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Lipid rafts, also known as microdomains, are important components of cell membranes
and are enriched in cholesterol, glycophospholipids and receptors. They are involved in
various essential cellular processes, including endocytosis, exocytosis and cellular
signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can
be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate
and egress. However, lipid rafts also play an important role in initiating antimicrobial
responses by sensing pathogens via clustered pathogen-sensing receptors and triggering
downstream signaling events such as programmed cell death or cytokine production for
pathogen clearance. In this review, we discuss how both host and pathogens use lipid
rafts and associated proteins in an arms race to survive. Special attention is given to the
involvement of the major vault protein, the main constituent of a ribonucleoprotein
complex, which is enriched in lipid rafts upon infection with vaccinia virus.
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INTRODUCTION

The fluid mosaic model of biological membranes was proposed by Singer and Nicolson in 1972,
whereby membranes are composed of uniform lipid bilayers in which select proteins randomly float
(1). Later studies have contradicted this hypothesis, revealing instead the presence of detergent-
resistant and detergent-soluble fractions in cell membranes (2). This latter heterogeneity in cell
membranes was identified to be due to the presence of lipid rafts or microdomains (3–5). Lipid rafts
are small, dynamic, heterogeneous microdomains (10-200 nm) that are enriched in cholesterol and
glycophospholipids (6–9). High concentrations of sphingolipids and dense packing of protein with
cholesterol in lipid rafts promotes cell membrane stability (10). Lipid rafts also contain a diverse
group of cellular receptors (11–15) which play important roles in various cellular processes such as
endocytosis, exocytosis, receptor trafficking and cell signaling (4). However, these same lipid rafts
are also exploited by many pathogens to achieve cell entry and cell exit e.g. via budding (8, 16).
Abbreviations: ACE2, Angiotensin converting enzyme 2; CLEC5A, C-type lectin 5A; DC-SIGN, Dendritic Cell-
Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; GKN3, Gastrokinase 3; PLVAP, Plasmalemma vesicle
associated protein; PMA- Phorbol 12-myristate 13-acetate; IGF1R- Insulin like growth factor 1 receptor; Tim-1, T-cell
immunoglobulin and mucin domain-1; CAR-Coxsakievirus and adenovirus receptor; SCARB2 - Scavenger receptor B2; PSGL-
1 - P-selectin glycoprotein ligand-1; SLAM - Signaling lymphocytic activation molecule; Anx2 - Heparan sulfate and
annexin II.

org January 2022 | Volume 12 | Article 8150201

https://www.frontiersin.org/articles/10.3389/fimmu.2021.815020/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.815020/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:rakeshkulkarni8@gate.sinica.edu.tw
mailto:mbwen@ccvax.sinica.edu.tw
https://doi.org/10.3389/fimmu.2021.815020
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.815020
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.815020&domain=pdf&date_stamp=2022-01-20


Kulkarni et al. Lipid Rafts in Pathogen-Host Interaction
Advancements in cell imaging approaches have allowed
lipid rafts to be visualized in cells, with cholera toxin
staining frequently used for confocal microscopy-based
observations (17). Lipid rafts are relatively resistant to
extraction by non-ionic detergents such as 1% Triton X-100
(4, 18, 19), but biochemical enrichment by detergent extraction
followed by flotation centrifugation has enabled more detailed
analyses of lipid rafts. Many lipid raft-specific markers have
been identified, including flotillin and caveolin (12, 15).
Important tools to study the impact of lipid rafts in various
cell signaling pathways are methyl-b cyclodextrin (MbCD),
filipin and nystatin. These compounds are used to extract
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cholesterol from the plasma membrane and through
preferentially targeting cholesterol in lipid rafts, depletes the
raft structures (20, 21). Lipid rafts are also found in multiple
cells types in brain such as neurons, astrocytes and microglia;
several neurodegerative diseases, such as Alzheimer’s,
Parkinson’s, Huntington’s, multiple sclerosis and lysosomal
storage disease were found to be associated with altered
composition of lipid rafts (22–26). Overall, lipid rafts
modulate multiple aspects of cellular functions that are
important for cell survival, immune signaling as well as
pathogen recognition and pathogen egression (Figure 1A),
as described below.
A

B

FIGURE 1 | Biological roles of lipid rafts in pathogen-host interactions: (A) Lipid rafts are involved in several cellular functions, such as pathogen recognition,
cell signaling, and pathogen egress which decides the outcome of pathogen-host interaction. (B) Lipid rafts in pathogen sensing and cytokine release: Lipid
rafts play an important role in pathogen sensing by recruiting pathogen sensing receptors such as toll like receptors when cells are stimulated with bacterial
cell wall components LPS or LTA and C-type lectin receptors when stimulated with fungal cell wall components such as b-glucans which evetually leads to
cytokine secretion.
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LIPID RAFT INVOLVEMENT IN PATHOGEN
RECOGNITION RECEPTOR SIGNALING
AND CYTOKINE SECRETION

Lipid rafts play important roles in modulating host innate and
adaptive immune responses against pathogens. Apart from
harboring proteins important for phagocytosis of pathogens
(27–29), lipid rafts accumulate pathogen recognition receptors -
including c-type lectin receptors (CLRs) and Toll-like receptors
(TLRs) - to detect pathogens and initiate downstream signaling
cascades for cytokine release and complement system activation
for pathogen clearance (30–32) (Figure 1B). TLR4 was found to
be enriched in lipid raft fractions from cells stimulated with the
specific ligand lipopolysaccharide (LPS), but not from non-
stimulated cells, and depletion of lipid rafts by nystatin and
filipin resulted in failure to produce the downstream cytokine
TNF-a; suggesting that lipid rafts are important in TLR4
activation (33). Another TLR, Toll-like receptor 2 (TLR2) that
recognizes cell wall components of lipoteichoic acid (LTA) in
Gram-positive bacteria, is enriched in lipid rafts and transported
to Golgi network upon cell treatment with LTA (34–36).
Depletion of lipid rafts by MbCD or nystatin inhibited this
enrichment of TLR2 and its transport to Golgi, implying a role
for lipid rafts in TLR2 activation and trafficking (34–36). Similarly,
host C-type lectins that sense carbohydrate-rich domains on fungi
and activate downstream signaling events were also observed to be
enriched in lipid rafts (37). Dectin-1 that is primarily expressed on
dendritic cells, macrophages and neutrophils plays an important
role in anti-fungal immunity (38). Upon sensing fungal zymosan
or b-glucan, host dectin-1 was found to translocate with its
downstream signaling molecules spleen tyrosine kinase (SYK)
and phospholipase C gamma 2 (PLCg2) to lipid rafts. Depletion
of lipid rafts by MbCD treatment resulted in loss of SYK
phosphorylation in dendritic cells, supporting a role for lipid
rafts in dectin-1 signaling (39). During Streptococcus
pneumoniae infection, splenic marginal zone (MZ) macrophage
lipid rafts accelerate pathogen uptake and degradation (40), as well
as mediate DC-SIGN- or SIGN-R1-induced classical complement
pathway activation against S. pneumoniae, thereby facilitating
rapid clearance of this pathogen.

Cytokines are soluble factors released by cells in response to
infection and inflammation and they are key modulators of the
immune system. Cytokine receptors are recruited to lipid rafts to
mediate cytokine signaling. For example, tumor necrosis factor-a
receptor 1 (TNFR1) and interferon alpha and beta receptor
subunit 1 (IFNAR1) are enriched in lipid rafts, and depletion of
lipid rafts reduced cytokine release (41, 42). Furthermore, release
of cytokines from vesicles requires N-ethylmaleimide sensitive
factor attachment protein receptor (SNARE) mediated fusion with
the plasma membrane. SNARE proteins, including syntaxin4 and
synaptosomal associated protein-23, are enriched in lipid rafts of
LPS-stimulated macrophages, facilitating release of the cytokine
TNF-a (43). Other reports also showed that SNARE and Rab
proteins are associated with lipid rafts (44, 45).

It is interesting that, although cytokine release is dependent
on lipid rafts, the integrity of lipid rafts is also reciprocally
Frontiers in Immunology | www.frontiersin.org 3
affected by cytokine signaling. For example, interferon-induced
viperin interacts with farnesyl diphosphate synthase (FPPS) to
inhibit cholesterol synthesis and lipid raft formation (46), in
addition to its role in catalyzing cytidine triphosphate (CTP) to
3′-deoxy-3′,4′-didehydro-CTP (ddhCTP) (46, 47).
ROLE OF LIPID RAFTS IN APOPTOSIS
AND REDOX SIGNALING

Reactive oxygen species (ROS) produced in phagosomes
eliminate pathogens through oxidative damage by innate
immune cells such as neutrophils (48), representing an
important element of inflammation and antimicrobial host
defense. Nicotinamide adenine dinucleotide phosphate oxidase
(NOX) is a key source of ROS in host cells. NOX is a multimer
that requires all components for assembly and enzymatic activity
in lipid rafts to produce ROS (49). Depletion of lipid rafts limits
ROS production due to failure to recruit cytosolic components of
the NOX complex (i.e., P47phox, P67phox, P40phox and RAC) to
the plasma membrane, which already harbors the gp91phox and
P22phox components upon priming with interleukin 8 (Il-8) (50–
52).Other adaptor molecules, such as protein kinase C involved
in phosphorylating the NOX subunit P47phox, are also recruited
to lipid rafts for ROS production. In another study,
Mycobacterium tuberculosis 19-KDa lipoprotein, which is a
TLR1/2 agonist, was shown to trigger translocation of TLR2
and protein kinase Cz to lipid rafts and to induce ROS
production (52). Disruption of lipid rafts in macrophages
resulted in reduced M. tuberculosis lipoprotein-induced ROS
production and recruitment of TLR2 and protein kinase Cz,
demonstrating that lipid rafts are critical to ROS production.
Low doses of ROS under steady-state conditions contribute to
cell survival, whereas high doses of ROS induced by infection
help clear pathogens by activating cell death pathways such as
apoptosis and necroptosis. In the TNF (tumor necrosis factor)-
induced necroptosis pathway, activation of mixed lineage kinase
domain-like protein (MLKL) lead to oligomerization of receptor-
interacting protein3 (RIPK3) which is translocated to lipid rafts
in the plasma membrane where it enhances sodium influx to
induce cell rupture (53). Lipid rafts also regulate other cell death
pathways such as autophagy. Lipid rafts are found in
mitochondria associated membranes that connect ER with
mitochondria and are required for the correct assembly of
vesicles and formation of autophagosomes (54–56).
CELLULAR ENTRY OR EGRESS OF
PATHOGENS VIA LIPID RAFTS

Host-pathogen interactions determine the outcome of infections.
Lipid rafts are a key component of host-pathogen interactions on
cell surfaces, given their roles in initiating cell signaling,
harboring receptors and mediating cell trafficking (57–59).
Experimental drugs that interrupt lipid raft formation have
January 2022 | Volume 12 | Article 815020
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demonstrated that lipid rafts are important for cell entry of
multiple viruses (Table 1). HIV-1 viral protein gp120 fuses with
CD4+ T-cells through the lipid raft-associated receptors CD4,
CCR5 and CXCR4 (60–62). Vaccinia mature virus (MV) clusters
on lipid rafts where it interacts with the type II glycoprotein
CD98 and integrin b1 to trigger endocytosis for cell entry (66, 67,
124). Both depletion of lipid rafts and knockdown of CD98 have
been shown to reduce MV endocytosis, supporting the
importance of lipid rafts in vaccinia virus entry into cells (66,
67). Hemagglutinin (HA) glycoprotein of influenza virus is
important for virus-cell attachment and membrane fusion,
which occurs more efficiently at lipid rafts of plasma
membrane, suggesting that influenza virus employs lipid rafts
for cell entry (69–71). Simian virus 40 (SV40), upon infection in
cells, translocated to caveolae enriched membranes and specific
disruption of caveolae with phorbol ester PMA or nystatin
blocked SV40 entry (71). Human herpes virus-6 (HHV-6)
enters cells through binding to cellular receptor CD46, which
was enriched in lipid (74–77). As expected, depletion of
cholesterol inhibited HHV-6 entry into cells (74–77). Similarly,
poliovirus and type c foot-and mouth disease virus (FMDV)
entry into the cells was also inhibited upon treatment with
MbCD and was reversed upon addition of cholesterol
suggesting role of lipid rafts in their entry (78, 79, 87).
Flavivirus family members Japanese encephalitis virus (JEV),
dengue virus serotype-2 (DEN-2) and West Nile virus (WNV)
infection to cells was inhibited upon treatment with MbCD and
cholesterol chelator filipin III. Surprisingly addition of
cholesterol did not rescue cell susceptibility to JEV and DEN-2,
unlike other viruses (81, 87). Several coronavirus family
members such as mouse hepatitis virus (MHV), infectious
Frontiers in Immunology | www.frontiersin.org 4
bronchitis virus (IBV), human coronavirus 229E (HcoV-229E),
severe acute respiratory syndrome virus (SARS-CoV), were
shown to enter cells through lipid rafts (89, 91, 93, 96). A
recent report also showed that pseudotyped virus containing
SARS-CoV-2 spike protein enters cells through lipid rafts (99).
African swine fever virus (ASFV) entry into pig macrophages is
also dependent on lipid rafts as depletion of lipid rafts with
cyclodextrins and nystatin blocked ASFV entry into pig
macrophages (103, 104). Apart from viruses, bacterial
pathogens also target lipid rafts during infection. For example,
the enteric Gram-negative bacteria Shigella flexneri and
Salmonella enterica enter cells by binding to lipid raft-
associated receptors CD44 and CD55, respectively (125, 126).
Depletion of lipid rafts impedes bacteria from binding to and
entering host cells (127).

However, there are also studies indicating an opposing role
for a lipid raft-associated protein, caveolin, during endocytic
entry of the bacteria Staphylococcus aureus (128). Engagement of
S. aureus by host integrin a5b1 via fibronectin was shown to
trigger bacterial relocalization to lipid rafts. Surprisingly,
caveolin deficiency, but not flotillin deficiency, enhanced S.
aureus uptake. Recruitment of membrane lipids to the bacterial
attachment site was not affected in Cav1–/– cells, suggesting that
caveolin blocks S. aureus in a post-attachment step (128).
Caveolin has also been proven essential in host defenses
against the pathogens Pseudomonas aeruginosa and Salmonella
enterica sv. Typhimurium (129, 130). Caveolin-knockout mice
are susceptible to both bacteria, exhibiting increased bacterial
burdens in several organs relative to non-infected controls (129,
130). It is interesting that caveolin-knockout mice display a
severe inflammatory phenotype, with elevated levels of
TABLE 1 | Lipid raft mediated viral entry and receptors involved.

Virus Receptors Chemical and pharmaceutical drugs targeting lipid rafts References

Human immunodeficiency virus CD4, CCR5, CXCR4 MbCD, Cytochalasin, Nystatin, 25-Hydroxycholesterol, Atorvastatin (60–65)
Vaccinia virus CD98, Integrin b1 MbCD (66–68)
Influenza Sialic acid MbCD, Cyclodextrin, Fluvastatin (69–72)
Simian virus 40 Ganglioside GM1 PMA, Nystatin, Filipin III (71, 73)
Human herpes virus-6 CD46 MbCD (74–77)
Polio virus CD155 MbCD (78)
Foot-and-mouth disease virus Integrin avb6 MbCD (79, 80)
Japanese encephalitis virus PLVAP, GKN3 MbCD, Filipin III (81, 82)
Dengue virus DC-SIGN, Mannose receptor, CLEC5A MbCD, Filipin III, Cyclodextrins, Propofol,2,6-diisopropylphenol (81, 83–86)
West Nile virus TLR3 MbCD (87, 88)
Mouse hepatitis virus CD66a MbCD, Filipin III (89, 90)
Infectious bronchitis virus Sialic acid MbCD, Mevastatin (91, 92)
Human coronavirus 229E CD13 MbCD, Chloroquine (93–95)
SARS-CoV ACE2 MbCD, Cholesterol 25-Hydroxylase (96–98)
SARS-CoV-2 ACE2 MbCD, Fluvoxamine, 25-Hydroxycholesterol, Fluvastatin (98–102)
African swine fever virus CD163 Cyclodextrins, Nystatin (103, 104)
Zika virus DC-SIGN, AXL, Tyro3, Tim-1 25-Hydroxycholesterol, Chloroquine (83, 105, 106)
Hepatitis C virus CD81, DC-SIGN, CD209L Fluvastatin (107, 108)
Respiratory Syncytial virus CX3CR1, IGF1R Lovastatin, Cyclodextrins (83, 109–112)
Ebola virus Tim-1 Lovastatin, cyclodextrins (113, 114)
Herpes simplex virus Heparan sulfate Cyclodextrins (83, 115)
Coxsackievirus CAR Fluoxetine (116)
Enterovirus 71 SCARB2, Anx2, PSGL-1, sialylated glycan Fluoxetine (116–119)
Measles virus CD46, SLAM Halothane (120, 121)
Murine Cytomegalovirus Heparan sulfate Simvastatin (122, 123)
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inflammatory cytokines, chemokines in serum, and free radicals,
implying complex biological functions of lipid raft-associated
proteins in pathogen and host interactions (131). Pathogen
interactions with lipid rafts are not solely restricted to the cell
surface, since many intracellular pathogens could escape
degradation by preventing phagosome fusion with lysosomes
upon being internalized into cells (132). For example,
Leishmania donovani utilizes lipophosphoglycans to disrupt
dynein in lipid rafts and thereby avoids lysosomal
degradation (132).

As for pathogen entry into cells, pathogen assembly and egress
is crucial for its spread to other cells, tissues and hosts. Pathogens
can manipulate the egress route by inducing programmed cell
death (e.g., apoptosis) and cell rupture, by forming actin-mediated
protrusions, or by inducing bud formation, with this latter
potentially involving lipid rafts. Endosomal sorting complexes
required for transport (ESCRT) are essential for membrane
scission, as well as being involved in viral budding. Many
enveloped viruses such as HIV, Murine Leukemia Virus (MLV)
and vaccinia virus employ ESCRT-dependent budding or egress
mechanisms (133–136). Knockdown of ESCRT complex members
such as charged multivesicular body protein -2A (CHMP-2A) and
CHMP-4B blocked the release of HIV and MLV (133, 136).
Proteomic analyses have revealed the presence of ESCRT
complex proteins in isolated lipid raft fractions, implying a role
in viral budding (137, 138). Cholesterol synthesis inhibitor
lovastatin treatment reduced the dengue virus (DENV)
production by blocking virion assembly and intracellular
trafficking showing that lipid rafts are important not only for
DENV entry but also for their release from cells (139).
PHARMACEUTICAL DRUGS TARGETING
LIPID RAFTS TO BLOCK PATHOGEN
ENTRY AND INFECTION

As described above, many pathogen attachment receptors are
concentrated in the lipid rafts, hence targeting lipid rafts could be
a good strategy to overcome infection (140, 141). Disruption of
lipid rafts by chemical compounds such as MbCD, filipin, 25-
hydroxycholesterol and cyclodextrins has already shown to block
the entry of many pathogens into cells (63, 81, 83, 100, 105, 142,
143). Furthermore, several pharmaceutical drugs used in
treatment of other disorders were found to interact with lipid
rafts resulting in blocking the entry of pathogens into the cells.
Some of the well-known drugs targeting lipid rafts are statins
(144, 145), anesthetics (146), and psychotropic drugs (147–150).
Several statins such as lovastatin, mevastatin, fluvastatin,
simvastatin, atorvastatin and nystatin used for the treatment of
cardiovascular disease were reported to block virus entry into
cells (64, 65, 72, 101, 107, 109, 110, 113, 122). Similarly,
anesthetic drugs such as propofol, halothane and barbiturates
were found to block virus entry due to their interaction with lipid
rafts (84, 120). Antidepressants act by displacing G protein
responsible for increasing cAMP (Gas) from lipid rafts, and
drugs such as fluvoxamine, and fluoxetine are known to block
Frontiers in Immunology | www.frontiersin.org 5
the entry of viruses (102, 116–118, 147, 149). Taken together,
repurposing these existing drugs against newly emerging
pathogenic virus may provide a good strategy since they have a
proven safety record and can be deployed in a short time to treat
viral infections. The list of potential pharmaceutical drugs
targeting lipid rafts to block entry and propagation of viruses
are included in Table 1.
MAJOR VAULT PROTEIN (MVP)
MODULATES IMMUNE SIGNALING AND
PATHOGEN ENTRY

MVP is a 100-kDa protein that constitutes the major component
of vault complex in cells (151, 152). The vault particle is a huge
(400 Å x 670 Å) cage-like structure of 12.9 Mda, consisting of
MVP, vault poly (ADP-ribose) polymerase (VPARP/PARP4)
and telomerase associated protein (TEP1) proteins and
multiple copies of small untranslated vault RNAs (vRNAs)
(153). MVP is widely expressed in many normal tissues and
overexpressed in many multi-drug-resistant cancer cells (153–
155). MVP and vault particles may act as scaffolds for proteins
involved in signal transduction, such as the Janus kinase/signal
transducer and activator of transcription proteins (JAK/STAT)
(156), Phosphoinositide-3-kinase/protein kinase B (PI3K/AKT)
(125) and ERK (157) signaling pathways. MVP has also been
implicated in suppression of metabolic diseases, such as obesity
and atherosclerosis, through IKK-NF-kB signaling-mediated
inflammation (158). MVP negatively regulates osteoclast
differentiation by inhibiting the calcineurin-NFATc1 signaling
pathway (159). Moreover, it interacts with Src in an epidermal
growth factor (EGFR)-dependent manner and downregulates Src
tyrosine kinase activity in stomach tissue, with this latter being
necessary for activation of extracellular signal-regulated kinase
(ERK) signaling (160).

Interestingly, MVP and vault particles also play a role in
pathogen, host interactions. For instance, vRNA induced by
Epstein-Barr viral infections played a role in anti-viral host
defense (161, 162). MVP was found to be enriched in lipid
rafts following infection of human lung epithelial cells with
Pseudomonas aeruginosa (163). Binding of P. aeruginosa LPS
outer-core oligosaccharide to cystic fibrosis transmembrane
conductance (CFTR) recruited MVP to lipid rafts and activate
NF-kB signaling, IL-8 secretion and apoptosis induction. In
MVP knockout (MVP-/-) mice bacteria uptake in lungs was
reduced to 45% when compared with the wild-type mice.
Further analyses concluded that MVP is critical for formation
of stable membrane microdomains after P. aeruginosa infection.
MVP translocation to lipid rafts was also induced by microbial
metabolites such as N-(3-oxo-dodecanoyl) homoserine lactones
(C12) released by proteobacteria and Pseudomonas aeruginosa
(164) to modulate p38 pathway to reduce apoptotic cell death
(164). In macrophages, MVP interacted with the scavenger
receptor (SR-A/MSR1) in membrane rafts and modulated SR-
A-caveolin-p38/JNK-mediated TNF-a production and apoptosis
(165). MVP knockout (KO) mice grow normally showing that it
January 2022 | Volume 12 | Article 815020
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is not required during mouse embryogenesis (166) and yet these
KO mice are more susceptible to infection with several
pathogens, such as Influenza A virus and Pseudomonas
aeruginosa, suggesting that MVP plays an important role in
immune responses against viral and bacterial pathogens (163,
167). In our previous study to identify cellular proteins enriched
in lipid rafts upon vaccinia virus infection we identified integrin
b1 and CD98 proteins that play important roles in virus entry
(66, 67). Interestingly, these proteomic data (66) (Figure 2A)
Frontiers in Immunology | www.frontiersin.org 6
also revealed MVP to be enriched ~5-fold in lipid rafts upon
vaccinia virus infection (Figure 2B) (66). Increase of MVP in
lipid rafts is transient and MVP is not involved in integrin b1 or
CD98 interactions and whether it participates in other signaling
events during vaccinia mature virus entry remains to be
investigated. The role of MVP in several immune signaling
pathways, as summarized in (Figure 2C), showed that it may
exert important functions in host-pathogen interactions,
warranting further detailed experimental study.
A

B C

FIGURE 2 | MVP accumulates in lipid rafts after infection with vaccinia virus (A) Schematic representation of differential IMID-H4/D4 labeling and LC/MS/MS
analyses of lipid raft-associated proteins isolated from HeLa cells that were either mock infected or infected with WR strain MV as previously described (66, 67).
(CNBr, Cyanogen bromide, SCX, Strong cation exchange column, m/z, mass-to-charge ratio), (B) Differential protein association in lipid raft proteome derived from
mock or vaccinia virus infected HeLa cells (66). Labelled peptides were quantitatively determined by lysine-specific isotope labeling scheme. Co-eluted peaks
contained peptides from both virus infected cells (blue) and from mock-infected cells (red). The blue-to-red ratio determined whether abundance of one particular
peptide after virus infection is increased (>1), unchanged (=1) or decreased (<1). (C) Role of MVP in signaling pathways: MVP protein, the major component of vault
particle, is recruited to the lipid rafts upon stimulation with growth factors (e.g., EGF) or pathogen derived ligands (e.g., LPS) and regulates important biological processes
such as cell proliferation and cytokine secretion. IFNAR receptor stimulation with IFN-g in the lipid rafts activates JAK-STAT signaling pathway which in turn will lead to the
transcription of MVP. MVP also plays an important role in regulating apoptotic signaling pathway on infection with pathogens such as P. aeruginosa and helps in host
protection, however the detailed mechanism on how recruitment of MVP to the lipid rafts after infection with other pathogens such as VacV, EBV and influenza virus
needs investigation.
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CONCLUSION AND FUTURE
PERSPECTIVES

Lipid rafts on the plasma membrane are used as a portal for entry
by many pathogens, including viruses and bacteria.
Reorganization of cell surface lipid rafts during pathogen and
virus entry could induce clustering of membrane receptors and/
or intracellular molecules at the proximal inner membrane to
facilitate entry, as well as to trigger signaling cascades. Thus,
formation of such raft-associated protein complexes may reflect
how pathogens and viruses engage with particular cellular
receptors required for cell entry and invasion, how cells sense
stress and mount immediate early anti-viral and anti-bacterial
responses, and may even explain how viral proteins hijack lipid
rafts to modify or antagonize cellular signaling and allow their
propagation. Our understanding of the dynamic processes and
kinetics governing lipid raft formation is still limited. This is in
part due to technical challenges as well as the variety of different
proteins found to be recruited to lipid rafts. Furthermore, one
needs reliable and sensitive methods to modulate and monitor
composition, molecular interactions and functionality in time,
preferably in intact cells/tissues being challenged with pathogens.
Frontiers in Immunology | www.frontiersin.org 7
Reports in the literature highlight important, if not key roles for
MVP recruited to lipid rafts upon pathogen exposure. Therefore,
further detailed investigations are warranted to reveal the full
functional potential of MVP in dealing with diverse pathogens in
different cell types. A better and more precise delineation of the
cellular function(s) of MVP, as well as the other components of
the vault complex, will reveal interesting biology and possibly
therapeutic opportunities.
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