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Italy, 5 IRCCS Neuromed, Pozzilli, Italy

Phosphodiesterase 4 (PDE4) inhibitors are immunomodulatory drugs approved to treat
diseases associated with chronic inflammatory conditions, such as COPD, psoriasis and
atopic dermatitis. Tanimilast (international non-proprietary name of CHF6001) is a novel,
potent and selective inhaled PDE4 inhibitor in advanced clinical development for the
treatment of COPD. To begin testing its potential in limiting hyperinflammation and
immune dysregulation associated to SARS-CoV-2 infection, we took advantage of an
in vitro model of dendritic cell (DC) activation by SARS-CoV-2 genomic ssRNA (SCV2-
RNA). In this context, Tanimilast decreased the release of pro-inflammatory cytokines
(TNF-a and IL-6), chemokines (CCL3, CXCL9, and CXCL10) and of Th1-polarizing
cytokines (IL-12, type I IFNs). In contrast to b-methasone, a reference steroid anti-
inflammatory drug, Tanimilast did not impair the acquisition of the maturation markers
CD83, CD86 and MHC-II, nor that of the lymph node homing receptor CCR7. Consistent
with this, Tanimilast did not reduce the capability of SCV2-RNA-stimulated DCs to activate
CD4+ T cells but skewed their polarization towards a Th2 phenotype. Both Tanimilast and
b-methasone blocked the increase of MHC-I molecules in SCV2-RNA-activated DCs and
restrained the proliferation and activation of cytotoxic CD8+ T cells. Our results indicate
that Tanimilast can modulate the SCV2-RNA-induced pro-inflammatory and Th1-
polarizing potential of DCs, crucial regulators of both the inflammatory and immune
response. Given also the remarkable safety demonstrated by Tanimilast, up to now, in
clinical studies, we propose this inhaled PDE4 inhibitor as a promising immunomodulatory
drug in the scenario of COVID-19.
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INTRODUCTION

SARS coronavirus 2 (SARS-CoV-2), the causative agent of the
pandemic Coronavirus disease 2019 (COVID-19), is a positive-
sense ssRNA virus belonging to the family of Coronaviridae (1).
In a subgroup of patients, COVID-19 develops as acute
respiratory distress syndrome (ARDS) featuring intense lung
injury, sepsis-like manifestations and multi-organ failure (2).
Dysfunctional immune response and hyper-inflammation with
subsequent cytokine storm were shown to play a key role in the
development of severe and fatal forms of COVID-19 (3). We
recently described a novel mechanism of SARS-CoV-2-
dependent activation of innate immune cells, based on the
recognition of sequences of viral genomic ssRNA (SCV2-RNA)
by endosomal pattern recognition receptors, namely TLR7 and
TLR8 (4). Of note, SCV2-RNA recapitulated potent lung
inflammation in vivo and induced a strong release of pro-
inflammatory cytokines and Th1 polarization in vitro.

Several immunomodulatory therapies targeting the
inflammation-driven damaging stages were proposed for the
treatment of severe COVID-19 (5). Among these, inhibitors of
phosphodiesterases (PDEs) have been put forward based on the
analogy between the clinical features of COVID-19 and other
pathologies, associated with inflammation, for which these drugs
are already approved (6). PDEs are a superfamily of 11
isoenzymes that modulate signal transduction by degrading
cyclic nucleotides (cAMP and/or cGMP). PDE4s, comprising
PDE4A, PDE4B, PDE4C and PDE4D, are cAMP-specific PDEs
abundantly expressed in leukocytes (7), where they promote the
production of pro-inflammatory cytokines and lipid mediators
(8). Inhibition of PDE4 leads to accumulation of intracellular
cAMP and to a shift of the anti-inflammatory/pro-inflammatory
balance (8). Such upstream anti-inflammatory mechanism,
makes these agents particularly interesting to master critical
conditions characterized by overt release of multiple cytokines,
as compared to other single downstream anti-cytokine drugs (9).
Nevertheless, side effects such as gastrointestinal disturbances,
particularly nausea and emesis as well as headache and weight
loss are typically associated with oral PDE4 inhibitors (10).
Tanimilast (international non-proprietary name of CHF6001)
is an inhaled, selective inhibitor of PDE4 isoforms A-D (11)
endowed with anti-inflammatory properties in several in vitro
and in vivomodels (12, 13) which is particularly well tolerated as
compared to oral PDE4 inhibitors (13) given its high lung
retention coupled with low systemic exposure (14). Published
data by our group highlighted that Tanimilast can reduce the
secretion of inflammatory and Th1/Th17 polarizing cytokines by
fine tuning the activity of the master inflammatory transcription
factor NF-kB, which could be useful to control Th-1 and Th-17
driven pathologies without inducing a global repression of the
inflammatory and immune responses (15).

Dendritic cells (DCs) are innate immune cells that, by
expressing several nucleic acid sensors, play a crucial role in
recognizing viral pathogens and mounting protective
inflammatory and interferon responses. In addition, DCs are
specialized antigen presenting cells capable of activating and
shaping the adaptive response, both CD4+ and CD8+ T cell-
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mediated, to clear the infection (16). Given the central role of
DCs in the regulation of the immune response, excessive
activation of these cells may unleash overt immunity and tissue
damage (16, 17). During the progression of SARS-CoV-2
infection, both DCs and CD4+ and CD8+ T cell are recruited
to the lung (18, 19), with Th1/Th17 effectors reported to play a
pivotal role in severe COVID-19 pneumonia (20, 21). Thus, DCs
represent an interesting pharmacological target to modulate
detrimental immune responses, possibly including those
observed in severe forms of COVID-19.

This study was designed to investigate the effects of
Tanimilast on DC activation induced by SCV2-RNA with the
aim of uncovering the potential beneficial immunomodulatory
effects of such drug in COVID-19.
MATERIALS AND METHODS

Cell Preparation and Culture
Buffy coats from blood donations of anonymous healthy donors
were obtained and preserved by the Centro Trasfusionale,
Spedali Civili of Brescia according to the Italian law
concerning blood component preparation and analysis.
Peripheral blood mononuclear cells (PBMC) were obtained by
density gradient centrifugation and monocytes were
subsequently purified by immunomagnetic separation using
anti CD14-conjugated magnetic microbeads (Miltenyi Biotec)
according to the manufacture’s protocol and as previously
published (22). Briefly, monocytes were cultured for 6 days in
tissue culture plates in complete medium (RPMI 1640
supplemented with 10% heat-inactivated, endotoxin free FBS, 2
mM L-Glutamine, penicillin and streptomycin (all from Gibco,
Thermo Fisher Scientific) in the presence of 50 ng/ml GM-CSF
and 20 ng/ml IL-4 (Miltenyi Biotec). Untouched peripheral
blood cDC1 and cDC2 (cDCs) and pDCs were obtained from
PBMC after negative immunomagnetic separation with the
Myeloid Dendritic Cell Isolation kit (Miltenyi Biotec) and the
Plasmacytoid Dendritic Cell Isolation kit II (Miltenyi
Biotec), respectively.
Cell Stimulation With SCV2-RNA
Complexation of SCV2-RNA (5’-UGCUGUUGUGUGUUU-3’;
genome position: 15692-15706) with DOTAP Liposomal
Transfection Reagent (Roche) was performed as previously
described (4). Briefly, 5 mg RNA in 50 ml HBS buffer (20 mM
HEPES, 150 mM NaCl, pH 7.4) was combined with 100 ml
DOTAP solution (30 ml DOTAP plus 70 ml HBS buffer) and
incubated for 15 minutes at RT. After the complexation, 150 ml of
HBS was added and used to stimulate the cells (final
concentration of 5 mg/ml). Where indicated, cells (2x106/ml in
48 well-plate) were pretreated for 1 hour with the indicated
concentrations of Tanimilast or b-methasone (provided by
Chiesi Farmaceutici S.p.A.). The maturation process was
conducted in RPMI containing 2% FBS and supplemented
with 0.01% DMSO to avoid the sequestration of Tanimilast by
serum proteins.
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Cytokine Detection
TNF-a, IL-1b, IL-6, IL-12p70, CXCL8, CXCL10, CCL3, CCL17
were measured by ELISA assay (R&D Systems). IFN-a was
detected using specific Module Set ELISA kit (eBioscience) and
IFN-b by was measured by a bioluminescence kit (In vivoGen).
All assays were performed on cell free supernatants according to
the manufacturer’s protocol.

Flow Cytometry
DCs were stained with the following antibodies from Miltenyi
Biotec: Vioblue-conjugated anti-human CD86 (clone FM95), PE-
conjugated anti-human CD83 (clone REA714), FITC-conjugated
anti-human BDCA2 (clone AC144), APC-conjugated anti-human
CCR7 (clone REA546). Cell viability was assessed by LIVE/DEAD
staining according to the manufacturer’s instruction (Molecular
Probes, Thermo Fisher Scientific). Samples were read on a
MACSQuant Analyzer (Miltenyi Biotec) and analysed with
FlowJo (Tree Star Inc.). Response definition criteria were defined
post-hoc. Raw data can be provided per request.

T Cell Proliferation Assay
Because Tanimilast was previously shown to exert direct effects
on T lymphocytes (23, 24), stimulated moDCs were collected and
thoroughly washed to avoid any Tanimilast contamination of
cocultures. Allogenic naïve CD4+ T cells and CD8+ T cells were
isolated from buffycoats using the naïve CD4+ T cell Isolation kit
II (Miltenyi Biotec) and CD8+ T cell Isolation kit (Miltenyi
Biotec), respectively. Purified T cells were labeled with CellTrace-
CFSE (Molecular Probes, Thermo Fisher Scientific) at a final
concentration of 5 mM. Subsequently, T cells (6x104 cells/well)
were co-cultured with graded numbers of moDCs in 96-well
round-bottom culture plates in complete RPMI medium. After 6
days, alloreactive T cell proliferation was assessed by measuring
the loss of the dye CellTrace-CFSE upon cell division using flow
cytometry. Positive controls of T cell proliferations were
routinely performed using IL-2 plus PHA. Response definition
criteria were defined post-hoc. Dead cells were excluded by LIVE/
DEAD staining according to the manufacturer’s instruction. Raw
data can be provided per request.

Analysis of T Cell Cytokine Production
After6daysof co-culture,CD4+andCD8+Tcellswere restimulated
with 200 nM PMA (Sigma-Aldrich) plus 1 mg/ml of ionomycin
(Sigma) for 4.5 hours. Brefeldin A (5 mg/ml, Sigma) was added
during the last 2 hours. For intracellular cytokine production, cells
were fixed and permeabilizedwith Inside Stain kit (Miltenyi Biotec)
and stained with FITC-conjugated anti-IFN-g (clone 45-15,
Miltenyi Biotec), PE-conjugated anti-IL-4 (clone 7A3-3, Miltenyi
Biotec), APC-conjugated anti-IL-13 (clone OES10-5A2,
Biolegend), APC-conjugated anti GrB (clone REA226) following
the manufacturer’s recommendations. Response definition criteria
were defined post-hoc. Raw data can be provided per request.

Statistical Analysis
Sample group normality was confirmed by Shapiro-Wilk test
before application of parametric statistical analysis. Statistical
significance among the experimental groups was determined
Frontiers in Immunology | www.frontiersin.org 3
using one-way ANOVA with Dunnet ’s post-hoc test
(GraphPad Prism 7, GraphPad Software) as indicated in each
figure legend. P< 0.05 was considered significant.
RESULTS

Tanimilast Selectively Reduces the
Secretion of Cytokines and Chemokines
by moDCs Stimulated With SCV2-RNA
(SCV2-moDCs)
The effects of Tanimilast on the pro-inflammatory properties of
SCV2-moDCs were assessed in terms of cytokine and chemokine
regulation. moDCs were pre-treated with Tanimilast (10-11, 10-9,
10-7M) for1hour and thenstimulatedwithanoptimal concentration
of SCV2-RNA (4). The concentrations of Tanimilast used in this
study were previously shown to be effective in moDCs without
reducing cell viability [ (15) and data not shown]. b-methasone
(10-7M), a glucocorticoid anti-inflammatorydrugcommonlyused to
treat overactive inflammation (25), was used as a comparison.
Figure 1A shows that Tanimilast dose-dependently decreased the
productionof thepro-inflammatorycytokineTNF-aandof theTh1-
polarizing cytokines IL-12 and IFN-b, although with different
efficacy. Similarly, also the myelomonocyte-attracting chemokine
CCL3 and the Th1-attracting chemokines CXCL9 and CXCL10
were dose-dependently reduced (Figure 1B). Figures 1A, B show
the calculated IC50s that, inmost cases, lie in the nanomolar range, a
result consistentwithpreviously publisheddata and indicating a high
potency of Tanimilast (12, 14, 15).However, in the case of IFN-b and
CXCL10, Tanimilast at a concentration of 10-7 M (representing the
maximal concentration of solubility in our system) could inhibit less
than 50% of the secreted cytokine. At 10-7 M maximal inhibitory
effect on PDE4 is reached (15, 23). Therefore, it is likely that at such
concentrationalso themaximal inhibitory effect ofTanimilast against
these two cytokines is reached. Thus, the IC50s could be defined as
>100nM. Tanimilast did not inhibit the secretion of the neutrophil-
attracting chemokine CXCL8, as well as that of IL-6 (Figure 1C). In
most cases, b-methasone showed a similar inhibition pattern. At
differencewith Tanimilast, howeverb-methasone effectively reduced
IL-6 and CXCL8 secretion (60% and 50% reduction respectively,
Figure 1C), while it did not counteract the induction of CXCL9 and
CXCL10 (Figure 1B).

Interestingly, significant inhibition of cytokine secretion
could also be observed when Tanimilast was administered
together and 1 hour after the stimulation with SCV2-RNA,
which better mimics a setting in which Tanimilast is used as a
therapeutic agent (Figure 1D).

These results indicate that both Tanimilast and b-methasone
reduce the overall pro-inflammatory potential of SCV2-moDCs.
Interestingly, the modulatory pattern of target cytokines differs
between the two drugs.

Tanimilast Does Not Impair the Acquisition
of Maturation Markers by SCV2-moDCs
Consistent with our previous findings in LPS-treated moDCs
(15), Tanimilast pre-treatment (10-7 M) did not restrain the
upregulation of the costimulatory molecules CD83 and CD86
January 2022 | Volume 12 | Article 797390
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A

B

C

D

FIGURE 1 | Effect of Tanimilast on cytokine and chemokine secretion by moDCs challenged with SCV2-RNA. (A–C) moDCs (2x106/ml) were pre-treated or not (-)
with the indicated doses of Tanimilast (Tan) or b-methasone (b-meth) for 1 hour and then stimulated with SCV2-RNA (5 mg/ml) for 24 hours. (D) Tanimilast (Tan) was
added 1 hour before (Pre), together (Co) and 1 hour after (Post) the stimulation with SCV2-RNA. Cytokine (A, C, D) and chemokine (B, C, D) production was
evaluated by ELISA in cell-free supernatants. Cytokine/chemokine expression was normalized to SCV2-RNA condition (represented as 100%) to control donor-
dependent variation. Absolute levels of SCV2-RNA induced cytokines (ng/ml) were: TNF-a=154.79 ± 26.37; IL-6 = 131.66 ± 16.8; IL-12 = 62.53 ± 21.5; IFN-b=0.38
± 0.2; CCL3 = 42.21 ± 9.79; CXCL9 = 76.1 ± 22.7; CXCL10 = 33 ± 5.8 and CXCL8 = 94.1 ± 10.6. Data are expressed as mean ± SEM (n=3); *P< 0.05 versus
SCV2-RNA by one-way ANOVA with Dunnett’s post-hoc test. IC50 was calculated by GraphPad Prism nonlin fit log(inhibitor) vs. response.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 12 | Article 7973904
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and of the lymph-node-homing receptor CCR7 induced by
SCV2-RNA (Figure 2A, left panels). Indeed, the expression of
these markers showed the tendency to be even higher in the
presence of Tanimilast both on a per-cell-basis as demonstrated
by higher MFI and in terms of % of positive cells (Figure 2A,
center and right panels). Similarly, Tanimilast pretreatment did
not block the upregulation of MHC-II, while consistently
reducing the MFI of MHC-I (Figure 2B left and center
Frontiers in Immunology | www.frontiersin.org 5
panels). As expected, both these markers were expressed by
100% of the cells in the population in all conditions
(Figure 2B right panels). By contrast, b-methasone
counteracted the SCV2-RNA-dependent upregulation of all
these markers. Both drugs did not modify the phenotype of
unstimulated moDCs (Figures 2A, B, white bars).

Thus, unlike b-methasone, Tanimilast does not grossly
impair the phenotypical maturation of moDCs. However, it
A

B

FIGURE 2 | Effect of Tanimilast on moDC phenotypic maturation induced by SCV2-RNA. (A, B) moDCs were pre-treated or not (-) with either Tanimilast (Tan) or
b-methasone (b-meth) (both at 10-7M) for 1 hour and subsequently stimulated or not with SCV2-RNA for 24 hours. The surface expression of activating markers CD83,
CD86, CCR7 (A) and of antigen presenting molecules MHC-I, MHC-II (B) were evaluated by FACS analysis. Data are expressed as representative cytofluorimetric profiles
(left panels),as the mean ± SEM (n=3-4) of the Median Fluorescence Intensity (MFI) (center panels) and of the percentage of positive cells (right panels). #P < 0.05 versus
(-) and *P < 0.05 versus SCV2-RNA by one-way ANOVA with Dunnett’s post-hoc test.
January 2022 | Volume 12 | Article 797390

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nguyen et al. Tanimilast Blunts SCV2-RNA-Induced DC Activation
selectively targets the upregulation of MHC-I, which may result
in the modulation of antigen presentation to CD8+ T cells.

Tanimilast Restrains CD8+ T Cell
Activation by SCV2-moDCs
Based on findings described above, we set up allogeneic co-
culture experiments to characterize the CD8+ T-cell activating
properties of SCV2-moDCs in the presence of Tanimilast.
Figure 3A shows that, consistent with the observed MHC-I
reduction, both Tanimilast and b-methasone impaired CD8+ T
cell proliferation induced by stimulation with SCV2-moDCs, as
assessed by CFSE staining. In addition, both drugs also reduced
the percentage of cells producing IFN-g and Granzyme B, two
key effector molecules of activated CD8+ T cells (Figure 3B).

SCV2-moDCs Induce a Th2-Skewed
CD4+ T Cell Response in the Presence
of Tanimilast
The same experiments were performed using naïve CD4+ T cells as
responders. As expected, based on the lack of MHC-II and
costimulatory molecule modulation, Tanimilast did not affect the
proliferative response of CD4+ T cells induced by SCV2-moDCs
(Figure 4A). By contrast, b-methasone reverted T cell proliferation
Frontiers in Immunology | www.frontiersin.org 6
almost to basal levels, in accordance with MHC-II downregulation.
Next, the effects of Tanimilast on the polarizing properties of SCV2-
moDC were assessed by measuring the levels of intracellular cytokines
in activated CD4+ T cells. We have previously shown that SCV2-RNA
induces a prominent Th-1 response (4), whichwas consistently blocked
by both Tanimilast and b-methasone (Figure 4B). Interestingly, pre-
treatment with Tanimilast, but not with b-methasone, enhanced the
development of T cells producing IL-4 and IL-13, which characterize
Th2-skewed CD4+ effectors (Figure 4B). Of note, Tanimilast alone did
not induce either IL-4+ or IL-13+ T cells (data not shown). We also
stained for IL-17 production, but this was undetectable in our
experimental conditions (data not shown).

Taken together, these results indicate that DCs matured in the
presence of Tanimilast fully retain the stimulatory capacity to
induce CD4+ T cell proliferation while skewing the T helper
response toward a Th2 profile. By contrast, the effect of b-
methasone results in a general inhibition of CD4+ T cell
activation, resembling the inhibition observed on CD8+ T cells.

Primary DC Subsets Recapitulate the Effects
of Tanimilast Pre-Treatment of moDCs
To confirm the results obtained in moDCs also in primary DCs,
we immunomagnetically sorted the two main subsets of
A

B

FIGURE 3 | Effect of Tanimilast on CD8+ T cell activation by SCV2-moDCs. (A) moDCs were treated or not (-) with either Tanimilast (Tan) or b-methasone (b-meth) (both at
10-7M) for 1 hour and then stimulated with SCV2-RNA. After 24 hours, moDCs were collected and co-cultured with graded numbers of CFSE-stained allogenic CD8+ T
cells for 6 days. Alloreactive T cell proliferation was assessed by measuring CellTrace-CFSE dye loss by flow cytometry. Left, dot plot from one representative experiment
(1:40 ratio). Right, line graphs from three independent experiments with different DC:T cell ratio. Data are expressed as mean ± SEM (n=3) of the percentage of proliferating
CD8+ T cells. (B) moDCs treated as described in (A) were co-cultured with graded numbers of CD8+ T cells for 6 days. Intracellular IFN-g and Granzyme B (GrB) were
evaluated by FACS analysis. Left, dot plot from one representative experiment. Right, bar graphs from four independent experiments. Data are expressed as mean ± SEM
(n=4) of the percentage of double positive T cells. (A, B) #P versus (-) and *P< 0.05 versus SCV2-RNA by one-way ANOVA with Dunnett’s post-hoc test.
January 2022 | Volume 12 | Article 797390
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circulating DCs, namely cDCs and pDCs. Because of the rarity
of these cells, only a fixed concentration of Tanimilast was used
(10-7M). In cDCs, a substantial lack of CD86 and CCR7
modulation by Tanimilast was confirmed, both in terms of
percentage of positive cells and of mean fluorescence intensity
of the population (Figure 5A). By contrast, the production of
TNF-a was significantly decreased (Figure 5B). Regarding
pDCs, though Tanimilast did not interfere with the
acquisition of a mature phenotype characterized by the
upregulation of CD86 and downregulation of BDCA2
(Figure 5C), it decreased IFN-a secretion to 40% (Figure 5D).
Frontiers in Immunology | www.frontiersin.org 7
DISCUSSION

Tanimilast is a novel inhaled PDE4 inhibitor currently
undergoing phase III clinical development for COPD which
shows promising pharmacodynamic results associated with a
good tolerability and safety profile (14, 24). Tanimilast was
previously shown to act as a potent anti-inflammatory agent in
several cell-based models (23), including leukocytes derived from
asthma (26) and COPD patients (27) and rhinovirus-infected
human bronchial epithelial cells (12), as well as in experimental
rodent models of pulmonary inflammation (13). In this study,
A

B

FIGURE 4 | Effect of Tanimilast on CD4+ T cell activation by moDCs. (A) moDCs were treated or not (-) with Tanimilast (Tan) or b-methasone (b-meth) (both at
10-7M) for 1 hour before stimulation with SCV2-RNA. After 24 hours, moDCs were collected and co-cultured with graded numbers of CFSE-stained allogenic CD4+

T cells for 6 days. Alloreactive T cell proliferation was assessed by measuring CellTrace-CFSE dye loss by flow cytometry. Left, dot plot from one representative
experiment (1:40 ratio). Right, line graphs from four independent experiments with different DC:T cell ratio. Data are expressed as mean ± SEM (n=4) of the
percentage of proliferating CD4+ T cells. (B) Activated moDCs were incubated with graded numbers of T cells for 6 days. Intracellular IFN-g, IL-4 and IL-13 were
evaluated by FACS analysis. Left, dot plot from one representative experiment. Right, bar graphs from four independent experiments. Data are expressed as mean ±
SEM (n=3-4) of single IFN- g- (upper right panel) or single IL-4- (right Y axis) and IL-13- (left Y axis) (lower right panel) producing T cells. (A, B) #P< 0.05 versus (-)
and *P< 0.05 versus SCV2-RNA by one-way ANOVA with Dunnett’s post-hoc test.
January 2022 | Volume 12 | Article 797390
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Tanimilast is investigated as an agent capable of modulating the
strong inflammatory activation induced by SCV2-RNA in
human DCs. Consistent with previous work of our group (15),
Tanimilast reduced the secretion of selected, but not all cytokines
without affecting the acquisition of a mature phenotype. This is a
condition previously defined as “semi-mature DCs”, suited to
prevent excessive responses in peripheral tissues (28). Our
analysis was conducted in parallel with b-methasone, since
corticosteroids are established drugs in the treatment of
overactive immune conditions, also undergoing clinical trials
for the treatment of COVID-19 (5). Unlike Tanimilast, b-
methasone induced a widespread and clear-cut shift from
competent to suppressive moDCs. Tanimilast decreased the
expression of TNF-a and CXCL10, which are cytokines highly
correlated with severity and mortality rate of Covid-19 (29, 30).
Frontiers in Immunology | www.frontiersin.org 8
Additionally, Tanimilast induced a marked reduction in the
release of chemokines that amplify the inflammatory and
immune response via the recruitment of innate cells (e.g.
CCL3) or Th1 effector cells (e.g. CXCL9/10). To date, many
ongoing trials to test the efficacy of anti-TNF-a or anti-IL-6
drugs in severe COVID-19 have provided conflicting results (31,
32). It is tempting to speculate that Tanimilast may prove
beneficial because of its broad modulatory effect on several
cytokines, as compared to drugs selectively targeting one
specific cytokine.

We observed that Tanimilast, unlike b-methasone, did not
inhibit the SCV2-RNA-dependent release of the neutrophil
attracting CXCL8, another prognostic marker in COVID-19
(33). However, CXCL8 is produced by many cell types in
addition to DCs and was shown to be efficiently blocked by
A

B

C

D

FIGURE 5 | Effect of Tanimilast on primary DC activation by SCV2-RNA. cDCs (2x106/ml) and pDCs (1x106/ml) were pre-treated with Tanimilast (Tan, 10-7M) and
then stimulated with SCV2-RNA for 24 hours. (A, C) The surface expression of CD86, CCR7 and BDCA2 was evaluated by FACS analysis. Data are expressed as
the mean ± SEM (n=3) of the percentage of positive cells (left y axis) and of the Median Fluorescence Intensity (MFI) (right y axis). (B, D) The production of TNF-a
and IFN-a was evaluated by ELISA in cell-free supernatants. Cytokine expression is normalized to SCV2-RNA condition (represented as 100%). Absolute levels of
SCV2-RNA induced cytokines (ng/ml) were: TNF-a= 20.92 ± 0.55; IFN-a= 169.36 ± 23.39. Data are expressed as mean ± SEM (n=3). (A–D) #P< 0.05 versus (-)
and *P< 0.05 versus SCV2-RNA by one-way ANOVA with Dunnett’s post-hoc test.
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Tanimilast in other experimental settings (15, 34). Thus, our
experimental model, by focusing on DCs, may not fully
recapitulate the modulation of CXCL8 occurring in vivo upon
administration of Tanimilast. By contrast, DCs are by far the
principal producers of type I IFN, which was decreased by
Tanimilast. Because both type I IFNs and pDCs play crucial
protective roles in the early phases of SARS-CoV-2 infection (35,
36), the administration of Tanimilast may need to be timely
targeted during SARS-CoV-2 infections, especially when tissue
damage mostly depends on overwhelming immune activation
rather than to viral replication per se. This holds true and has
been clearly assessed also for corticosteroids, where early
addition impairs viral eradication, while late-stage usage
reduces symptoms and immune-dysregulation (37).

In the in vitro experimental setting utilized in this study, the
combined reduction of selected cytokines elicited by Tanimilast,
together with the conserved expression of co-stimulatory molecules
and MHC class II, skewed the predominantly Th1 polarization of
CD4+ naïve T cells induced by SCV2-activated DCs (4) towards a
Th2-oriented activation, without affecting T cell proliferation. This
apparent Th-2 skewing effect of Tanimilast appears to be related to
the presence of the SCV2 stimulus. Indeed, we observed that
Tanimilast alone induced neither IL-4- nor IL-13-producing T
cells. Additionally, Tanimilast is very effective in inhibiting
allergen-induced eosinophilia in rats which is Th-2 driven (13).
A further evidence of the modulatory effects of Tanimilast on Th-2
driven pulmonary inflammation comes from its ability in reducing
the allergen challenge response in asthmatic patients (38). In this
regard, the effect of b-methasone was a clear-cut inhibition of
phenotypical maturation, CD4+T cell proliferation and Th1
blockade, with no observed skewing towards Th2 polarization.
We could not evaluate the effects of Tanimilast on Th17
polarization because it was not induced in our experimental
setting. However, we demonstrate a reduction in the secretion of
crucial Th17-polarizing cytokines such as IL-6 and TNF-a. This is
of particular importance, since Th1/Th17 responses have been
associated to COVID-19 immunopathogenesis and exacerbation
(20, 21). SARS-CoV-2-specific CD4+ effector cells generally do not
express Th2 traits (39), which could play a protective role as shown
by the lower susceptibility and less severe outcomes of COVID-19
in asthmatic and atopic patients (40, 41). Accordingly, IL-13 was
shown to reduce viral burden, possibly by downregulating the
expression of angiotensin-converting enzyme 2 (ACE2) in airway
epithelial cells (42, 43). In addition, M2 macrophage polarization
induced by IL-4 and IL-13 fostered tissue repair and resolution of
inflammation in ARDS (44). Finally, Th2 cytokines rescue the anti-
thrombotic properties of endothelial cells by inhibiting the
expression of pyrogen-induced tissue factor (45), which is highly
expressed in the lungs of severe COVID-19 patients (46). A
number of reports, however, described Th2 signature and
eosinophilia in the inflamed areas of lungs in subgroups of
severe COVID-19 patients (47). This complex picture reinforces
the hypothesis that Tanimilast administrationmay prove beneficial
in blunting the excessive inflammatory response that can occur in
severe COVID-19, provided careful patient evaluation and
stratification is performed.
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Tanimilast reduced the expression of MHC-I molecules. This
effect may depend on increased levels of cAMP, reproducing the
activation of the cAMP/PKA/ICER pathway previously
described to repress MHC-I transcription (48). In addition,
PDE4 inhibition by Rolipram was shown to reduce antigen
production (and therefore MHC-I expression) by decreasing
the activity of the ubiquitin proteasome system in rodent
skeletal muscle cells (49). Further research is granted to
elucidate if these mechanisms are involved in the block of
MHC-I upregulation in Tanimilast-treated moDCs. MHC-I
reduction, together with IL-12 blockade, are likely responsible
for the observed curtailing of CD8+ T cell proliferation and
activation, characterized by a decrease of both IFN-g and
Granzyme-B levels. This effect is shared by both Tanimilast
and b-methasone. Activated CD8+ effector cells play a dual
role in SARS-CoV-2 infection, being critical for virus
eradication as well as detrimental, when excessive cytotoxic
activation results in lung damage, even more lethal than viral
replication itself (50). Both hyperactive and exhausted cytotoxic
T cells were described in COVID-19 patients, possibly
correlating with the course of the illness (51, 52). Indeed, an
early immune profile characterized by high expression of
interferon stimulated gene and viral load with limited lung
damage was shown to precede a later stage with low interferon
stimulated gene levels, low viral load and abundant infiltration of
activated cytotoxic cells (53). In addition, continual proliferation
and overactivation of CD8+ T cells observed in severe, late stage
COVID-19 were correlated to disease aggravation (54). Thus, the
inhibition of CD8+ T cells proliferation and activation observed
upon Tanimilast treatment may be beneficial to alleviate
cytotoxic hyperactivation but might be not relevant, if not
contraindicated, in COVID-19 cases displaying an exhausted
CD8+ T cell phenotype.

Despite this study did not investigate the molecular
mechanisms underlying Tanimilast modulation of DC
activation by SCV2-RNA, the observed differences in its
potency in inhibiting different cytokines suggest a promoter-
specific action, rather than a direct perturbation of TLR7/8
signaling and NF-kB activation. This hypothesis is also
supported by the observation that genes requiring NF-kB for
efficient transcription, such as CCR7 (55) are upregulated in the
presence of Tanimilast. A similar mechanism was previously
described in LPS-activated moDCs, where we observed that
Tanimilast could decrease the recruitment of NF-kB subunits
to specific promoters, without affecting its nuclear translocation
(15). This could depend on reduced recruitment of NF-kB co-
activators, as originally demonstrated for the prototypic PDE4
inhibitor Apremilast (56). Indeed, a promoter specific regulation
is very well suited to explain the variegated modulation of DC
activation described in this paper.

It remains to be established if immunomodulation by
Tanimilast can be observed also when DCs are infected by
SARS-CoV-2, instead of being challenged with SCV2-RNA. It
was previously shown that Tanimilast could efficiently block
rhinovirus-induced cytokines (12). In addition, a recent paper
showed that intact SARS-CoV-2 activates innate immune cells
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via TLR7/8, thus reproducing the mechanisms of activation by
SCV2-RNA (57). Based on this, it is possible to hypothesize a
similar inhibitory effect acting on TLR7/8 downstream pathways,
as previously discussed, also in the presence of intact SARS-CoV-
2. It should also be considered that, in addition to
immunomodulation, Tanimilast may interfere with SARS-
CoV-2 infection via other mechanisms. For example, Rolipram
and Roflumilast were both shown to inhibit viral replication (58,
59). In addition, compounds with properties of PDE4 inhibition
were suggested to bind to N-terminal RNA-binding domain of
SARS-CoV-2 N-protein, a critical component of the viral
replication and genome packaging machinery that may affect
viral replication (60, 61). By analogy with other PDE4 inhibitors,
it is tempting to speculate that Tanimilast may be helpful in
COVID-19 pneumonia not only by regulating the inflammatory
balance but also by directly reducing viral replication and load.
However, this aspect could not be investigated using our system
of moDCs stimulation by SCV2-RNA. Overall, the data
presented in this study suggest that the PDE4 inhibitor
Tanimilast could be a promising inhaled immunomodulator in
the scenario of COVID-19, given its remarkable safety
demonstrated in healthy subjects as well as in asthma and
COPD patients (14) and its mechanism of action non
redundant with corticosteroids. Nevertheless, further studies
are needed to evaluate the benefits of this agent in clinical
settings. In particular, it will be important to determine the
optimal disease stage at which starting Tanimilast administration,
with a particular focus on the identification of subgroups of patients
(clinical phenotypes) with increased chances of therapeutic success.
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