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COVID-19 patients show heterogeneous and dynamic immune features which determine
the clinical outcome. Here, we built a single-cell RNA sequencing (scRNA-seq) dataset for
dissecting these complicated immune responses through a longitudinal survey of COVID-
19 patients with various categories of outcomes. The data reveals a highly fluctuating
peripheral immune landscape in severe COVID-19, whereas the one in asymptomatic/mild
COVID-19 is relatively steady. Then, the perturbed immune landscape in peripheral blood
returned to normal state in those recovered from severe COVID-19. Importantly, the
imbalance of the excessively strong innate immune response and delayed adaptive
immunity in the early stage of viral infection accelerates the progression of the disease,
indicated by a transient strong IFN response and weak T/B-cell specific response. The
proportion of abnormal monocytes appeared early and rose further throughout the severe
disease. Our data indicate that a dynamic immune landscape is associated with the
progression and recovery of severe COVID-19, and have provided multiple immune
biomarkers for early warning of severe COVID-19.

Keywords: COVID-19, ScRNA-seq, early immune feature, IFN response, delayed adaptive immunity
INTRODUCTION

SARS-CoV-2 infection causes COVID-19 with different severity. Most patients develop only mild
symptoms, while a minor fraction develop severe diseases, especially for the elderly with pre-existing
conditions (1). Immunological perturbations are associated with COVID-19 severity, including
increased immature myeloid suppressor cells (2, 3), T cell depletion (4), and cytokine storm (5, 6).
Thus, the successful or impaired immune responses were acknowledged playing crucial roles.
Previous studies suggest that IFN response (7), T cell response (8), and potential antibody-
dependent enhancement (ADE) (9) are potential factors, causing subsequent deterioration of
coronavirus induced diseases. However, the reported roles of these immune elements in the
pathogenesis of severe COVID-19 are often inconsistent, e.g., both heightened or impaired IFN
responses in severe COVID-19 were reported (10, 11). There are also inconsistent reports of anti-
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viral CD4+ T-cell (12, 13), CD8+ T-cell responses (14), and
humoral immune responses (12, 15) in patients with different
COVID-19 severity. One important cause of those discrepancies
is likely due to the heterogenous nature of COVID-19 and its
dynamic clinical course (16). Indeed, a COVID-19 patient may
show largely different immune responses at different stages of the
disease (17). Thus, mechanistic understanding of the COVID-19
pathogenesis will require a thorough understanding of the entire
dynamic processes.

There were several datasets investigating non-synchronized
COVID-19 samples collected primarily at peak level severity or
convalescence (18–20). However, the dataset from samples taken
longitudinally at an earlier stage of infection (prior to the
development of serious diseases) is still absent. One mystery
with COVID-19 is that patients can quickly deteriorate without
any warning. Understanding such triggering events and
identifying potential prediction factors may lead to more
effective measures to prevent disease deterioration. However,
the stressed medical system during the COVID-19 pandemic
usually looks after the sickest patients first, so information/data
collected prior to disease deterioration are scarce. To this end, by
benefiting from strict contact tracing, quarantine measures and
designated hospitalization in Shenzhen, China, we were able to
study a valuable cohort of COVID-19 patients by closely
following their clinical courses.

Here, we presented such a scRNA-seq dataset of peripheral
immune cells in SARS-CoV-2 infected patients, containing
long i tud ina l samples of COVID-19 pat ien ts wi th
asymptomatic, mild, and severe diseases. This critical resource
provides a great opportunity to decipher the pivotal
immunological events preceding the development or resolving
of the SARS-CoV-2 induced diseases. Evidence pointed to a
highly dynamic circulating immune landscape, namely,
remodeling of myeloid and lymphoid compartments matching
with the development and recovery of severe COVID-19. In
addition, our data highlighted the early immunological events
that precede the stage for subsequent development of severe
COVID-19. Understanding these mechanisms is the holy grail
for the COVID-19 study.
RESULTS

Clinical Characteristics in a Closely
Monitored Cohort of Patients With
COVID-19 With Varying Severity
To identify the characteristics of the early immune response that
led to the variable severity of COVID-19, we performed single
cell RNA-seq of 49 PBMC samples from five asymptomatically
infected, five mildly, and eight severely ill COVID-19 patients,
plus 6 healthy controls (Figure 1A and Table S1). In particular,
among 8 severe COVID-19 cases, conditions of 7 deteriorated
after hospitalization, while another one (S7) deteriorated the
same day of admission. Two severe COVID-19 cases (S7 and S8)
succumbed while 6 recovered. Asymptomatic and mild
Frontiers in Immunology | www.frontiersin.org 2
COVID-19 cases had shorter duration of hospitalization and
were discharged within one month (Figure 1B). We closely
monitored clinical parameters and collected PBMCs at different
stages of clinical course, as indicated in Figure 1B. For patients
with severe COVID-19, PBMCs were collected before, during,
and after disease deterioration. The first sampling (Severe Acute,
SA) was around 1 week post the symptom onset, the second
sampling (Severe Progression, SP) was around 17 days post the
symptom onset, and the last sampling (Severe Recovery, SR) was
around one month after the discharge. We collected PBMCs
from mildly ill patients at times matching with those in severe
COVID-19, as the MA (Mild Acute), MP (Mild Progression) and
MR (Mild Recovery) groups. For asymptomatic COVID-19
cases, we collected their PBMCs shortly after their admission
and one week afterwards, as the AA (Asymptomatic Acute) and
AP (Asymptomatic Progression) group (Figure 1B and Table
S1). Accordingly, the eight groups of COVID-19 patients
exhibited varying disease severity using the WHO ordinal scale
(WOS): Asymptomatic patients scored 0–2; mildly ill COVID-19
patients scored 0–4; while the severely ill patients scored 3–5 in
SA, then 5–7 in SP and returned to 0 in SR (Figure 1B, right
panel). The dynamic clinical courses are also reflected by
monitoring individual parameters, such as CRP levels, which
are close to normal range in asymptomatic, mildly ill and
recovered patients, but increased and fluctuated in severely ill
patients (Figure 1C).

Correlation analysis revealed the associations between disease
severity and clinical parameters, assessing WOS scores and all
clinical data from this cohort. We identified previously known
factors, such as IL6, LDH, the neutrophils percentages, CD4+/
CD8+ ratio, CRP (positively correlated with WOS) and CD8+ T
cell percentages, T cell count, lymphocyte count and percentages,
CD4+ T cell count (negatively correlated with WOS). Besides, we
also identified previously unidentified correlations including true
bound bilirubin (BC-TR), direct bilirubin (DB), immature
granulocytes count and percentage (IG# and IG%), urea
(positively correlated with WOS), and cholinesterase (CHE),
albumin (ALB), Prealbumin (PA), basophils count (BASO#)
and heart-type creatine kinase (CK-MB) (negatively correlated
with WOS) (Figures 1D, E).

Examining disease severity associated clinical parameters
among the eight studied groups, SP clearly stood out,
manifested by the highest levels of neutrophils percentages
(NEUT%), globulin (GLO), mean corpuscular hemoglobin
(MCH), platelet-larger cell ratio (P-LCR), glutamic oxaloacetic
transaminase (AST), total bilirubin (TB), mean platelet volume
(MPV), direct bilirubin (DB), and BC-TR and lowest levels of
estimated glomerular filtration rate (eGFR), BASO counts, the
ratio of Albumin/globulin (A/G), red blood cell count (RBC),
hemoglobin (HGB), lymphocyte percentages (LYMPH%),
standard deviation of red blood cell distribution width (RDW-
SD), and ALB, compared with other groups (Figure 1F and
Table S2), whereas those differences are more heterogenous in
SA patients, making it difficult to predict disease progression
based on clinical parameters. This is also consistent with
suddenly worsening COVID-19 in critically ill patients.
January 2022 | Volume 12 | Article 816745
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Characterizing the Perturbed Peripheral
Immune Cell Landscape in Different
Subset of COVID-19 Patients
Next, we sought to interrogate immune factors related to different
COVID-19 severity by scRNA-seq. A high-quality scRNA-seq
dataset composed of 498,151 cells was created and visualized by
Uniform Manifold Approximation and Projection (UMAP)
projection (Figure 2A). The clustering analysis revealed 25
clusters and 10 major cell types annotated by marker genes,
namely, T cell (CD3D), NK cell (KLRF1), B cell (CD79A),
monocyte (CD14, FCGR3A), myeloid DCs (mDCs) (CD1C),
Frontiers in Immunology | www.frontiersin.org 3
plasmacytoid DCs (pDCs) (IL3RA), and plasma cells (PCs)
(IGKC), megakaryocyte (MYL9), cycling cells (MKI67), and
erythrocytes (HBB) (Figures 2A and S1A). Erythrocytes,
megakaryocyte, and doublets were removed in subsequent
analysis. Little batch effects were observed (Figures S1B, C). The
integrated dataset reveals a particularly dynamic immune landscape
in patients with severe COVID-19 (changing from SA, to SP, to SR),
whereas those in asymptomatic and mild COVID-19 are relatively
stable and comparable with controls (Figures 2B and S1D, E).
Consistent with previous reports, proportions of circulating NK
cells, T cells, mDCs, and pDCs are significantly decreased in the SP
A
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F

FIGURE 1 | Research scheme and clinical characteristics of the studied COVID-19 patients. (A) Graphical overview of the study. Blood from 5 asymptomatic, 5
mildly and 8 severely ill COVID-19 patients and 6 healthy controls were collected for scRNA-seq and cytokine profiling analysis. (B) Timeline of each studied COVID-
19 patient enrolled in this study. Critical points indicated are hospitalization, sampling, severity turning point, discharge and death date as days after symptom onset
(left). The assessment COVID-19 severity is described in the Materials and Methods. The right panel shows the disease severity at each sampling date according to
the WHO ordinal scale (WOS). In total, 43 samples from COVID-19 patients were collected and comprised of 8 groups, namely, AA, AP, MA, MP, MR, SA, SP, and
SR. (C) Representative dynamic monitoring of CRP levels from selected COVID-19 patients, namely, 5 asymptomatic, 4 mildly and 7 severely ill patients. The red
arrow indicates when the disease becomes serious, and the red dot indicates when PBMC was sampled. (D) Correlation matrix of the 63 clinical parameters from
the 18 studied COVID-19 patients. The bottom bar corresponds to the absolute value of the Spearman Rank correlation coefficient (*P-value < 0.05). The
abbreviated terms are described in the Materials and Methods. (E) The top 4 positively and 4 negatively WOS-correlated clinical parameters, (# represents cell
count). (F) The heatmap shows the available relative levels of WOS-correlated clinical parameters near each individual sampling, according to the 8 studied COVID-19 groups.
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group, while monocyte percentage is significantly expanded.
However, in SA and SP group, in whom the severe COVID-19
has yet developed or has recovered, such differences with other
COVID-19 groups and controls are subtler (Figures 2B and S1D,
E). Indeed, proportions of NK and pDCs are not significantly
reduced in SA, while proportions of NK cells, T cells, mDCs, and
pDCs are normalized in SR compared with SP (Figures 2B and
S1D). Another study used RNA-seq to analyze the longitudinal
immune response characteristics of a larger cohort of 207 COVID-
19 patients, namely, 5 groups of multiple time points, with group A
as the asymptomatical patients; group B as the mildly diseased
group; group C as the patients admitted to hospital but required no
oxygen supplementation; group D as the hospitalized patients need
supplemental oxygen and group E as the patients who required
assisted ventilation (21). The analysis of this RNA-seq dataset
through MarkerBasedDecomposition function in Bisque (22)
corroborates the early changes of peripheral immune cells in
severe patients (Figure S1F). Together, these data indicated that
the broad perturbation of blood immune cell compartments closely
correlated with development of severe COVID-19 and mainly
occurred in SP.
Frontiers in Immunology | www.frontiersin.org 4
To search for transcriptomic differences between different
subsets of COVID-19 patients, we consolidated individual
scRNA-seq data as conventional RNA-seq data and performed
PCA analysis, and found that PC1 distinguished SA and SP from
other groups, and PC2 distinguished SA from SP (Figure 2C).
The top 100 genes in PC1 and PC2 are listed in Table S2.
Mapping these genes to UMAP showed that they were mainly
derived from myeloid cells (Figures S1G, H). The data shows
that SA is transcriptomically unique, suggesting that
transcriptomic markers from myeloid cells may provide an
early warning for developing severe COVID-19. Genes highly
expressed in both SA and SP groups, namely, TXN, S100A4,
S100A6, FRP1, etc., are enriched for neutrophil mediated
immunity and antigen processing and presentation pathway;
while those highly expressed in SP are S100A8, S100A9, S10A12,
etc., are involved in neutrophil mediated immunity and response
to LPS pathway (Figures 2D, E). Notably, those highly expressed
in SA include IFI27, IFI35, ISG15, etc., as interferon-stimulating
genes (ISGs) (Figures 2D–F), indicating a response to high levels
of interferon produced in vivo. The high expression of ISG in
peripheral immune cells of severely ill patients can also be
A B C

D E

G

H

F

FIGURE 2 | Characterizing peripheral immune perturbations in COVID-19 patients with different clinical course. (A) UMAP representation of the ten cell types from
the integrated PBMC scRNA-seq dataset (49 samples, 498,151 cells). (B) Proportions of various peripheral immune cell types from COVID-19 patients and controls
(two-sided Student’s t-test, *P <0.05, **P <0.01, ****P <0.0001). (C) Principal-component analysis of averaged transcriptome derived from each individual scRNA-
seq data. (D) Heatmaps show the SA and SP-specific differentially expressed genes, comprising 4 groups, as higher levels in both SA and SP, higher levels in SA
only, higher in SP only, or lower in SA only. Representative genes are indicated at the right side. The percentage of corresponding genes belonging to PC1 and PC2
is indicated at the left side. (E) Enrichment of GO biological process (BP) terms for DEGs expressed at higher levels in SA (up), in SP (middle) and in both SA and SP
(bottom). (F) The scatter plot shows the dynamic changes of the IFN response score of each patient at different time points. (G) The scatter plot shows the
expression of ISGs in the RNA-seq data of PBMC of 5 groups of COVID-19 patients with different severity levels and healthy controls at 2 time points. (H) The
plasma levels of IFNa-2a, IFN-g and IL-29 from the first two samplings of each studied COVID-19 groups and controls, (two-sided Student’s t-test, *P < 0.05, **P <
0.01, ***P < 0.001,****P < 0.0001).
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confirmed in the RNA-seq data set (Figures 2G and S1I). To
confirm this, we measured plasma type I, II and III interferon
levels from anothor cohort of patients including the different
subsets. Indeed, the plasma levels of type I and III IFNs were
significantly higher in acute disease stage (AA, MA, SA) versus
those with progressive disease (AP, MP, SP), and were also
higher in those from SA compared to the AA and MA groups
(Figure 2H). We confirmed in vitro that the lung epithelial cell
infected with SARS-CoV-2 induces strong IFN production
(Figure S1J). Similar reports have been published that SARS-
CoV-2 infection stimulates IFN production, which is positively
correlated with viral load (23). Together, these data revealed that
unique peripheral immune transcriptional signatures emerged
both before and during the development of severe COVID-19.
Remodeling of Myeloid Cell
Compartments and Transcriptomes
Correlate With the Development of
Severe COVID-19
Next, we characterized myeloid cell compartment and identified
5 subsets according to the expression of canonical markers:
classical monocyte (CD14), intermediate monocyte (CD14,
FCGR3A), nonclassical monocytes (FCGR3A), DC1 (CLEA9A)
and DC2 (CD1C, CLEC10A) (Figures 3A and S2A). Notably,
myeloid compartment underwent dynamic changes before,
during and after progression of severe COVID-19. Proportions
of DC1 and DC2 significantly decreased in SA than those in
controls, reduced further in SP, but normalized in SR, whereas
comparable frequencies of DCs were observed between
asymptomatic, mild COVID-19 patients and controls. The
proportion of CD14+CD16+ intermediate monocytes increased
during acute SARS-CoV-2 infection, and normalized in those
recovered. We also noticed increased proportions of CD14+

classical monocytes and decreased proportions of CD16+

nonclassical monocytes in SP, consistent with early reports by
us and others (2, 3, 24), while proportions of classical and
nonclassical monocytes were comparable among other studied
groups (Figures 3B and S2B–D). We found association between
high ratios of CD14+/CD16+ monocytes and acute infections, as
in AA, MA and SA, while those ratios normalized in recovered
patients (AP, MP, MR, and SR), but persistently high CD14+/
CD16+ monocyte ratios were associated with development of
severe COVID-19 in SP (Figure 3C). Bisque analysis of RNA-seq
data of 207 COVID-19 patients also found that severe patients
had higher CD14+/CD16+ monocyte ratios in the periphery at
the early stage (Figure 3D). Thus, our data revealed that the
proportion of CD14+ monocytes begins to expand in the early
stage of severe patients, and the CD14+/CD16+ monocyte ratios
can serve as an appropriate early prognostic marker for severe
COVID-19.

We further characterized the transcriptomic changes of
CD14+ monocyte from different subsets of COVID-19 patients.
Compared with those in controls, the expression levels of genes
involved in the innate immune defense were found diminished in
CD14+ monocytes from COVID-19 patients. The downregulated
genes include ones mediating immune signaling, e.g., RIPK2,
Frontiers in Immunology | www.frontiersin.org 5
RLRP3, and NFKBID, etc., and genes encoding cytokine and
chemokines, suggesting impaired immune functions of
monocytes from COVID-19 patients (Figure 3E). The highest
expression levels of ISGs is the most prominent feature of CD14+

monocytes from SA (Figure 3E). Moreover, CD14+ monocytes
from SA and SP have similar immunosuppressive signature,
including downregulation of MHC II genes (HLA-DRB5, HLA-
DRB1, HLA-DR1, etc.) and upregulation of alarmin genes
(S100A12, S100A9, S100A8, S100A6) were observed in both SA
and SP, compared with other groups (Figure 3E). This is
consistent with previous studies that CD14+ monocytes from
severe COVID-19 patients exhibited signature of immature
monocytes, namely, downregulation of MHC II genes and
upregulation of alarmin genes (2, 3, 24).

We re-clustered CD14+ monocytes into HLAhigh and HLAlow

groups, UMAP projection of MHC-II and alarmin signature
scores confirmed that HLAhigh and HLAlow CD14+ monocytes
have a higher MHC-II and alarmin scores respectively
(Figures 3F). We tightly monitored the MHC-II and alarmin
scores at different stages of these 18 patients and found that the
SA group showed a higher alarmin score and a lower MHC-II
score, which worsened in SP (Figure 3G). The differences of
“Monocyte composite scores” between different groups are even
more apparent (Figure 3H). RNA-seq analysis of peripheral
immune cells also showed that alarmin expression increased in
and MHC-II expression decreased in the early stage of sever
COVID-19 patients (Figures 3I and S2E). Therefore, our data
suggest that during acute SARS-CoV-2 infection, the emergence
of HLAlow population and IFN-response transcriptional
signatures in monocytes, likely signify the subsequent
progression of severe COVID-19.
Two Groups of CD8+ T Cells With Different
Phenotypes and TCR Expansion Associate
With Different COVID-19 Severity
To understand the T cell response, we broadly categorized T cells
into innate-like T cells (MAIT, NKT, and gd T) and CD4+ and
CD8+ T cells (Figure S3A). A high CD4+/CD8+ ratio was
previously reported in severe COVID-19 (24). We found that
the CD4+/CD8+ ratio started to increase in SA, reached highest
levels in SP and normalized in SR (Figures S3B–D). Depletion of
innate-like T cells is another feature previously reported in severe
COVID-19 (25). We found that proportions of innate-like T cells
tended to decrease in SA, reached lowest levels in SP and
normalized in SR (Figures S3C, E). The CD4+/CD8+ ratio and
proportions of innate-like T cells were comparable between non-
severe COVID-19 patients and healthy controls.

Next, we identified 5 clusters of peripheral CD8+ T cells, as the
CD8-CCR7 (Naïve), CD8-TCF7 (central memory), CD8-GATA3,
CD8-GZMK (effector memory), and CD8-GZMB (terminal
differentiated effector memory) subsets based on well-studied
markers (Figures 4A and S4A). The expression pattern of
transcription factors (Figure S4B) demonstrates that CD8-
GZMB strongly expresses the transcription factor TBX21,
PRDM1, and ID2, while transcription factors EOMES and BCL6
are more expressed in CD8-GZMK cells, suggesting the accuracy
January 2022 | Volume 12 | Article 816745
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of CD8+ T cell clustering. The diminished number of Naïve CD8+

T cells in severe (SA, SP, and SR) COVID-19 patients (likely
related to their old age), is clearly reflected by the UMAP
projections (Figure S4C). We also found that average
percentage of the peculiar CD8-GATA3 subset in SA was the
highest among all studied groups (Figure 4B and Figures S4D, E).
GATA3 has been reported highly expressed in peripheral CD8+ T
cell from patients with systemic sclerosis, and functionally related
to IL13 induction. Thus, CD8-GATA3-IL13 expression have been
Frontiers in Immunology | www.frontiersin.org 6
proposed to play roles in amplifying inflammation and regarded as
a highly relevant biomarker for inflammatory diseases (26).
Consistently, CD8-GATA3 in the SA group produced the
highest levels of IL13 (Figures S4F). Within the memory and
effector CD8+ T cell compartment, we observed a discordance of
CD8-GZMK and CD8-GZMB subset in SA (with a dominance of
CD8-GZMB over CD8-GZMK) compared with other COVID-19
groups (Figure 4C). This was also robustly confirmed in RNA-seq
data set (Figure S4G).
A B C

D
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FIGURE 3 | Remodeling of myeloid cell compartment and transcriptional signatures associated with development of severe COVID-19. (A) UMAP plot of the major
myeloid cell types within PBMCs. (B) Proportions of various peripheral myeloid cell types from COVID-19 patients and controls (two-sided Student’s t-test, *P <0.05,
**P < 0.01, ***P < 0.001). (C) The bar plot of the ratio of CD14+/CD16+ monocytes. (D) The scatter plot shows the ratio of CD14+/CD16+ monocytes of the 5
groups of COVID-19 patients and healthy controls based on the Marker Based Decomposition analysis of the RNA-seq data in the 2 time zones. (E) The heatmaps
show the selected differentially expressed genes in CD14+ monocyte from comparisons between COVID-19 patients and controls. “SA high” highlights the genes of
higher levels in SA; “Patient low” as the genes of lower levels in COVID-19 patients; “Severer low” and “Severe high” as genes of lower or higher levels in both SA
and SP. (F) UMAP plot of the CD14+ monocytes, divided into HLAhigh and HLAlow groups (up). MHC II score (middle) and alarmin score (down) are projected to the
UMAP. (G) The dynamic changes of the average MHC II score (left) and alarmin score (right) of each patient at different time points. (H) The bar plot shows
“Monocyte composite scores” across different groups, (two-sided Student’s t-test, *P < 0.05, ****P < 0.0001). (I) The dynamic changes of the average MHC II score
(bottom) and alarmin score (up) of the 5 groups of COVID-19 patients and healthy controls in the 2 time zones.
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Next, we studied cycling CD8+ T cells and traced clonal status
using the single-cell TCR (sc-TCR) data. Consistent with viral
infection triggering immune response, the frequencies of cycling
immune cells, and cycling CD4+ and CD8+ T cells were increased
among COVID-19 patients compared to controls (Figures 2B
Frontiers in Immunology | www.frontiersin.org 7
and S4H). Then, we utilized UMAP projection to overview the
TCR status, and confirmed that clonally expanded populations
were mainly composed of CD8-GZMB and CD8-GZMK subsets
(Figures 4D and S4I, J). Using the Shannon-index to reflect
diversity, we found that patients with severe COVID-19
H

A B C

D

E G

F

FIGURE 4 | CD8+ T cell compartments respond differently in patients with severe COVID-19 versus those with non-severe diseases. (A) UMAP plot of the
peripheral CD8+ T cell subsets. (B) Proportions of peripheral CD8+ T cell subsets from COVID-19 patients and controls (two-sided Student’s t-test, *P < 0.05,
**P < 0.01). (C) The plot indicates the ratio of CD8-GZMB/CD8-GZMK from each studied group. (D) UMAP projection of clonally expanded CD8+ T cells from each
studied group. (E) Shannon-index of total CD8+ T cell from each studied group. (F) The proportions of GZMB-CD8 and GZMK-CD8 subsets within the clonally
expanded CD8+ T cell compartments. A, Asymptomatic; M, Mild; S, Severe. (G) TCR clustering analysis. Hierarchical clustering of TCRs (columns) based on TCR
sharing patterns across CD8+ T subsets (rows). The two distinct groups identified are indicated in left box (group 2) and right box (group 1) (left). UMAP projection of
cell density from TCR-group 1 and group 2 CD8+ T cells (Right). (H) The ratio of CD8+ T cells containing TCRs from group1 over cells containing TCRs from group 2
among each studied group (*P < 0.05, **P < 0.01).
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compared to those of other groups had lower levels of TCR
diversity (Figure 4E). Moreover, within the clonally expanded
CD8+ T cell compartment, a similar discordance of CD8-GZMK
and CD8-GZMB subset was observed in COVID-19 patients. We
found that increased proportion of clonally expanded CD8-
GZMK seems to closely correlate with successful control of the
SARS-CoV-2 infections, as early increase of CD8-GZMK in
asymptomatic (AA/34.6% and AP/35.9%) and mildly ill (MA/
31.0%, MP/41.3%, and MR/42.9%) cases, versus delayed increase
of CD8-GZMK in severely ill patients (SA/20.8%, SP/29.4%, and
SR/38.1%) (Figures 4F and S4J), indicating clonally expanded
CD8-GZMK may play a role in viral clearance. Moreover, the
percentage of CD8-GZMK cells sharing TCRs between
sequential samples were higher in AA-AP and MA-MP
transition than that in SA-SP (Figure S4K), also supporting
that the clonally expanded the anti-viral CD8-GZMK population
was established earlier in asymptomatic and mild cases than in
severe cases.

Furthermore, integrating the scTCR-seq and scRNA-seq
datasets using hierarchical clustering revealed one set of TCRs
(group 1) with the cytotoxic phenotype and another set of TCRs
(group 2) within the memory phenotype (Figure 4G). The
proportions of group 1 and group 2 CD8+ T cells were varied
among COVID-19 groups (Figure S4L), with higher percentage
of group 1 cells in patients with severe COVID-19. The ratio of
group 1/group 2 from SA is significantly lower than that from the
AA and MA (Figure 4H), suggesting that the dominance of
group 1 CD8+ T cells at the early stage of infection was associated
with worse outcomes. Thus, our data suggest that the CD8-
GZMK subset, as the group 2 CD8+ T cell equivalent, likely
contains the majority of virus-responding T cells, and helps
determine COVID-19 outcomes.

Peripheral CD4+ T Cell Compartments and
the Development of Severe or Non-Severe
COVID-19
We identified eight subpopulations of CD4+ T cells, namely, CD4-
Naïve (SELL), Tfh-like (CD4-ICOS), Th1-like (CD4-GZMK),
Th2-like (CD4-GATA3), Th17-like (CD4-CCR6), Treg-SELL and
Treg-CTLA4 (FOXP3), cytotoxic phenotype (CD4-GZMB)
(Figures 5A and S5A). Density UMAP plots revealed the
increase of non-Naive cells as one obvious perturbation of
peripheral CD4+ T compartments by the COVID-19 (Figure
S5B). Notably, the percentage of Treg-CTLA4 cells increased
significantly in most COVID-19 groups over controls, but the
proportions of other CD4+ T cell subsets did not change
significantly (Figure 5B). Among COVID-19 patients, we
observed the trend of increased Treg-CTLA4 and CD4-GZMB,
and decreased CD4-Naïve and CD4-GZMK in severe over non-
severe groups (Figures 5B and S5C, D). The signature of T
follicular helper (Tfh) (IL21 in the CD4-ICOS cluster) and the
signature of Th17 (IL22 in the CD4-CCR6 cluster) tend to increase
in SP patients, reflecting a dysregulated immune firing, while the
polarization of the response of other T helper cells was not obvious
(Figure S5E). Except for CD4-GZMB, the remaining CD4+ T cell
subsets manifested lower levels of clonal expansion (Figures 5C
and S5C, D). The severe COVID-19 patients had the lowest
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diversity of CD4+ T cell clonotypes among all studied groups
(Figure 5D). Within the clonally expanded CD4+ T cell
compartment, we observed overall decreased CD4-GZMB and
increased Th1-, Th2-, Th17-, and cycling CD4+ T cell proportions
from COVID-19 patients versus controls (Figures S5F, G).
Notably, excluding CD4-GMZB, the Th1-like CD4-GZMK
subset dominated in the expanded CD4+ T cell compartment in
non-severe COVID-19 cases, but only represented a minor subset
in severe cases (Figures 5E and S5D), indicating a discordant
CD4+ T cell responses likely underlying the development of severe
COVID-19. Moreover, percentage of TCR-sharing Th1-like
(CD4-GZMK) cells between sequential samples were higher in
AA-AP and MA-MP transition than that in SA-SP (Figure S5H),
also supporting that clonally expanded CD4-GZMK cells were
established earlier in non-severe cases, and likely played an
important role in viral clearance.

Next, we integrated the scTCR-seq and scRNA-seq datasets of
CD4+ T cells by hierarchical clustering and revealed one set of
TCRs (group 1) showing the mix phenotype including the Th1-,
Th2-, and Th17 subset and a group 2 within the cytotoxic
phenotype (Figure 5F). Except that group 1 CD4+ T cells were
enriched in SR, there was very little CD4+ T cell clonal expansion
in the remaining 8 groups (Figure S5I). The ratio of group 1 and
group 2 was also very small in 9 groups, making it hard to tell any
differences (Figure 5G).

Characterization of B Cell Subsets in
COVID-19 Patients
B cells were subclustered into three subsets by canonical markers,
NAMELY, naïve B cells (TCL1A), memory B cells (MBC) (CD27)
and Antibody secreting cells (ASC) (MZB1) (Figures 6A and
S6A). Density UMAP plots clearly show that the proportion of
ASCs from COVID-19 patients increases from the acute to the
progressive infection stage, then subsides during the recovery
stage (Figure S6B). We also found significantly decreased
percentages of MBC in SA and SP compared to controls
(Figures 6B and S6C, D). Since the proportion of ASC in
patient S2 is abnormally high due to the presence of one
massively expanded clone (Figures S6E, F), we excluded data
from S2 in the following analysis.

Next, we analyzed scBCR-seq data. Notably, ASC in COVID-
19 patients were more clonally expanded, consistent with the
increased frequency of this population in the response to
infection, whereas other B cells were non-expanded
(Figures 6C, D). Compared to controls, asymptomatic and
mildly ill patients, severely sick COVID-19 patients showed
lower BCR diversity (Figure 6E). We examined proportions of
each immunoglobulin (Ig) heavy chain isotypes within the
different B cell subsets (Figure 6F). Indeed, naive B cells
contained only IgD/IgM, while memory B cells and ASCs
contained class-switched isotypes, namely, IgA and IgG. IgM
presents a major fraction in naïve and memory B cells from all
studied groups, while the IgG1 and IgA1 accounts for the
majority of Ig isotypes in ASC. Consistent with reports
showing IgG1 as the major responding Ig isotype during
SARS-CoV-2 infection, the proportion of IgG1 isotype in ASC
is increased among COVID-19 patients (Figure 6F).
January 2022 | Volume 12 | Article 816745

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. Early Immune Feature of Severe COVID-19
We observed significantly enriched IgM-IgA1, IgM-IgG1, and
IgM-IgG2 events in most patients, especially in asymptomatic
and mildly ill patients (Figure 6G). Previous studies have shown
that SARS-CoV-2 targeting antibodies exhibit limited somatic
hypermutation (SHM) (27). Since ASC is the antibody-
producing population and more clonally expanded, we
Frontiers in Immunology | www.frontiersin.org 9
evaluated their SHM levels among each Ig isotypes. Indeed,
SHM levels were higher in class-switched isotypes (both IgAs
and IgGs) than non-class-switched IgM isotype (Figure 6H).
However, we observed lower levels of SHM (even germline
without SHM) in ASCs from COVID-19 patients, especially in
the IgG1 isotype. Interestingly, the timing of germline IgG1 ASCs
A B
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F

G

FIGURE 5 | The peripheral CD4+ T cell compartment and its association with COVID-19 severity. (A) UMAP plot of the peripheral CD4+ T cell subsets.
(B) Proportions of peripheral CD4+ T cell subsets from each studied group (two-sided Student’s t-test, *P <0.05, **P <0.01, ***p <0.001, ****P <0.0001). (C) UMAP
plot of clonally expanded CD4+ T cells from each studied group. (D) The Shannon-index of total CD4+ T cells from each studied group. (E) The proportions of
GZMB-CD4 and GZMK-CD4 subsets within the clonally expanded CD4+ T cell compartments. A, Asymptomatic; M, Mild; S, Severe. (F) TCR clustering analysis.
Hierarchical clustering of TCRs (columns) based on TCR sharing patterns across CD4+ T subsets (rows). The two distinct groups identified are indicated in left box
(group 2) and right box (group 1) (left). UMAP projection of cell density from TCR-group 1 and group 2 CD4+ T cells (right). (G) The ratio of CD4+ T cells containing
TCRs from group 1 over cells containing TCRs from group 2 among each studied group.
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emergence differed in asymptomatic, mildly ill patients and
severely sick patients. Those unusual ASCs, likely the virus
responding ones, emerged earlier in AA and MA, and emerged
later in SP. Similar trends were also present in IgG3 and IgM
isotype (Figure 6H). We suspect that our data reveal a delayed
antibody response in patients destined to become severely ill.
Indeed, we found higher levels of serum SARS-CoV-2-Spike-
RBD (Receptor binding domain on Spike protein)-specific
antibodies in the blood of AA and MA compared to SA
patients (Figure 6I), and made similar observations on a larger
cohort of 506 COVID-19 patients (28). Thus, although many
reports showed higher levels SARS-CoV-2 antibodies in patients
Frontiers in Immunology | www.frontiersin.org 10
with severe COVID-19 than those in mild COVID-19 (29), the
humoral immune defense may actually be initiated earlier in
patients with mild disease.
DISCUSSION

For severe COVID-19, the entire clinical course is dynamic and
includes asymptomatic, symptomatic, ARDS and recovery
phases (1). Thus, patients with severe COVID-19 would
manifest very different symptoms, and very likely distinct
immune responses at those different stages of the infection or
A B C
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FIGURE 6 | The peripheral B cell heterogeneity and its association with COVID-19 severity. (A) UMAP plot peripheral B cell subsets. (B) Proportions of peripheral
B cell subsets from each studied group (two-sided Student’s t-test, *P <0.05, **P <0.01). (C) UMAP plot of clonally expanded B cells from each studied group.
(D) Bar plots show the levels of clonal expansion within each B cell subsets from each studied group. (E) The Shannon-index of total B cells from each studied
group. (F) Bar plots showing the proportions of cells with corresponding Ig isotypes within three B cell subsets from each studied group. (G) Bar plots show the
class-switched ratio between different Ig isotypes across nine groups. (H) Bar plots show the frequency of somatic mutations of ASC with different Ig isotypes across
nine groups. (I) The scatter plot shows the dynamics of RBD antibodies in the plasma of those 18 patients.
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diseases. Understanding the pathogenic mechanisms in the
deterioration and recovery of severe COVID-19 will require a
complete monitoring the entire dynamic immune responses.

Many efforts have been attempted to dissect the
heterogeneous immune responses in patients with different
clinical manifestations, namely, multiple studies using high-
throughput single-cell approaches (30–33). However, most of
these previous reported datasets which investigated cross-
sectional samples collected at peak level severity or
convalescence. As a result, there is a lack of datasets for
longitudinal samples collected from an earlier stage of
infection. So far, little is known about the early immunological
events that could affect the development of severe versus
asymptomatic/mild diseases. In addition, previous immune
investigations comparing samples collected at unsynchronized
clinical phases could lead to inconsistent conclusions (18, 19). In
contrast, we provide a valuable scRNA-seq analysis of peripheral
immune cells in patients infected with SARS-CoV-2, covering
longitudinal specimens of COVID-19 patients with
asymptomatic, mild, and severe diseases collected shortly after
the symptom onset. Indeed, our data reveal a highly dynamic
immune landscape particularly in severe COVID-19, matching
with the different stages (Acute, Progression, and Recovery) of
clinical courses, whereas the composition of immune cellular
compartment in patients with asymptomatic/mild COVID-19 is
rather stable. Particularly, the data that we describe here provide
a useful resource for precisely deciphering the early
immunological events preceding the worsen or resolution of
SARS-CoV-2 induced disease.

IFN response is the first line of host innate immune defense
against viral infection.We and others have previously reported that
IFN response is impaired in patients with severe COVID-19 based
on cross-sectional samples (10, 24). But here, we were surprised to
find that severe patients had a transient strong IFN response before
the disease deterioration, but then dropped rapidly. While the mild
patients have a weak but stable interferon response throughout the
disease. High concentrations of IFN in plasma of SA patients are
most likely stimulated by viral infections. SARS-CoV-2 infection
can induce strong IFN production and is positively correlated with
viral load (23). In the absence of animal models that can mimic
severe COVID-19, it is difficult to determine whether IFNs serve a
protective or a detrimental function in COVID-19. There are some
studies reporting the pathological role of IFN during severe
coronavirus infections (7, 34, 35). Hospitalized COVID-19
patients with high levels of pulmonary ISGs died significantly
earlier than those with low levels of ISGs in a transcriptomic
study of the lung samples (35). Another study found that IFN
played inflammatory roles by recruiting more immune cells to the
lungs (34). It has been reported that IFN disrupt lung epithelial
repair and the pulmonary epithelial barrier upon viral recognition
(36, 37). In addition, IFN can disrupt the urea cycle, reducing
arginine levels and thus dampening the T cell functions (38).
Arginine in plasma in patients with severe COVID-19 is indeed
lower than inmild cases (39). Basedon these data, wepropose that a
strong early transient IFN response may aggravate the progression
of COVID-19, by impairing T-cell responses.
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Regarding protective anti-viral adaptive immune
components, CD8+ T cells are a unique immune cell
population that could precisely and efficiently clear virus-
infected host cells. Although SARS-CoV-2 reacting T cells
responses were detected in COVID-19 patients (14, 40–42),
and their roles in determining disease severity are postulated,
so far, their roles have not been definitively defined. Here, our
data revealed that the CD8+ T cell likely played a crucial role in
controlling SARS-CoV-2 infection, especially in the early stages
of infection. We found the lack of early induction of CD8+ T cell
responses as a prominent feature of severe COVID-19. In
agreement with other recent reports (13, 43), this impaired
induction of CD8+ T cell responses in severe COVID-19 was
likely a result of decreased numbers of naive CD8+ T cells. This
could also explain why old age is an important risk factor for
development of severe COVID-19. Old adults are known to have
a lower number of naive CD8+ T cells, and therefore they are less
likely to be effective responders to handle new viral pathogens.

In addition, our data demonstrated the importance of humoral
immune defense in SARS-CoV-2 infection. Interestingly,
sequencing the BCR repertoire showed that the early recruitment
of B cells with low SHMs signatures was associated with
seroconversion of SARS-CoV-2 IgG (44). It was later reported
that antibodies against the SARS-CoV-2 spike protein receptor
binding domain (RBD) are primarily mediated by the near-
germline IgG1 antibodies with low levels of SHMs (27). Thus, the
appearance of low SHM IgG1 sequences in ASCs observed in this
study, likely indicates the antibody response to SARS-CoV-2 RBD.
Importantly, both the lowSHMIgG1signature andRBDantibodies
occurred later in patients with severe COVID-19, suggesting
delayed engagement of effective humoral immunity as another
predictor for onset of severe disease. This is consistent with recent
studies showing delayed neutralizing antibodies correlate with fatal
COVID-19 (45, 46).

In conclusion, we provided convincing evidence that the early
immunological events, namely, abnormal strong interferon
response, delayed CD8+ T-cell engagement, and humoral
immune responses, may determine the subsequent progression
of severe COVID-19. Additionally, we provide a number of early
prognostic markers for the onset of severe COVID-19, such as
CD14+/CD16+ monocytes ratio, CD4+/CD8+T cell ratio,
GZMK+/GZMB+ T cell ratio, etc., although these parameters
require further validation in the larger cohorts.
MATERIALS AND METHODS

Patients
Ethics statement: This study was conducted according to the
ethical principles of the Declaration of Helsinki. Ethical approval
was obtained from the Research Ethics Committee of Shenzhen
Third People’s Hospital (2020-242).

All participants provided written informed consent for sample
collection and subsequent analyses. Eighteen COVID-19 patients
wereenrolledat theShenzhenThirdPeople’sHospital for scRNA-seq
study. Samples frommetadata andpatientswere collected similarly as
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previously described: The severity of COVID-19 was categorized to
bemild,moderate, severe andcritical according to the “Diagnosis and
Treatment Protocol of COVID-19 (the 7th Tentative Version)” by
the National Health Commission of China (http://www.nhc.gov.cn/
yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml).
In this study, we grouped patients with mild andmoderate COVID-
19 as the mild group, and included those with severe and critical
diseases as the severe group. Asymptomatic patients have no clinical
symptoms such as cough or fever within 1–2 weeks from a positive
nucleic acid test to negative. Six healthy subjects were enrolled as the
control group.

Blood Samples Process
Approximately 5–10 ml of fresh blood is separated into plasma
after centrifugation, which will be used for cytokine detection
later. The remaining cells underwent Ficoll–Hypaque density
gradient centrifugation to obtain PBMC, which can be used for
single cell sequencing.

Cytokines Measurement by MSD
Plasma from 10 severe patients, 9 mild patients, and 11
asymptomatic patients was used for cytokine measurement.
Twelve healthy subjects were enrolled as the control group.
IFNg, IFN-a2a, and IL-29/IFN-l1 were detected according to
the instruction (MESO SCALE DISCOVERY, K15067L-1). In
brief, 25 ul samples or standards were incubated in antibody
coupled plate at room temperature for 1h, detection antibodies
were added for 1 h after washing by PBST. Finally, MSD
GOLDTM Read Buffer B was added to read the results.

Detection of Plasma Antibodies
The plasma of 18 patients in the acute phase in this study were
collected, and chemiluminescence kit (Beijing Wantai Biotech)
in the Caris200 automatic chemiluminescence instrument was
used to detect the level of IgG antibody against SARS-CoV-2-
Spike-RBD. The relative fluorescence of sample to control (COI)
was used to estimate the result. The results ≥1 COI are reactive
(positive), and the results <1 COI are nonreactive (negative).

ScRNA-Seq Library Construction
ScRNA-seq libraries were prepared according to previous
protocols. In brief, the recovered PBMC were counted in 0.4%
trypan blued, centrifuged and re-suspended at the concentration
of 2 × 106/ml. The cell suspension was loaded onto a Chromium
single cell controller (10× Genomics) to generate single-cell gel
beads in the emulsion (GEMs) according to the manufacturer’s
protocol. Reverse transcription takes place inside each GEM,
after which cDNAs are pooled together for amplification and
library construction. The resulting library products consist of
Illumina adapters and sample indices, allowing pooling and
sequencing of multiple libraries on the next-generation short
read sequencer.

Single Cell Filtering, Clustering, Dimension
Reduction, and Visualization
We aligned the sequenced reads against GRCh38 human
reference genome by Cell Ranger (version 3.1.0, 10×
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genomics). The raw count matrix (UMI counts per gene per
cell) was processed by Seurat (v3.2.2) (47). Cells with less than
200 and more than 6,000 expressed genes, less than 1,000 UMI
and higher than 15% mitochondrial genome transcript were
removed. Genes expressed in less than 3 cells were removed.

Data integration, cell clustering and dimension reduction
were performed by Seurat (v3.2.2). First, the gene expression
matrix were normalized using the “NormalizeData” function
with default settings. The sources of cell–cell variation driven by
batch were regressed out using the number of detected UMI and
mitochondrial gene expression, which were implemented using
the “ScaleData” function. The top 2,000 highly variable genes
(HVGs) were used for the following analysis using
“FindVariableFeatures” function. Next, we integrated different
samples by “IntegrateData” function, which eliminates technical
or batch effect by canonical correlation analysis (CCA). Using
those HVGs, we calculate a PCA matrix with the top 50
components by “RunPCA” function. The cells were then
clustered by “FindClusters” function after building nearest
neighbor graph using “FindNeighbors” function. The
parameter resolution was set to 0.4 to identify cell types in all
cell populations. The cluster-specific marker genes were
identified by “FindMarkers” function using MAST algorithm
(v1.15.0). The clustered cells were then projected into a two-
dimension space for visualization by a non-linear dimensional
reduction method “RunUMAP” in Seurat package.

Integrated Analysis of Peripheral Myeloid,
CD4+ T, CD8+ T, Innate T and B Cells
We re-clustered the peripheral myeloid, CD4+ T, CD8+ T, innate
T, and B cells using the top 20 dimensions of PCA with the
parameter resolution of 0.6, 1.3, 1.3, 0.8, and 1.3 respectively. The
myeloid compartment, namely, mDCs and monocytes was re-
clustered using cells annotated with monocyte and mDCs in
Figure 2. The CD4+ T and CD8+ T cells were re-clustered using
cells annotated with CD4+ and CD8+ T cells in Figure S2. The B
cell subsets were re-clustered using B cells annotated in Figure 2.
The re-clustered cells were annotated by canonical markers.

Differentially Expressed Gene and Gene
Enrichment Analysis
The “FindMarkers” function in Seurat with MAST algorithm
(v1.15.0) (48) was used to analyze DEGs. For each pairwise
comparison, the “FindMarkers” function was run with the
parameters of test.use = ‘MAST’. Genes were defined as
significantly upregulated if the average natural logarithm fold
change (logFC) was >0.25 and adjusted P-value was <0.01. The
genes with logFC <−0.25 and adjusted P <0.01 were considered
significantly downregulated. We performed GO term enrichment
analysis for the significantly upregulated and downregulated genes
using clusterProfiler (v3.17.3) (49) package in R (v4.0.2). GO term
of Biological Process (BP) was displayed.

Principal Component Analysis of
All Samples
The principal component analysis of all samples in Figure 1 was
calculated using the average expression level of the top 4,000
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HVGs across all cells in each sample utilizing “prcomp” method
in R (v4.0.2).

Calculation of Immune Signature Scores
Immune signature scores in scRNA-seq data were calculated
using the AddModuleScore function in the Seurat package. IFN
response scores were calculated using ADAR, APOBEC3, BST2,
CD74, MB21D1, DDIT4, DDX58, DDX60, EIF2AK2, GBP1,
GBP2, HPSE, IFI44L, IFI6, IFIH1, IFIT1, IRF1, IRF7, ISG15,
ISG20, MAP3K14, MOV10, MS4A4A, MX1, MX2, NAMPT,
NT5C3, OAS1, OAS2, OAS3, OASL, P2RY6, PHF15, PML,
RSAD2, RTP4, SLC15A3, SLC25A28, SSBP3, TREX1, TRIM5,
TRIM25, SUN2, ZC3HAV1, IFITM1, IFITM2, and IFITM3. The
MHC class II score was calculated using HLA-DMA, HLA-DMB,
HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA,
HLA-DRB1, and HLA-DRB5. The alarmin score was calculated
using S100A1, S100A2, S100A3, S100A4, S100A5, S100A6,
S100A7, S100A7A, S100A7L2, S100A7P1, S100A7P2, S100A8,
S100A9, S100A10, S100A11, S100A12, S100A13, S100A14,
S100A15A, S100A16, S100B, S100G, S100P, and S100Z.
“Monocyte composite scores” were calculated according to the
MHC-II score minus alarmin score. The cytotoxicity score was
calculated using PRF1, IFNG, GNLY, NKG7, GZMB, GZMA,
GZMH, KLRK1, KLRB1, KLRD1, CTSW, and CST7.

The ISGs score, MHC II score and alarmin score in a sample
with bulk RNA-seq data were calculated as the geometric mean
of the normalized log2-transformed expression of the genes
above separately.

Estimation of Cell Composition in Bulk
RNA-Seq Data
We used MarkerBasedDecomposition function in Bisque, a semi-
supervised model that extracts trends in cellular composition from
normalized bulk expression samples, to deduce cell type abundance
using only cell-specific marker genes: CD79A, CD19, MS4A1
marked B cells. CD79A and IGKC marked PCs. CD3D, CD4 and
GZMB marked CD4-GZMB. CD3D, CD4 and GZMK marked
CD4-GZMK. CD3D, CD4 and FOXP3 marked CD4-Treg. CD3D,
CD8AandGZMBmarkedCD8-GZMB.CD3D,CD8AandGZMK
marked CD8-GZMK. FCN1 and CD14 marked mono-CD14+.
FCN1 and FCGR3A marked mono-CD16+.

Single-Cell TCR and BCR Analysis
The amino acid and nucleotide sequence of TCR/BCR chains
were assembled and annotated by cellranger vdj function in
CellRanger (version 3.1.0). For TCR, only cells with paired TCRa
and TCRb chains were included in clonotype analysis. Cells
sharing the same TCRa- and TCRb-CDR3 amino acid sequences
were assigned to the same TCR clonotype. For the BCR, only
cells with at least one productive heavy chain (IGH) and one
productive light chain (IGK or IGL) were kept for further
analysis. Cells sharing the same V/J gene and the same IGH-
and IGK/IGL-CDR3 amino acid was defined as a clonotype. The
TCR clonotypes and the BCR clonotypes were integrated into
transcriptome object using barcode information. Shannon index
(TCR/BCR diversity) of each sample was calculated using
“diversity” function in vegan package (v2.5.6) (https://github.
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com/vegandevs/vegan) in R. For each BCR, we calculated their
similarity to the germline genes using the V gene on heavy chain
utilizing IgBlast (v1.15.0) (50). The SHM was deduced using the
difference between 1 and the above calculated similarity.

TCR sharing clustering analysis. Referring to the methods
from a recent report (19), we constructed a TCR matrix of CD4+

and CD8+ T cells with cell cluster as rows and unique TCRs as
columns with the number of cells with a given TCR in a certain
cluster as values. Only the TCRs present in at least two clusters
were kept for further analysis. The TCR matric were transformed
via log1p transformation (formula = ln (value + 1)) and values
were clipped at 2 (any value greater than 2 was set to 2). Both
TCRs and cell clusters were subject to hierarchal clustering with
the method set to “ward” using “pheatmap” function in R.

RT-qPCR
All studies involving SARS-CoV-2 infection were conducted in the
biosafety level-3 (BLS-3) laboratory of Shenzhen Third People’s
Hospital. Lung epithelial cells Calu3 were infected with SARS-
CoV-2 at 1 MOI for 24 and 48 h. Total RNA was extracted with
TRIzolTM Reagent in accordance with the manufacturer’s
instructions and reverse-transcribed into cDNA with a High-
Capacity cDNA Reverse Transcription Kit (Takara, RR036A). The
expression levels of indicated RNA were determined by RT-qPCR
analysis using Power SYBRGreen PCRMasterMix (Vazyme,Q311-
02). Primers used in RT-qPCR reactions are listed in Table S4.

Statistics
The Student’s t-test (t-test in R, two-sided, unadjusted for
multiple comparisons) was used for pairwise comparisons of
the cell proportions between different groups. The Pearson
correlation coefficient between clinical index and WOS was
evaluated utilizing the corr.test function in R (v4.0.2). The
silhouette coefficient was calculated using the following formula:

bi − ai
max ai, bif g

Where, ai indicates the mean of euclidean distance from cell i
to all other cells that belong to the cell type. bi indicates the mean
of euclidean distance from cell i to all other cells that is nearest to
the cell type of i.
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