor chimerism, the host hematopoietic system is not
completely destroyed and replaced by the donor’s, and
Frontiers in Immunology | www.frontiersin.org 4
hematopoietic cells of both the recipient and the donor coexist
in the bone marrow.

Sharabi and Sachs demonstrated that durable mixed
chimerism and tolerance could be induced in mice conditioned
with T cell-depleting antibodies, low-dose TBI and thymic
irradiation (TI) (26). This method overcomes peripheral and
intra-thymic rejection (27) of donor HSCs and facilitates bone
marrow engraftment, which in turn provides a durable supply of
progenitors that migrate to the thymus, differentiating into
lymphocytes and dendritic cells. Tolerance to donor and
recipient in these models is achieved via intra-thymic negative
selection of alloreactive T cell clones, mediated by both donor-
and recipient-derived antigen-presenting cells (28, 29) and
regulatory mechanisms are notably absent in the long-term
tolerance maintenance phase (30). Durable mixed chimerism
can also be achieved through co-stimulation blockade combined
with bone marrow transplantation, which resulted in anergy and
peripheral deletion of donor-reactive clones (31–33). Peripheral
tolerance of donor-reactive CD4 and CD8 T cells relied on
distinct mechanisms, with a role for NFAT, LAG3, TGFb, PD1
and recipient CD4 T cells, B cells and MHC class II for the CD8
T-cell anergy followed by deletion (34–38) and a pathway
involving CD4 T cell-intrinsic CTLA4 and recipient CD80 and
CD86 without regulatory mechanisms, leading to peripheral
CD4 cell deletion (32, 39). The caspase 9-dependent intrinsic
and cell-extrinsic Fas-FasL apoptosis pathways have both been
implicated in clonal deletion in these models (40, 41). Notably,
alternative mixed chimerism-based regimens that do not achieve
complete deletion of donor-reactive T cells also rely on
alloreactive Treg-mediated suppression to induce donor-
specific tolerance (42, 43) (Figure 1C).

Before human application, non-myeloablative conditioning
regimens for the induction of allograft tolerance were tested in
TABLE 1 | Tolerance-inducing protocols for kidney transplantation across MHC barriers.

Northwestern University Massachusetts General Hospital Samsung Medical Center

Type of Chimerism Durable Full-Donor Transient Mixed Transient Mixed
Donor Cells G-CSF-mobilized HSC (up to ~17×106/Kg) +

T cells (~4×106/Kg) + FC (0.5-12×106/Kg).
Infused at +1.

Whole BM (2–3×108/Kg) Whole BM (0.6-2.2×108/Kg, with HSC 0.8-
3.2×106/Kg)

Conditioning (KTx day 0) FLU (30mg/m2, -5/-4/-3), CYC (50mg/Kg, -3/
+3), TBI (200 cGy, -1)

(NKD03) CYC (60mg/Kg, -5,-4), siplizumab
(0.6mg/Kg, -2/-1/0/+1), TI (700 cGy, -1).
(mNKD03) NKD03 + ritux (375mg/m2,
-7/-2) + pred from 0 to +10
(ITN036): NKD03, + ritux (375mg/m2,
-7/-2/+5/+12) + pred from 0 to +20
(TBI-Pilot): ITN036 + TBI (1.5 Gy, -5/-4)
instead of CYC.

(Protocol-1) mNKD03 + rATG (1.5 mg/Kg,
-1/0/+1) instead of siplizumab + pred up to
3-6 months
(Protocol-2) Protocol-1 + FLU (15 mg/m2,
-6/-5/-4/-3) + rATG (1.5 mg/Kg, +2)
(Protocol-3) Protocol-1 + FLU (10 mg/m2,
-6/-5/-4/-3) + SIR (from month 1) instead of
TAC.

Maintenance IS TAC tapered after 1-year protocol biopsy. CYA (NKD03 and mNKD03) or TAC
(ITN036 and TBI-Pilot) tapered after 6-
month protocol biopsy.

TAC (or SIR) tapered after protocol biopsy at
1 year. pred tapered and discontinued at 3-
6 months.

Tolerant patients (> 1
year off IS)/transplanted
patients

26/37 7/10 5/8

Fatal SAEs 3 0 0
GVHD cases 2 0 0
Graft losses 2 6 (3 after > 10 years) 2
BM, bone marrow; CYC, cyclophosphamide; FC, facilitating cells; FLU, fludarabine; HSC, hematopoietic stem cells; G-CSF, granulocyte colony stimulating factor; pred: prednisone; rATG,
rabbit anti-thymocyte globulins; ritux, rituximab; SIR, sirolimus; TAC, tacrolimus; TBI, total-body irradiation; TI, thymic irradiation.
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non-human primates [extensively reviewed in (44)], a key step to
assess the safety and efficacy of these protocols. These experiments
underscored that the rate of success and the stability of chimerism
induction in primates is considerably lower compared to rodents,
partly due to the higher abundance of memory T cells in the
former, which are more resistant to conventional T cell-depleting
agents (45). The addition of splenectomy (or co-stimulation
blockade) and a short course of cyclosporine could partially
overcome this barrier in a significant fraction of animals, but
mixed chimerism was only transient in all of them (46, 47).
Contrary to initial assumptions, tolerance to renal allografts
developed in more than 60% of recipients, providing the first
proof of principle that durable chimerism is not essential for
tolerance induction in primates, thus paving the road to
human translation.

Clinical Protocols. Mixed chimerism-based approaches to
induce tolerance to kidney allografts have been tested at the
Massachusetts General Hospital (MGH) in patients with and
without hematologic malignancies. Differences between these
regimens have been reviewed in detail elsewhere (48), and we
will focus our current discussion on patients without
malignancy, as these protocols have the highest potential for
translation to routine clinical practice in the future.

Initial studies used a non-myeloablative conditioning
regimen that included cyclophosphamide, the anti-CD2 T cell-
depleting monoclonal antibody siplizumab and thymic
irradiation (TI) (Table 1) (49, 50). Unprocessed donor bone
marrow was infused on the day of kidney transplantation, and
subjects also received calcineurin inhibitors and a short course of
corticosteroids postoperatively. Pre- and peri-transplant
rituximab doses were introduced after evidence of antibody-
mediated rejection in one patient and de-novo DSA development
in 2 additional patients. After this modification, all patients
remained immunosuppression-free for the duration of the
study. Transient mixed chimerism for up to 3 weeks was
induced in all recipients, without evidence of GVHD.
Maintenance immunosuppressive drugs were slowly tapered
after 6 months in patients with normal protocol biopsy, and
the primary endpoint of 24-month immunosuppression-free
kidney allograft survival was achieved in 7 of the 10 patients
enrolled. Three of these subjects later (at 4 to 7 years post-
transplant) experienced chronic rejection or glomerulonephritis
recurrence, which led to reintroduction of immunosuppressive
drugs and ultimately resulted in graft loss more than 10 years
after transplantation. Of note, these patients were successfully
retransplanted with conventional immunosuppression, and there
were no significant opportunistic infections in any of them.

In parallel with early host T cell recovery, 9 patients
unexpectedly developed severe acute kidney injury. Renal
histology was consistent with engraftment syndrome, entailing
capillary endothelial injury with vascular leak and lympho-
monocytic infiltrating cells in peritubular and glomerular
capillaries. Renal function normalized in all but 2 recipients, one
of whom experienced graft loss due to acute humoral rejection as a
consequence of preformed DSA that were undetectable on a pre-
transplant ELISA, but were subsequently confirmed by Luminex.
Frontiers in Immunology | www.frontiersin.org 5
In the other patient, acute kidney injury was initially misdiagnosed
as rejection and was treated with higher doses of tacrolimus, which
triggered thrombotic microangiopathy. Finally, one patient
developed severe cellular rejection after a pyelonephritis episode
following immunosuppression withdrawal. Protocol biopsies (at
2-8 years) in tolerant subjects showed either completely normal
histology or minimal alterations, including focal glomerular
basement membrane duplication and mild podocyte foot
process effacement (50).

An additional protocol was tested at MGH based on further
observations from studies conducted in non-human primates
(46, 51). Compared to previous regimens, cyclophosphamide
was substituted with TBI to prevent engraftment syndrome.
Renal function remained stable in the two patients enrolled,
but one did not develop sufficient chimerism to allow
immunosuppression weaning. Immunosuppressive drugs were
successfully discontinued in the other patient, but were resumed
after more than 4 years due to evidence of humoral rejection on a
protocol biopsy (52).

Investigators at the Samsung Medical Center initially used a
nearly identical protocol to those outlined above, but the anti-
CD2 monoclonal antibody siplizumab was substituted with ATG
due to local unavailability (52, 53). To curtail the risk of
engraftment syndrome, fludarabine and an additional dose of
ATG were added in a second protocol iteration, which allowed
reduction of the dose of cyclophosphamide. Due to development
of BK nephritis, ATG and fludarabine dose was subsequently
decreased, and tacrolimus was substituted with sirolimus one
month after transplantation. Overall, mixed chimerism was
achieved transiently (at least 3 weeks) in all 8 enrolled subjects.
Immunosuppression was successfully discontinued for more
than one year in 5 patients, even though one of them
experienced acute cellular rejection after a respiratory tract
infection, which led to reintroduction of tacrolimus.
MECHANISTIC STUDIES IN HUMANS AND
METHODS TO TRACK TOLERANCE

Full Donor Chimerism
The mechanism that underlies tolerance to kidney allografts
associated with full-donor chimerism hypothetically involves
central tolerance of donor T cells to donor antigens, with
donor progenitor cells migrating to the recipient thymus,
differentiating into antigen-presenting cells and finally
mediating negative selection of “self”-reactive donor T cell
clones. Bulk functional assays, including mixed-lymphocyte
reactions (MLR) and cell-mediated lympholysis (CML),
demonstrated donor-specific hyporesponsiveness in tolerant
patients. However, the same effect was observed in recipients
who exhibited only transient chimerism and developed rejection
after immunosuppression withdrawal (54), suggesting that these
assays cannot be relied upon to infer a tolerant state. On the
other hand, development of full donor chimerism was the single
most accurate predictor of tolerance in these patients (54). An
intra-graft signature of tolerance was also described for these
January 2022 | Volume 12 | Article 791725
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patients, which was characterized by upregulation of genes
involved in B cell regulation and pro-tolerogenic plasmacytoid
DC enrichment, as well as the induction of regulatory pathways
involved in the control of inflammation and maintenance of
tissue homeostasis (55). Overall, however, studies elucidating the
mechanism of tolerance in these subjects are currently lacking.

Given the full donor chimerism achieved in these patients, the
achievement and mechanism of GVH tolerance is also worthy of
investigation. Studies in mouse models discussed above would
suggest that de novo GVH tolerance might be characterized by a
combination of clonal deletion, anergy and regulatory T cell-
mediated mechanisms. However, GVH tolerance has not been
demonstrated in these patients and the inclusion in the infused
product of mature donor T cells that eliminate host
hematopoiesis suggests that an ongoing GVH reaction may
occur, which has culminated in GVHD in several patients.
Whether or not GVH reactions in patients without overt
GVHD results in thymic injury and failure to negatively select
host-reactive T cells, as reported in murine models (56–59), has
not been investigated.

Mixed Chimerism
The mechanisms of tolerance in protocols based on transient
mixed chimerism have been the topic of extensive studies in
recent years. Central tolerance is unlikely to be the main
mechanism operating in these CKBMT patients, since transient
chimerism is likely insufficient to allow long-term thymic
repopulation with donor antigen-presenting cells.

Preliminary studies with bulk functional assays were partly
inconclusive, since a lack of post-transplant donor-specific
responses was observed both in tolerant patients and in the
patient who developed acute rejection after immunosuppression
withdrawal in the MGH trial (60). Several mechanisms,
including T cell anergy and peripheral deletion, could underlie
the observed donor-specific hyporesponsiveness, but these assays
could not discriminate between them. Nonetheless, these results
were extremely informative when compared with those from
recipients of bone marrow transplantation conditioned with a
similar regimen but without kidney transplantation. In these
subjects, donor-specific reactivity reappeared after chimerism
was lost, indicating that the kidney allograft is likely to play a
pivotal role in tolerance development in CKBMT recipients (61).

The advent of platforms to perform high-throughput
sequencing of the TCRb CDR3 hypervariable region led to the
development of novel tools to analyze the T cell alloresponse. We
hypothesized that a significant fraction of the donor-reactive
repertoire could be identified in a pre-transplant MLR, by
sequencing sorted recipient T cells that divided in response to
donor stimulation. These sequences were compared with those of
sorted unstimulated recipient CD4+ and CD8+ T cells to define a
fingerprint of the anti-donor T cell repertoire. Thresholds for
detection were based on a uniform clonal frequency (to
normalize for sample size variability over time) and on a
minimal fold-expansion (to avoid capturing highly abundant
but not specifically donor-reactive clones), while computational
methods were used to account for sorting errors (62). This
Frontiers in Immunology | www.frontiersin.org 6
fingerprint was then longitudinally compared with samples
obtained at different post-transplant time points to track
circulating donor-reactive clones over time. Both tolerant and
non-tolerant patients, as well as kidney transplant recipients
under conventional immunosuppression, had considerable
repertoire turnover, reflecting the use of T cell depleting agents
in the conditioning regimens. However, all tolerant patients
analyzed displayed a progressive and specific reduction in both
donor-reactive CD4+ and CD8+ T cell clones, whereas no
significant change was identified in the non-tolerant patient
(60), and conventional kidney transplant recipients showed
expansion of CD4+ T clones. These results suggest that clonal
deletion is involved in the development of tolerance and may
serve as a marker to identify patients amenable to safe
immunosuppression weaning. Conversely, T cells in the non-
tolerant patient were probably anergic, but were re-activated
after immunosuppression withdrawal by the infective episode,
thus precipitating acute rejection.

The existence of a suppressive mechanism in these patients
was initially suggested by re-emergence of anti-donor responses
in bulk functional assays performed with Treg-depleted samples
from the first post-transplant year. However, samples obtained at
later time points failed to show a similar response, suggesting
that suppression could be relevant only as an early mechanism
(63). Consistent with this hypothesis, limiting dilution assays
conducted after the first post-transplant year failed to show an
increase in response at higher dilution, which usually indicates
the presence of suppressive cells at a lower frequency than
responder cells (60).

Phenotypic analysis of circulating mononuclear cells in
tolerant patients identified an early expansion of Tregs (80% of
CD4+ T cells during the first week) with evidence of peripheral
proliferation, possibly recent thymic emigration and, in one
patient, conversion from conventional T cells (64). Expression
of CD45RA declined after two weeks from transplant (64),
suggesting that previously resting Tregs acquired an activated
phenotype (65). The presence of a highly demethylated FoxP3
Treg specific region, an epigenetic hallmark of stable Tregs,
confirmed the results from phenotypic data.

Subsequent studies demonstrated that the anti-CD2
monoclonal antibody siplizumab could induce costimulation
blockade and T cell depletion, but selectively spared Tregs
and promoted the expansion of alloreactive Tregs in vitro (66).
In vivo, this process may be further amplified by the lymphopenia-
driven expansion state that follows global T cell depletion.
Interestingly, siplizumab predominantly reduced the frequency of
effector memory T cells, which express the highest CD2 levels
amongT cell subsets (66, 67). This additional effectmay be relevant
for tolerance induction, since cross-reactive memory T cells are
abundant in humans, and constitute a barrier to the establishment
of chimerism and tolerance. Indeed, these cells aremore resistant to
depletion with ATG, depend less on costimulatory signals and are
less susceptible to Treg-mediated suppression (68).

By using the same sequencing approach detailed above, we
interrogated donor-reactive sequences that mapped to the
unstimulated sorted Treg pool, but these sequences were
January 2022 | Volume 12 | Article 791725
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detected at a very low frequency due to the low numbers of Tregs
in the circulation. The method was therefore optimized by
expanding the donor-reactive Treg pool with activated donor B
cells instead of performing a conventional MLR. Expansion of
donor-specific Tregs with activated donor B cells greatly
increased the number of unique donor-specific Treg sequences
identified and the specificity and potency of these cells in
suppressing anti-donor responses was markedly increased,
demonstrating that truly donor-specific Tregs were enriched in
this repertoire. Using this method of pre-transplant donor-
specific Treg repertoire identification, tolerant patients were
found to display significant expansion of donor-specific Tregs
at 6 months from transplantation, while the single non-tolerant
subject did not (69). This study also showed that the majority of
expanded Tregs in tolerant subjects mapped to the pre-
transplant unstimulated Treg pool rather than conventional T
cells, suggesting that expansion of pre-existing Tregs rather than
induction of donor-specific Tregs was the major mechanism for
increased donor-specific Tregs in these patients.

Overall, these data indicate a central role for early Treg-mediated
suppression in the development of tolerance in combined kidney
bone marrow transplantation. It could be speculated that prolonged
stimulation of donor-reactive T cell clones by graft antigens under
constant restraint by Tregs might mediate anergy and subsequent
peripheral deletion of these cells. This suppressive effect loses
potency over time as gradual clonal deletion of donor-reactive T
cells eliminates the alloresponse needed to maintain expanded
donor-specific Treg populations (Figure 1D).
FUTURE PERSPECTIVES

Even though tolerance induction has been achieved in humans
through chimerism development, these regimens still need to be
refined before they can be translated to routine clinical practice.
We believe that the ultimate aim will be to develop a protocol
capable of reproducibly inducing tolerance through durable
mixed chimerism.

Albeit progressively refined over the course of the last decades,
conditioning regimens still bear potentially significant systemic
toxicity, which results in both short- and long-term clinically
relevant complications. The development of costimulation
blockers and other novel drugs targeting specific cell populations
and molecular moieties could help to refine conditioning regimens
further, thus limiting side effects. Avoidance of engraftment
syndrome observed in current regimens represents a realistic
short-term goal, which may be achieved with revised protocols in
the near future. Studies in animal models and humans have
outlined that several mechanisms for tolerance coexist, and
future strategies may exploit this knowledge to induce a more
robust tolerant state. A future, intriguing possibility to promote
durable chimerism without increasing the risk of GVHD is
represented by peri-transplant infusion of ex-vivo expanded
recipient Tregs. Administration of polyclonal Tregs was able to
induce mixed chimerism in mice in the absence of cytoreductive
therapy (70), and promoted more durable mixed chimerism and
tolerance, that permitted delayed kidney transplantation without
Frontiers in Immunology | www.frontiersin.org 7
immunosuppression, in primates treated with non-myeloablative
conditioning (71).

Reproducibility in humans remains a key issue of
translational research in transplantation, especially in the
context of tolerance trials, where a universally accepted and
validated biomarker of the tolerant state has been lacking so far.
The newly developed methods based on TCR sequencing to track
donor-reactive T cell/Treg clones deserve further exploration as a
tool that may be useful for the identification of patients amenable
to safe immunosuppression withdrawal in a personalized
manner. Furthermore, this approach has considerable potential
to further identify the role of and elucidate mechanisms of host-
vs-graft and graft-vs-host reactivity and tolerance, respectively,
in recipients of hematopoietic cell transplantation for the
purpose of allograft tolerance induction.

Tolerance studies will be also pivotal to pave the way to
clinical xenotransplantation, considered to be the next frontier in
solid organ transplantation due to its potential to overcome the
severe shortage of human organs. Murine models have shown
that mixed chimerism induction can promote tolerance to
xenografts through several concomitant mechanisms, including
deletion of xenoreactive B cells (72–75) with disappearance of
natural antibodies to xenoantigens, as well as tolerization of
xenoreactive T (76) and NK cells (77). These results have been
replicated by induction of porcine mixed chimerism in
immunodeficient mice with human immune systems (78–81).
However, immune barriers to xenogeneic mixed chimerism
induction are considerably greater than those to allogeneic
chimerism, particularly due to the rapid destruction of porcine
cells by human macrophages (82, 83), which can be at least
partially overcome by the introduction of a human CD47
transgene into the pig (84–86). Current protocols will need to
be optimized before clinical translation can be safely attempted.
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