
Frontiers in Immunology | www.frontiersin.

Edited by:
Petros Christopoulos,

Heidelberg University Hospital,
Germany

Reviewed by:
Mara Brancaccio,

University of Turin, Italy
Gabriele Multhoff,

Technical University of Munich,
Germany

Chunqing Guo,
Virginia Commonwealth University,

United States

*Correspondence:
Zarema Albakova

zarema.albakova14@gmail.com

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 16 October 2021
Accepted: 16 November 2021
Published: 30 November 2021

Citation:
Albakova Z and Mangasarova Y (2021)
The HSP Immune Network in Cancer.

Front. Immunol. 12:796493.
doi: 10.3389/fimmu.2021.796493

MINI REVIEW
published: 30 November 2021

doi: 10.3389/fimmu.2021.796493
The HSP Immune Network in Cancer
Zarema Albakova1* and Yana Mangasarova2

1 Department of Immunology, Lomonosov Moscow State University, Moscow, Russia, 2 National Research Center for
Hematology, Moscow, Russia

Heat shock proteins are molecular chaperones which support tumor development by
regulating various cellular processes including unfolded protein response, mitochondrial
bioenergetics, apoptosis, autophagy, necroptosis, lipid metabolism, angiogenesis,
cancer cell stemness, epithelial-mesenchymal transition and tumor immunity. Apart
from their intracellular activities, HSPs have also distinct extracellular functions.
However, the role that HSP chaperones play in the regulation of immune responses
inside and outside the cell is not yet clear. Herein, we explore the intracellular and
extracellular immunologic functions of HSPs in cancer. A broader understanding of how
HSPs modulate immune responses may provide critical insights for the development of
effective immunotherapies.
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INTRODUCTION

Heat shock proteins (HSPs) are molecular chaperones classified into several families such as HSP70,
HSP90, HSP110, HSPB, HSP40 and chaperonins (1). HSPs are induced upon various cellular
stresses including heat, radiation, infectious agents, heavy metal toxicity and hypoxia (2). Recent
data have emerged suggesting that HSP functions are not only dependent on the stimuli triggering
their expression, but also the compartment in which they are present (3–9). HSPs have been
implicated in the regulation of apoptosis, necroptosis, autophagy, cancer cell stemness, epithelial to
mesenchymal transition, lipid metabolism, angiogenesis and tumor immunity, supporting tumor
growth and development (10–14). Originally described as intracellular chaperones, HSPs have also
been found in extracellular milieu. In extracellular environment, presence of HSPs associates with
tumor aggressiveness, resistance to therapy and poor clinical outcome (15–17). Various HSPs have
been detected in liquid biopsies of cancer patients, stimulating the research towards the discovery of
HSP-based specific biomarker of cancer [reviewed in (18)] (19–32).

Increasing evidence has shown that extracellular HSPs are capable of triggering immune
responses, which was further translated into the development of various HSP-based
immunotherapies (33–39). Furthermore, several studies reported that different populations of
immune cells including natural killer (NK) cells, T cells, monocyte-derived dendritic cells (mDCs),
platelets and neutrophils may release HSPs in extracellular vesicles [reviewed in (18)] (40–46). This
review will focus on immunologic functions of HSPs in tumor immunity. Further elucidating the
role of HSPs in tumor immunology, may provide the basis for future discoveries of novel and
effective HSP-based immunotherapies.
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IMMUNE FUNCTIONS OF HSPs IN CANCER

HSPs are localized in various cellular compartments including
cytosol, endoplasmic reticulum (ER) and mitochondria, where
they play compartment-specific cellular functions. For example,
ER-resident HSP90 chaperone glucose-regulated protein 94
(GRP94, also known as Gp96) plays critical role in unfolded
protein response (UPR) while mitochondria-resident HSP90
chaperone tumor necrosis factor receptor-associated protein 1
(TRAP1) is involved in mitochondrial bioenergetics,
contributing to apoptosis resistance, cancer cell stemness and
Warburg phenotype (47–50). Apart from their compartment-
specific role, HSPs play an important role in the regulation of
immune responses. Bae and colleagues reported that HSP90
inhibition reduces surface expression of CD3, CD4, CD8,
CD28, CD40L, CD25 and ab on T cells and activating
receptors such as CD2, CD11a, CD94, NKp30, NKp44, NKp46,
KARp50.3 on the surface of NK cells (51). HSP90 inhibition
reduces NK and T cell proliferation, NK cell cytotoxic activity
and IFN-g production by T and NK cells (51, 52). By contrast, ER
HSP90 member GRP94 does not affect cytolytic activity of NK
cells towards tumors but rather acts indirectly via antigen
presenting cells (APC) selectively enhancing cytokine
production (53). Earlier studies showed that HSPs carry
tumor-derived peptides that may induce T- cell mediated
response while HSPs may stimulate NK cells in the absence of
antigenic peptide (45, 46). In this regard, Multhoff and colleagues
reported that pre-treatment of NK cells with stress-inducible
HSP70 or HSP70-derived TKD peptide in combination with IL-2
or IL-15 induces NK cell proliferation and cytolytic activity (54,
55). NK cells pre-stimulated with IL-2 and TKD in combination
with anti-PD-1 antibody improves cytolytic activity of NK cells
against tumor cells and inhibits tumor growth in vivo (56).
Notably, adoptive therapy with autologous NK cells ex vivo
stimulated with TKD and IL-2 increased the number of
activated NK cells in the blood of patients with membrane-
positive HSP70 non-small cell lung carcinoma after
radiochemotherapy in phase II clinical trial (36). Taken
together, HSPs regulate the expression of critical antigens and
co-stimulatory molecules on T cells and key activating receptors
on NK cells while HSPs inhibition impairs proliferation and
cytotoxic activity of T and NK cells, suggesting that HSPs are
critical for the regulation of the phenotype and functional
activity of T and NK cells.

HSP70s may also act as damage-associated molecular
patterns (DAMPs) and elicit anti-tumor response which with
long-term exposure results in immune tolerance (11, 57–59).
Acting as a DAMP, HSP70 negatively regulates multimeric
cytosolic protein complex - the Nod-like receptor protein 3
(NLRP3) inflammasome (60). NLRP3 is an intracellular sensor
that detects endogenous danger signals, leading to the assembly
of NLRP3 inflammasome, which further activates the caspase-1-
dependent release of pro-inflammatory cytokines such as IL-1b
and IL-18 (61). In this regard, HSP70 deficiency leads to the
activation of caspase-1 and subsequent production of IL-1b by
bone marrow-derived macrophages (60). Conversely, HSP90
Frontiers in Immunology | www.frontiersin.org 2
downregulation inhibits priming and activation of NLRP3
inflammasome (62). HSP90 inhibition in macrophages showed
to affect an inflammatory response to lipopolysaccharide and
IFNg, resulting in reduced secretion of IL-6, TNFa and nitric
oxide (NO) (63). Since HSP90 stabilizes IKK complex, the
expression of IKK was also diminished, leading to inactivation
of NF-kB pathway (63–65). Therefore, the overexpression of
HSP70 and HSP90 in the cytosol will either inhibit or activate
NLRP3 inflammasome, respectively, suggesting that functions of
immune cells that express NLPR3 inflammasome (e.g.
macrophages, monocytes and CD4+T cells) may be affected by
HSPs up- or down-regulation. For example, inflammasome
activation in CD4+T cells leads to increased IFNg secretion
and T helper (Th)1 differentiation, and, therefore, various
HSP90 and HSP70 inhibitors may differently affect Th1
response, however, this warrants further investigation (66).

HSPs such as stress-inducible cytosolic HSP90 family
member HSP90a (HSP90AA1) and constitutive cytosolic
HSP90 member HSP90b (HSP90AB1) also play an important
role in antigen presentation. Ichiyanagi and co-workers
demonstrated that heat shock factor -1 (HSF-1)-deficient DCs
are less efficient in cross-presentation of antigens (67).
Furthermore, HSP90a-deficient DCs showed reduction in
cytosolic translocation of antigens (65, 68). Along this line,
Kunisawa and colleagues reported that, in contrast to HSP90b,
specific inactivation of HSP90a leads to a loss of proteolytic
intermediates and reduced presentation of the final peptide on
the cell surface of MHC I molecule (69). Besides MHC class I
antigen presentation, HSP90 inhibition also downregulates
MHC II-mediated presentation of endogenous and exogenous
peptides by APC (70). Additionally, constitutive HSP70 family
member HSC70 is also involved in MHC class II antigen
presentation pathway (71, 72). HSC70 interacts with MHC II
for delivering clients to lysosomes (73). Cumulatively, these
studies suggest a major role of HSPs in MHC I and MHC II
antigen presentation, suggesting that HSP inhibition may affect
immune responses in various treatment scenarios.

HSPs are also implicated in the regulation of immune
checkpoints. Song and colleagues reported that HSP90a
inhibition sensitizes tumor cells to anti-PD-1 blockade (74). In
a recent study, Zavareh and co-workers (2021) demonstrated
that HSP90 inhibition by ganetespib reduces surface expression
of PD-L1 on MC-38 tumor cells and human monocyte-derived
macrophages (75). Mechanistically, HSP90 inhibition
downregulates c-MYC and signal transducer and activator of
transcription 3 (STAT3), leading to the reduction of PD-L1
surface expression (75). In this regard, Marzec and colleagues
demonstrated that HSP90 client protein nucleophosmin/
anaplastic lymphoma kinase (NPM/ALK) induced PD-L1
surface expression via the activation of STAT3 in T cell
lymphoma (76). Since c-MYC and NPM/ALK are HSP90
client proteins, it appears that HSP90 inhibition downregulates
PD-L1 surface expression via the degradation of HSP90 client
proteins (c-MYC and NPM/ALK). Notably, anti-PD-L1 in
combination with HSP90 inhibitor ganetespib showed higher
anti-tumor activity than anti-PD-L1 alone in syngeneic mouse
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models (77). Furthemore, ganetespib in combination with anti-
PD-L1 showed to increase the number of activated CD8+ T cells
(75). Earlier, Mbofung and colleagues (2017) demonstrated that
mice treated with ganetespib and anti-CTLA4 increased the
number of CD8+T cells while decreasing the number of T
regulatory cells (78).Furthermore, ganetespib upregulated
interferon response genes, sensitizing human melanoma cells
to T-cell mediated killing (78). D’Arrigo and colleagues reported
that downregulation of the spliced form of HSP90 cochaperone
FKBP51 (sFKBP51) reduces PD-L1 expression in glioma cells
(79). In another study, HSP70 ER member glucose-regulated
protein 78 (GRP78) downregulation decreased PD-L1 expression
in breast cancer cells (80). Taken together, HSPs regulate the
expression of multiple immune checkpoints including PD-L1
and PD-L2 while combination of anti-PD-L1, anti-PD-1, anti-
CTLA4 with HSP90 inhibitor showed promising results in
mouse models, suggesting that HSP inhibitors may further
improve immunotherapy.
EXTRACELLULAR HSPs AND
TUMOR IMMUNITY

In extracellular environment HSPs exist in several forms either
secreted or membrane-bound. In this regard, Multhoff and
colleagues demonstrated that surface expression of HSP70 on
tumors does not involve classical ER-Golgi transport pathway for
its membrane localization (81). Mambula and Calderwood
reported that HSP70 can be released via lysosomal endosomes
(82, 83). Authors also showed that HSP70 release involves the
entry of HSP70 into endolysosomes via ATP-binding cassette
(ABC) transporters (82, 83). HSP70 may also interact with either
globotriaoslyceramide or phosphatidylserine for the anchorage
of HSP70 in the plasma membranes of tumors (84, 85). Another
mechanism by which HSPs are secreted into extracellular milieu
involves the release of exosomes derived from multivesicular
bodies (86–89). In this regard, several studies reported that HSPs
on the surface of tumor-derived exosomes promote tumor
growth by suppressing immune responses (90, 91).

Extracellular HSP90
Ullrich and co-workers (1986) reported the expression of tumor-
specific transplantation antigen on the surface of tumor cells
which they identified as HSP90 (92). Immunization of mice with
this antigen inhibited tumor growth, suggesting that extracellular
HSP90 (eHSP90) contributes to anti-tumor immunity (92, 93).
Hostile tumor microenvironment leads to chronic ER stress,
resulting in the elevation of extracellular HSPs. In this regard,
Tramentozzi and colleagues observed high expression of
extracellular GRP94-IgG complexes in the plasma of cancer
patients (94). GRP94 alone or bound to IgG promotes
angiogenesis, MMP-9 expression and extracellular release of
HSP90a and HSP70 in human umbilical vein endothelial cells
(HUVECs) (94–96). Authors showed that GRP94 alone may
promote angiogenic transformation via stimulation of ERK1/
ERK2 pathway (96). eGRP94 also induces maturation of mDCs,
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increasing surface expression of CD86 and CD83 (97). GRP94-
treated mDCs strongly induces T cell proliferation (97).
Interaction of CD91 with GRP94 leads to increased secretion
of several inflammatory cytokines such as IL-1b, IL-6 and TNF-a
by RAW264.7 cells (98). Dai and colleagues reported that GRP94
on the surface of tumor cells also induces CD4+ and CD8+ T cell
memory response (99). eGRP94 facilitates cross-presentation of
MHC class I and elicits CD8+ T cell response (100). Even though
GRP94 facilitates the presentation of MHC class II-restricted
peptides, CD4+T cells are not capable of secreting Th1 and Th2
effector cytokines (100).Immunization with autologous tumor-
derived GRP94 of mice bearing methylcholanthrene-induced
fibrosarcomas effectively induced anti-tumor response on day 7
after tumor challenge and was less effective when the treatment
was started on day 9 after tumor challenge (101). DCs primed
with lung cancer-derived GRP94 also elicited anti-tumor
response in cytotoxic T lymphocytes (CTL) and NK cells
(102). On DCs, GRP94 interacts with TLR-2 and TLR-4,
leading to increased expression of CD86 and secretion of IL-12
and TNF-a (103, 104). Intriguingly, eGRP94 also promotes the
expression of Foxp3, IL-10 and TGF-b1 in T regulatory cells (T
regs) via TLR2/TLR4- mediated NF-kB signaling pathway
activation (105). GRP94-peptide complex interaction with
TLRs appears to be critical for the stimulation of cytotoxic T
cell response (106). Additionally, GRP94 also activates NLRP3
inflammasome in APCs, leading to the IL-1b secretion (107).
Taken together, eGRP94 possesses both pro- and anti-tumor
functions. On the one hand, eGRP94 promotes angiogenesis and
supports T reg suppressive function and, on the other hand,
eGRP94 induces DC maturation and enhances CTL response.

Intriguingly, Chen and colleagues demonstrated that
expression of stress-inducible HSP90a on the surface of
tumor-cell released autophagosomes (TRAPs) promotes IL-6
production by CD4+ T cells via TLR2-Myeloid differentiation
primary response protein 88 (MyD88)- NF-kB signalling
pathway (108). Autocrine IL-6 further enhanced IL-10 and IL-
21 production by CD4+T cells via STAT3, supporting tumor
growth and metastasis (108). In another study, eHSP90, IL-6 and
IL-8 secreted by macrophages activated JAK2-STAT3 in
pancreatic ductal epithelial cells, leading to malignant
transformation of these cells (109). Recent data have emerged
showing that monoclonal antibodies specifically targeting
eHSP90a inhibited tumor formation via blocking the
interaction of eHSP90 with matrix metalloproteinase 2
(MMP2) and MMP9 (110, 111). Since eHSP90a has a
profound immunosuppressive effects, it may be further
speculated that specific blocking of eHSP90a by monoclonal
antibodies will dampen IL-6-dependent inhibitory effects on
CD4+T and CD8+T cell function while also blocking IL-10
production by T and B cells, however, this warrants further
investigation (108).

Extracellular HSP70
eHSP70s have a dual role in the regulation of immune responses,
where HSP70 can act as immune suppressor and immune
activator (Figure 1). Such equivocal function of eHSP70 largely
depends on the type of immune cell on which eHSP70 exerts its
November 2021 | Volume 12 | Article 796493
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action. Multhoff and colleagues demonstrated that surface form of
cytosolic stress-inducible HSP70 member acts as recognition
structure for NK cells (119). Pre-treatment of NK cells with
human recombinant HSP70 enhanced NK cell proliferation and
IFN-g production (54). Gastpar and co-workers have shown that
CD94+NK cells migrate towards HSP70-surface positive tumors
(112). Later, same research team demonstrated that the expression
of HSP70 and co-chaperone BCL2-associated athanogene 4
(BAG4) on tumor-derived exosomes enhances migration and
cytolytic activity of NK cells (113, 118). The expression of BAG6
on the surface of DCs-derived exosomes also activates NKp30
receptor (120). Following treatment with various chemotherapeutic
agents, HSP-bearing exosomes released by hepatocellular
carcinoma cells stimulates NK cell cytotoxicity and granzyme B
production (121).

The ability of exosomal HSP70 to stimulate anti-tumor
responses has been demonstrated with the use of engineered
myeloma J558HSP cell line (115). Cells were manipulated to
endogenously express P1A tumor antigen and membrane-bound
HSP70 (115, 122). J558HSP –derived exosomes (EXOHSP)
upregulated the expression of CD40 and CD80 and increased
the section of IL-1b, IL-12, IFN-g and TNF-a by DCs (115).
Furthermore, immunization of BALB/c mice with EXOHSP

induced CD4+T cell response and secretion of IL-2 and IFN-g,
suggesting that EXOHSP induces type 1 T helper response (115).
EXOHSP could also effectively elicit P1A-specific CD8+T cell
response (115). In another study, stimulation of T cells with
soluble HSP70 (sHSP70) increased IFN-g, IL-6 and IL-8
production by CD4+ and IFN-g and IL-8 by CD8+ cells (114).
Notably, pre-stimulation with both HSP70 in combination with
IL-2 increased granzyme B secretion by CD4+ and CD8+ T cells
(114). Earlier, Blachere and colleagues demonstrated that
GRP94/gp96-peptide complexes and HSP70-peptide complexes
induce CD8+ T cell response (45).
Frontiers in Immunology | www.frontiersin.org 4
eHSP70 also regulates immunosuppressive activity of
myeloid-derived suppressor cells (MDSCs) and T regulatory
cells (T regs) (116, 117). Exosomal HSP70 induces STAT3
phosphorylation and increases secretion of IL-6 and vascular
endothelial growth factor (VEGF) in MDSCs, thus promoting
tumor growth (116). Wachstein and co-workers demonstrated
that pre-treatment of T regs with HSP70 upregulated the
secretion of IL-10, transforming growth factor b (TGF-b) and
resulted in phosphorylation of phosphatidylinositol 3-kinase
(PI3K)-serine/threonine protein kinase (AKT), c-Jun N-
terminal kinase (JNK) and p38 (117).

HSP70 ER homolog GRP78/BiP has also been observed on
the surface of tumor cells (123). High GRP78 expression has
also been observed on the surface of PBMC subpopulations
including CD4+ and CD8+T cells and CD56+ NK cells,
following chemotherapy in breast cancer patients (124).
Interestingly, eGRP78 increases CD19+ surface expression,
upregulates PD-L1 and FasL expression and IL-10 secretion
in B cells (125). Notably, CD19+ cells pre-treated with GRP78
and anti-CD40 inhibited the proliferation of CD3/CD28-
activated T cells, indicating that GRP78 may induce B regulatory
cells (125). In another study, Corrigall and colleagues have reported
that eGRP78 increased IL-10 secretion by PBMCs and reduced
expression of HLA-DR and CD86 on monocytes (126). Later,
same research team showed that mDCs treated with GRP78
increases intracellular indoleamine 2,3- dioxygenase (IDO) level
and surface expression of leukocyte immunoglobulin-like
receptor subfamily B member 1 and downregulates HLA-DR
and CD86 expression, while retaining CD14 expression (127). T
cells treated with such mDCs upregulated the expression of
CD4+CD25highCD27high and cytotoxic T-lymphocyte antigen
(CTLA-4), while no increase in the expression of forkhead box P3
(FOXP3) was observed (127). Therapeutic targeting of surface
GRP78 by human IgM monoclonal antibody PAT-SM6 resulted
FIGURE 1 | Extracellular HSP70 immune network in cancer. eHSP70s enhance NK cytotoxicity, DC maturation, induce strong CD4+ and CD8+ T cell responses and
cytokine secretion by monocytes and enhance immunosuppressive activity of MDSCs and T regs (54, 112–118). MDSCs, myeloid-derived suppressor cells; T reg, T
regulatory cell; GzmB, granzyme B; DC, dendritic cells; IFNg, interferon g; BAG, BCL2-associated athanogene; IL-6, interleukin-6; TNF-a, tumor necrosis factor a; VEGF,
vascular endothelial growth factor; TGF-b, transforming growth factor b; PI3K/AKT, phosphatidylinositol 3-kinase (PI3K)-serine/threonine protein kinase (AKT), JNK, c-Jun
N-terminal kinase; STAT3, signal transducer and activator of transcription.
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in induction of apoptosis and complement-dependent cytotoxicity
indenovo and relapsedmultiplemyeloma (38, 128). Along this line,
murine IgG antibody C107 targeting GRP78 carboxyl-terminal
domain induced apoptosis in vitro and inhibited melanoma
growth in vivo (123, 129). In another study, Liu and co-workers
reported that monoclonal antibody Mab159 binds to the surface
GRP78 and triggers GRP78 endocytosis, leading to apoptosis in
breast and colon cancer cell lines via inhibiting phosphoinositide 3-
kinase (PI3K) activity (130).

Pilzer and co-workers demonstrated that mitochondrial
HSP70 mortalin interacts with complement C9 (131, 132).
Sub-lytic complement attack causes C9 and mortalin release in
extracellular vesicles (131). Mechanistically, formation of the
complete C5b-C9 membrane-attack complex (MAC) induced
the release of mortalin whereas targeting mortalin with
antibodies showed to increase cell lysis (131). Thus, authors
concluded that mortalin protects cells from complement-
dependent cytotoxicity (CDC) by removing MAC from the cell
surface (131). Later, same research team showed that blocking
mortalin sensitizes tumor cells to CDC (133).

eHSP70 may also bind to the surface of human monocytes,
leading to intracellular calcium flux, activation of nuclear factor
(NF)-kB and increased production of IL-1b, TNF-a and IL-6 via
NF-kB pathway (134).Taken together, extracellular HSP70s
promote proliferation and cytolytic activity of NK cells, DC
maturation, CD4+ and CD8+ T cell responses, protect cancer cell
from CDC as well as enhances induction of tolerogenic DCs,
immunosuppressive activity of MDSCs and generation of T
regulatory cells. Therefore, future discoveries of therapies
targeting extracellular form of HSP70 should take into account
equivocal effect of HSP70 family members on different
components of immune system.

Extracellular HSP110 and GRP170
HSP110 represents a family of chaperones that is distantly
related to HSP70 family (1). Recent studies have emphasized
the role of extracellular HSP110 and its ER member GRP170
in the regulation of immune responses. In this regard,
Frontiers in Immunology | www.frontiersin.org 5
Berthenet and colleagues reported that eHSP110 promotes
macrophage polarization towards M2 phenotype via TLR4
pathway while HSP110 inhibition reverses this effect (135). In
the extracellular space, GRP170 secreted by B16 melanoma cells
acts as a danger signal, inducing the production of IL-1b and
TNFa by DCs and eliciting antigen-specific CTL response by
cross-priming (136–138). Along this line, immunization of
mice with tumor-derived GRP170 induces potent CD8+T cell
response (139).

Extracellular HSP60
HSP60 plays critical role in the regulation of innate and
adaptive immune responses (Figure 2) (141). In response to
HSP60, macrophages and DCs secrete inflammatory cytokines
such as IFNa, TNF-a, IL-12, IL-15, IL-6, IL-1b and NO
(Figure 2A) (141, 142). eHSP60 induces the maturation of
bone marrow-derived dendritic cells (BMDCs) via TLR4 and
activation of allogeneic T cells, resulting in the production of
Th1-promoting cytokines (140). Feng and colleagues
demonstrated that the expression of HSP60 on the surface of
apoptotic tumor cells activates DCs and induces cytotoxic T cell
response, suggesting that the HSP60 on tumor cells may
promote potent anti-tumor T cell response mediated by APC
(2, 146). By contrast, T cells pre-treated with HSP60
downregulate Th1-associated transcription factors such as T-
bet, NFATp and NF-kB, inhibiting the secretion of IFN-g and
TNF-b, and upregulate GATA-3, leading to increased secretion
of Th2-associates cytokines such as IL-10, IL-4 and IL-13
(Figure 2B) (143). eHSP60 also increases the expression of
suppressor of cytokine signalling 3 (SOCS3) via TLR2 and
STAT3, thus inhibiting T cell chemotaxis towards stromal cell-
derived factor-1a (SDF-1a) (147). Activated T cells can also
present HSP60 by MHC molecules to anti-ergotypic T
regulatory cells, resulting in the secretion of IFN-g and
TGFb1 by anti-ergotypic T cells (Figure 2B) (144). Of note,
co-stimulation in the form of CD80, CD86 and CD28 is
required for the activation of anti-ergotypic T cells (144).
Additionally, anti-ergotypic T regulatory cells decrease the
A B CA B C

FIGURE 2 | Extracellular HSP60 immune network. (A) HSP60 induces DC maturation and secretion of inflammatory cytokines (140–142). (B) eHSP60
downregulates Th1-associated transcription factors (T-bet, NF-kB, NFATp) and upregulates GATA3, leading to decreased secretion of TNF-a and IFN-g and
increased secretion of IL-10, IL-4, IL-13 (143). Activated T cells can present HSP60 via MHC molecules to anti-ergotypic T cells, leading to the production of IFNg
and TGFb1 by anti-ergotypic T regulatory cells (144). (C) HSP60 activates B cells via TLR4-MyD88 signaling pathway, leading to the production of IL-10, IL-6 and
IgG3 (145). TLR4, Toll-like receptor 4; NO, nitric oxide, CD40L; CD40 ligand; TCR, T cell receptor; MHC II, major histocompatibility complex; IgG3, Immunoglobulin
G3; Nf-kB; nuclear factor kappa B; NFAT, nuclear factor of activated T cells.
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secretion of IFNg by effector T cells in vitro (141, 144). eHSP60
also stimulates the secretion of IL-10, IL-6, IgG3 and
upregulates the expression of MHC class II, CD69, CD86 and
CD40 in B cells (145). Interaction of eHSP60-treated B cell with
T cells leads to the IFNg and IL-10 production by T cells
(Figure 2C) (145).

In the extracellular milieu, HSP60 released by B16 melanoma
cells promotes the secretion of immunosuppressive cytokines and
chemokines including IL-6, IL-10, IL-13, TGF-b1, CCL-2 and
CCR8 via TLR2 and STAT3 activation (2, 148). Highly metastatic
B16 cells released higher levels of HSP60 resulting in persistent
TLR2 and STAT3 activation compared to poorly metastatic B16-
F1 cells (148). These results provide a mechanistic explanation
to the role that extracellular HSP60s play in promoting
immunosuppressive tumor microenvironment (2).

Extracellular HSP27
HSP27 (HSPB1) is a member of small HSP family aberrant
expression of which correlates with poor prognosis and
resistance to chemotherapy in different types of cancer (1,
149). eHSP27 induces the secretion of immunosuppressive
factors including IL-6, IL-10, prostaglandin E2 and
proangiogenic cytokines such as IL-8, VEGF-A, IL-1b and
TNF-a by human monocytes (150). eHSP27 also induces high
level of monocyte chemotactic protein-1 (MCP-1), a chemokine
responsible for monocyte recruitment at the tumor sites (150).
Moreover, eHSP27 promotes the differentiation of monocytes
into macrophages with TAM-like phenotype (150). HSP27-
differentiated macrophages have reduced expression of MHC
class II, CD86 and increased expression of PD-L1, Ig-like
transcript 2 (ILT2) and ILT4 (150). Autologous T cell co-
cultured with HSP27-differentiated macrophages inhibits T cell
proliferation and significantly reduces the secretion of IFN-g and
IL-13 by T cells, suggesting that HSP27-differentiated
macrophages induce T cell anergy (150).
CONCLUSION AND PERSPECTIVES

Heat shock proteins are molecular chaperones which have
shown to be implicated in various hallmarks of cancer such as
apoptosis resistance, angiogenesis, invasion, metastasis, cancer
cell stemness and immune tolerance. Apart from their
Frontiers in Immunology | www.frontiersin.org 6
intracellular functions, HSP can also be secreted in
extracellular space, where HSPs interact with various
components of the immune system. Even though considerable
progress has been made in deciphering the role of HSPs in tumor
immunity, there is still a lot to be understood. For example, the
role of distinct HSP members in the regulation of innate and
adaptive immune responses inside and outside the cell in the
context of cancer is not clear. Furthermore, the effects of various
HSP-based immunotherapies on the release of HSPs in tumor
microenvironment and their subsequent effects on immune
responses are not yet fully understood. Taking into account
that inside the cell HSPs may translocate from their primary
locations and acquire different functions, it is also important to
understand the effect of HSP-based immunotherapies on
intracellular HSPs. Elucidating the role of HSP in the
modulation of immune responses may improve current
treatment strategies and open new perspectives for the
discovery of novel HSP-based immunotherapy approaches.
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