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Glioblastoma multiforme (GBM) is the most malignant intracranial tumor in

adults, characterized by extensive infiltrative growth, high vascularization, and

resistance to multiple therapeutic approaches. Among the many factors

affect ing the therapeut ic effect , the immunosuppress ive GBM

microenvironment that is created by cells and associated molecules via

complex mechanisms plays a particularly important role in facilitating evasion

of the tumor from the immune response. Accumulating evidence is also

revealing a close association of the gut microbiota with the challenges in the

treatment of GBM. The gut microbiota establishes a connection with the

central nervous system through bidirectional signals of the gut–brain axis,

thus affecting the occurrence and development of GBM. In this review, we

discuss the key immunosuppressive components in the tumor

microenvironment, along with the regulatory mechanism of the gut

microbiota involved in immunity and metabol ism in the GBM

microenvironment. Lastly, we concentrate on the immunotherapeutic

strategies currently under investigation, which hold promise to overcome the

hurdles of the immunosuppressive tumor microenvironment and improve the

therapeutic outcome for patients with GBM.
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1 Introduction

The tumor microenvironment (TME) facilitates the fusion of

tumor cells with the surrounding environment by promoting tumor

invasion, angiogenesis, and the secretion of cytokines, thus playing

an extremely important role in tumor progression. Glioblastoma

multiforme (GBM) is characterized by rapid growth and molecular

heterogeneity, along with resistance to treatment, leading to

inevitable recurrence (1). Since primary brain tumors generally

cannot transfer to other parts of the body owing to the blood–brain

barrier, these tumors have a distinct TME from that of other tumors

(2). The GBM microenvironment is a highly heterogeneous

dynamic system; in addition to GBM cells, the TME contains a

series of nonneoplastic cells and related molecules, including

infiltrating and resident immune cells such as glioma-associated

macrophages (GAMs), as well as matrix components, soluble

factors, and extracellular matrix (ECM) (3, 4). The cellular

composition of the TME and the accessibility of immune cells

vary according to the GBM subtype and the clinical characteristics

of individual patients. These factors in turn contribute to the

formation of an immunosuppressive GBM microenvironment,

which leads to the failure of immunotherapy (5).

As the severe immunosuppressive effect in the TME is one of

the characteristic features of gliomas, we here provide an overview

of the multiple nontumor components of the immune system

present in the TME, focusing on GAMs and other infiltrating

immunosuppressive cells, including regulatory T cells (Tregs) and

myeloid-derived suppressor cells (MDSCs), which are considered

to have protumor and immunosuppressive effects. These

components constitute the large, complex network of the GBM

immunosuppressive microenvironment, which is conducive to

facilitating the immune escape of GBM cells. Evading immune

surveillance is recognized as a landmark event in cancer biology;

accordingly, immunotherapy now represents the backbone of

cancer treatment in clinical oncology (6). Immunotherapy for

GBM has also recently come into the research spotlight, including

strategies involving immune stimulation, antibody-mediated

immunotherapy, adoptive cell immunotherapy, and vaccines.

However, clinical trials have not yet proven the effectiveness of

immunotherapy in treating GBM (7).

A variety of microbial communities that are dominant in the

gastrointestinal tract have been reported to coexist in humans and

mice and are collectively known as the gut “microbiota” (8). The

role of themicrobiota in the immune system is nowwell-established

(9). The gut microbiota plays a key role in the regulation of systemic

diseases and brain function by influencing the development and

function of host metabolism and the immune system (10).

However, the role of the gut microbiota in the development of

GBM requires further exploration.

In this review, we discuss the mechanisms by which immune

cells function in the GBM immunosuppressive microenvironment

and the interaction between gut microbes and gliomas via the gut–
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brain axis. Since the introduction of immunotherapy in the clinical

treatment of tumors has improved the prognosis of some patients

with solid tumors, we further review the clinical studies related to

GBM immunotherapy, including immune checkpoint inhibitors

(ICIs), vaccines, and chimeric antigen receptor (CAR)-T therapies,

aiming to bring new hope for GBM patients.
2 Immunosuppressive cells in the
TME contribute to GBM progression

GBM creates a local or systemic immunosuppressive

microenvironment. Infiltrating immunosuppressive cells

account for a large proportion of the GBM microenvironment,

and different immunotherapies targeting these immune cells are

currently being investigated (Figure 1).
2.1 GAMs

The macrophages in the GBM microenvironment, or GAMs,

are mainly divided into two categories: microglia colonized in the

brain (11) and macrophages differentiated from bone marrow-

derived monocytes (12). Using genetically engineered mouse

models, GAMs were found to be predominantly composed of

peripheral macrophages, with a minor population of resident

microglia (13). GAMs exhibit marked plasticity and can polarize

into M1 and M2 phenotypes with proinflammatory and anti-

inflammatory roles under various pathological stimuli (14). M1

GAMs express high levels of the differentiation clusters CD80,

CD86, and major histocompatibility complex II (MHC II). M2

GAMs express high levels of CD163, CD206, and CD14; low levels

of CD80 and MHC II; and secrete molecules that mediate

immunosuppression and promote tumor progression (15).

GBM triggers the accumulation of GAMs by regulating

chemokines in the TME. M2-directed chemokines are more

abundant than M1-directed chemokines in the GBM

microenvironment, thereby promoting polarization to the M2

phenotype, and inhibition of the clearance of tumor cells by the

M1-type macrophages creates an environment of tumor

immunosuppression. The M2 GAMs also promote GBM

growth and development, forming a positive feedback regulatory

system (16). The engagement of programmed death 1 (PD-1) and

its ligand (PD-L1) is an essential mechanism that contributes to

the immune-suppressive TME. PD-L1 is highly expressed on

tumor-infiltrating myeloid cells (TIMs), including tumor-

associated macrophages (TAMs) (17). Zhu et al. (18) reported

that TAMs’ infiltration and polarization of M2-type macrophages

are both associated with PD-L1–mediated immunosuppression.

GAMs can also directly interact with glioma cells to promote

the proliferation of tumor cells. This direct-contact promotion

mechanism is related to the increase of Ca2+ levels in gliomas,
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which can transiently stimulate ATP-mediated glioma cells and

GAMs. Transforming growth factor (TGF)-b is secreted by GAMs

in the TME, which binds to type II TGF-b receptor (TGF-bRII)
expressed on the surface of glioma stem-like cells (GSLCs) to

promote the secretion of matrix metalloproteinase (MMP)-9 by

GSLCs. This mode of action through stimulation of the TGF-b
receptor pathway is proposed to be a direct cause of glioma invasion

of the surrounding parenchyma (19). Studies have also shown that

interleukin (IL)-6 released by GAMs can significantly enhance the

permeability of the blood–brain barrier in glioma patients by

activating the JAK-STAT3 pathway in endothelial cells and

downregulating the level of intercellular connexins, which leads to

the formation of vasogenic brain edema (20). IL-1b released by

GAMs can also promote the phosphorylation and glycolysis of

glycerol-3-phosphate dehydrogenase 2 (GPD2) in glioma cells,

thereby accelerating tumor proliferation and growth (21).
2.2 Tregs

Tregs are suppressor T cells, which, along with M2-like

macrophages/microglia, infiltrate the GBM TME and together
Frontiers in Immunology 03
constitute the main population of inhibitory immune cells in

GBM (22). Therefore, targeting Treg-related mechanisms in

GBM patients can improve the success rate of clinical GBM

immunotherapy. A correlation between Tregs’ activity and GBM

development and immunosuppression has been identified in

both mouse models and patients. Tregs represent a subset of

CD4+ T lymphocytes, which are mainly characterized by high

expression of the transcription factors Foxp3, CD25, and

cytotoxic T lymphocyte antigen 4 (CTLA-4), with Foxp3

controlling the expression of CTLA-4 in Tregs (23, 24). The

number of infiltrating Foxp3+ Tregs was found to correlate with

the tumor grade. Moreover, Foxp3+ Tregs in glioma can bind to

CD80/CD86 on antigen-presenting cells (APCs) through CTLA-

4, affecting their efficacy and thus inhibiting T lymphocyte

activity (25). Tregs infiltrating glioma tissue are significantly

more abundant than those in the peripheral blood. Jacobs et al.

(26) found that CCL22 secreted by GBM cells could induce the

migration of Treg. The CCL22 receptor CCR4 is highly

expressed on Tregs in GBM tissues, and other CD4 and CD8

cells in tumor tissues do not express this receptor, suggesting

that the recruitment of Tregs in GBM may depend on the action

of chemokines.
B

C

A

FIGURE 1

Immunosuppressive cells in the glioma microenvironment. (A) GAMs release many cytokines that promote the malignant phenotype of GBM
and maintain the high permeability of the blood–brain barrier, including TGF-b, IL-6, and IL-1b. Targeting the phagocytosis checkpoints such as
CCL2/CCR2, CD47/SIRP-a, and the CSF-1/CSF-1R axis can enhance the phagocytosis of tumor cells by macrophages. (B) Tregs are recruited by
chemokines and inhibit the action of cytotoxic T cells through immune checkpoints (e.g., CTLA-4 or GITR). Tregs release immunosuppressive
cytokines such as TGF-b, IL-10, and IDO to inhibit dendritic cell function, disturbing a competent anti-tumor immune response. (C) MDSCs are
also recruited by the CCL2/CCR2 axis in the GBM microenvironment and potently suppress anti-tumor immunity through PD1/PD-L1. MDSCs
also deplete human essential amino acids, leading to impaired T-cell activation and function.
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In GBM-implanted mouse models, the decrease of Tregs led to

the proliferation of CD4+ T cells and decreased the levels of secreted

immunosuppressive cytokines, resulting in tumor rejection and

significantly prolonged mouse survival (27). An increase of Tregs

was found in GBM compared with the circulation, which may be

driven by soluble cytokines produced by GBM. Recent studies have

shown that, in addition to priority chemotaxis, soluble cytokines

can also induce the proliferation and survival of Tregs. These studies

provide new insight into a treatment strategy targeting Tregs (28).

Tregs mainly inhibit dendritic cells (DCs), APCs, and other

lymphocytes by promoting immunosuppressive factors such as

TGF-b, IL-10, and indoleamine-2,3-dioxygenase (IDO), thus

creating an immunosuppressive microenvironment (29).
2.3 MDSCs

The high accumulation of immunosuppressive cytokines,

Tregs, as well as bone marrow-derived inhibitory cells (MDSCs),

are important characteristics of the GBM microenvironment

(30). MDSCs, identified as CD11b+CD33+HLA-DR–/low cells, are

immature myeloid cells with high heterogeneity that play a key

role in tumor cell-induced immunosuppression (31). Patients

with GBM were found to have elevated levels of circulating

MDSCs, which were 12 times higher than those of healthy

individuals (32, 33). MDSCs can be divided into two subsets,

including granulocytic MDSCs (G-MDSCs) and monocytic

MDSCs (M-MDSCs), which inhibit innate anti-tumor

immunity through a variety of mechanisms (34, 35). Data

from the study of Bayik et al. (36) demonstrated that the role

of MDSCs is sex-dependent in a mouse model of GBM;

preclinical models demonstrated that M-MDSCs promoted the

progression of GBM in males in the TME, whereas systematic

accumulation of G-MDSCs mainly regulated the anti-tumor

immune response in females.

There is increasing evidence that the chemokine CCL2 plays

a role in the infi ltration of MDSCs into the GBM

microenvironment. In addition, CCL2 and CCL7 are expressed

on GBM and enable CCR2+ cells to play a tumor-recruiting role.

Loss of CCR2 expression resulted in a reduced outflow of

MDSCs in the bone marrow, thereby reducing GBM

infiltration of these cells. Other studies demonstrated that

CCL2 mediates the migration and accumulation of MDSCs at

tumor sites, which not only inhibits the killing function of

natural killer (NK) cells and the anti-tumor immune effect of

T cells but also promotes the development of Tregs and limits

the maturation of DCs, thereby inhibiting innate and adaptive

immunity (37–39). MDSCs can use metabolic pathways to

mature from bone marrow precursors owing to their high

glycolysis flux, and this process indirectly leads to effector T-

cell inhibition through the consumption of carbon sources (40).

Moreover, MDSCs deplete the availability of human essential

amino acids (such as tryptophan, L-arginine, and L-cysteine),
Frontiers in Immunology 04
leading to downregulation of the TCR-Zeta chain, ultimately

resulting in antigen recognition failure and thereby affecting T-

cell activation and function (41).
2.4 Immunotherapeutic strategies
targeting immunosuppressive cells
of glioma

2.4.1 Strategies targeting GAMs
GAMS play a critical role in tumor development, and GAM

accumulation is correlated with poor survival. Thus, they are an

attractive target for GBM immunotherapy. CCL2, which recruits

GAMs, may be secreted by GBM cells, and blocking of CCL2’s

binding to CCR2 effectively prevents GAM accumulation and

increases T-cell and NK cell infiltration (42). Carlumab (CNTO

888), a human IgG1k anti-CCL2 antibody, was shown that may

offer beneficial anti-tumor properties when combined with four

chemotherapy regimens in preclinical studies (43). Yang et al.

(44) demonstrated, in a mouse xenograft model, that a CCR2

antagonist (RS504393) greatly reduced TAM infiltration and

tumor size. Macrophage colony-stimulating factor (M-CSF) and

its receptor (CSF1R) are important in both GAM recruitment

and differentiation. The usefulness of targeting the binding of

CSF-1 and CSF1R was shown in a preclinical study, where a

mouse model of ovarian cancer that had been intravenously

administered a CSF-1R inhibitor (BLZ945) exhibited a decrease

and an increase in TAM cells and CD8+ T, respectively (45).

Moreover, Omstead et al. (46) showed that pexidartinib, an

inhibitor of CSF-1R, inhibited immune escape in solid tumors

and enhanced anti-tumor activity; when pexidartinib was

combined with a PD-1/PD-L1 inhibitor, CD3+CD8+ T-cell

infiltration increased and M2 macrophage polarization

attenuated. CD47 is overexpressed in glioma cells and can

block phagocytosis by macrophages. Li et al. (47) found that

anti-CD47 antibodies led to increased phagocytosis of glioma

cells by macrophages and significantly reduced tumor growth

rate in a mouse glioma model. Furthermore, anti-CD47 therapy

has been shown to promote the polarization of TAMs from an

M2- to anM1-like phenotype (48) and induce anti-tumor effects.

2.4.2 Strategies targeting Tregs
During the early stages of tumor progression, Tregs recruited

to the tumor site by the glioma TME can inhibit T-cell functions.

In a mouse glioma model, the production of Tregs was found to

be time-dependent, and reduction of CD25 expression could

inhibit the accumulation of Tregs in the tumor. In addition, the

anti-CD25 antibody PC61 caused the specific elimination of

CD4+CD25hiFoxp3+ Tregs, resulting in an effective anti-tumor

immune response (49). In 2020, Wang et al. (50) found that

CD36 expression was upregulated in Tregs and maintained Treg

survival through CD36/peroxisome proliferator-activated

receptor-b (PPAR-b) signaling. Treatment targeting CD36
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resulted in the reduction of intratumoral Tregs and

enhancement of the anti-tumor activity of tumor-infiltrating

lymphocytes (TILs). Recent studies have demonstrated that, in

addition to blocking co-inhibitory pathways, it is also possible to

enhance the co-stimulatory pathway to enhance the anti-tumor

immune effect. Glucocorticoid-induced tumor necrosis factor

(TNF)-related protein (GITR) is a transmembrane protein in the

TNF receptor superfamily. Under activation of CD8+ and CD4+

effector T cells, the expression of GITR was found to rapidly

increase and reached the highest level on activated Tregs (51).

GITR ligand (GITRL) is mainly expressed by activated APCs.

Amoozgar et al. (22) demonstrated that an anti-GITR antibody

(aGITR) preferentially targets GBM Tregs by converting

immunosuppressed Tregs into anti-tumor CD4+ T cells using

a preclinical mouse model of GBM. Such immunotherapy

strategies targeting GBM-infiltrated Treg-specific phenotypes

may be tumor-specific, and the use of Treg-targeted aGITR
may reduce immune-related adverse events (52).

2.4.3 Strategies targeting MDSCs
At present, the main therapeutic strategies targeting MDSCs

involve the consumption or inhibition of the recruitment of

MDSCs or the weakening of the inhibitory activity of MDSCs

(53). Kamran et al. (3) found that MDSCs are inhibitors of

antigen-specific T-cell proliferation and that interfering with

MDSCs enhances the specific CD8+ T-cell response induced by

TK/Flt3L gene therapy, resulting in an increase in the median

survival time and the percentage of mice exhibiting long-term

survival. Additionally, the combination of PD-L1 or CTLA-4

inhibitor therapy could greatly improve the therapeutic effect of

TK/Flt3L gene therapy. Chemokine receptors are the main

driving force for the recruitment of MDSCs. Thus, blocking

the binding of chemokine receptors to their ligands can

effectively inhibit the aggregation of MDSCs in the TME. For

example, monoclonal antibodies targeting CCR2-CCL2

effectively inhibit tumor growth and invasion (43). Flores-Toro

et al. (54) reported that the findings of genetic ablation were

recapitulated with the use of the CCR2 antagonist CCX872,

indicating a reduction of MDSC infiltration in GBM. Moreover,

MDSCs can produce polyamines and fatty acids to maintain

their immunosuppressive function in GBM. Therefore,

inhibition of the production of these substances reduces the

survival of MDSCs, thereby activating anti-tumor immunity and

impinging the growth of GBM tumors (55).
3 Mediating role of the gut
microbiota in the
immunosuppressive TME

Accumulating evidence indicates that the immunosuppressive

environment of GBM is not only mediated by the
Frontiers in Immunology 05
immunosuppressive cells and molecules discussed above but also

has many connections with the gut microbiota, thereby promoting

the progression of GBM (56). The human gut microbiota contains

numerous microorganisms with different properties and functions.

Dysbiosis of gut microbiota refers to the inability of bacteria in the

human environment to maintain a dynamic balance, leading to

inflammation and immunosuppression, and gut microbiota is

sensitive to the tumor (57). In recent years, the role of the gut

microbiota in tumors has been widely studied, including in

gastrointestinal (58), liver, lung, and breast cancers,

demonstrating involvement in immune maturation and immune

regulation processes (59). However, the mechanism by which the

gut microbiota mediates GBM progression remains unclear. In

neurodegenerative diseases and tumors of the central nervous

system (CNS), the gut microbiota establishes interactions between

the gut and the CNS through complex and as-yet-unknown

bidirectional signals along the gut–brain axis (60, 61) (Figure 2).

Microbiota can regulate local and systemic intestinal

immunity, especially in the induction and maturation of

immune cells in the nervous system. Studies have reported that

gut microbiota dysregulation can downregulate granulocyte-

macrophage colony-stimulating factor (GM-CSF) signaling,

resulting in activated immature myeloid cells significantly

expressing reactive oxygen species (ROS), which increases the

inhibitory activity of MDSCs on T cells (62, 63). Moreover,

dysregulation of the gut microbiota can affect the immune

balance between anti-inflammatory Tregs and proinflammatory

Th17 cells (64) and could downregulate the expression of Foxp3

on tumor cells (57), leading to the growth and apoptosis inhibition

of glioma cells. Furthermore, a lack of gut microbiota can lead to

abnormal immune cell function in the CNS. The morphological

characteristics and gene expression profiles of the microglia were

altered in germ-free (GF) mice lacking a microbiota, and the

increase in the number of immature microglia eventually

promoted the progression of glioma (60). D’Alessandro et al.

(10) found that gut microbiota dysbiosis led to NK cell damage

and altered the microglial phenotype, ultimately impacting the

innate and adaptive immune responses of mice. They further

established a glioma model by injecting GL261-Luc cells into

healthy mice and found that the relative abundance of Bacteroides

and Actinobacteria decreased, while the relative abundance of

Firmicutes increased, with the progression of glioma.

Specific changes in the gut microbiota and microbial

metabolites have been shown to influence disease progression

(65). The main metabolites of the gut microbiota are short-chain

fatty acids (SCFAs), which activate cellular receptors and affect

cellular metabolism (57). SCFAs were shown to ameliorate

disease activity by regulating the increase of anti-inflammatory

Tregs and the decrease of proinflammatory Th1 and Th17 cells

(66). In patients with glioma, metabolites produced by the gut

microbiota can affect the immune microenvironment,

angiogenesis, and epigenetic landscape through a series of

cascade reactions, ultimately influencing the occurrence and
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development of glioma. More specifically, SCFAs can regulate

the levels of TGF-b and IL-10, contribute to the polarization of

microglia into M2 phenotype, and inhibit lymphocyte

proliferation and T-cell differentiation (63). GBMs are highly

vascularized tumors, and glioma growth depends on the

formation of new blood vessels. Some studies have reported

that bacterial toxins participate in proinflammatory processes

and activate angiogenesis (67).

In addition to SCFAs, non-SCFAs produced by gut microbiota

metabolism also have a broad regulatory effect on the body. For

example, the metabolite tryptophan (Trp) produced by gut

microbiota can activate the ligand-activated transcription factor

aryl hydrocarbon receptor (AHR), exerting effects on astrocytes,

which can regulate nerve excitability and synaptic formation,

thereby limiting the occurrence of T-cell–dependent

inflammation in the CNS (68, 69). Moreover, glioblastoma cells

can produce kynurenine that activates AHR in TAMs; AHR recruits

TAMs through CCR2/CCL2, drives the expression of the

ectonucleotidase CD39 in TAMs, and plays a synergistic role with

CD73 to promote adenosine production, leading to CD8+ T-cell

dysfunction (70). Gramatzki et al. (71) reported that AHR in glioma

cells drives TGF-b expression and that AHR signaling promotes the

formation of the immunosuppressive glioma microenvironment.

Neurotransmitters are the products of the activities of the gut

microbiota and modulate neuronal activity. D’Alessandro et al.

(72) suggested that the ability of the gut microbiota to regulate
Frontiers in Immunology 06
neurotransmitter levels may be a key factor affecting the

progression of brain tumors. In glioma cells, the gut microbiota

participated in the regulation of dopamine (DOPA) and serotonin

(5-hydroxytryptamine (5-HT)). Studies have reported that

dopamine can promote the progression of glioma by binding to

dopamine receptor 2 (DRD2), which is highly expressed in GBM

cells, activating the expression of epidermal growth factor receptor

(EGFR), and promoting the phosphorylation of mitogen-activated

protein kinase (MAPK) (73). In addition, the vast majority of 5-

HT in the body is produced by gut microbiota metabolism, and

the level of secretion determines the degree of anti-tumor and

protumor bidirectional effects. Oversecretion of 5-HT can

promote the proliferation of gliomas by activating protein

phosphorylation signaling pathways (73). It has been previously

reported that 5-HT can directly act on adjacent endothelial cells

and activate angiogenic pathways (74). Importantly, at the early

stages of tumor development, angiogenesis is regulated by 5-HT

via induction of MMP12 expression in TAMs, thereby decreasing

the production of circulating angiostatin (75). The angiogenic

effect of 5-HT suggests that it may stimulate cancer cell

proliferation and invasion, which are key processes in cancer

progression. These studies also demonstrated that 5-HT–activated

angiogenic signaling pathways are similar to those activated by

VEGF, including the activation of the same signaling kinases,

indicating that the downstream angiogenic signaling pathways of

VEGF and 5-HT partially converge (74, 76).
BA

FIGURE 2

Relationship between the gut microbiota and the development of glioma. (A) The gut microbiota drives the production of metabolites and
neurotransmitters, which reach the brain through blood circulation and regulate the malignant progression and angiogenesis of GBM via direct
or indirect effects. In addition, dysregulation of the gut microbiota regulates the expression of ROS or the balance between immune cells to
inhibit T-cell killing of tumor cells. (B) A glioma-bearing mouse model exhibited gut microbiota dysbiosis with a reduced abundance of
Bacteroides and Actinobacteria, and an increased abundance of Firmicutes. In addition, gut microbiota dysbiosis leads to natural killer (NK) cell
damage and alters the microglial phenotype, together mediating the tumor tolerance microenvironment in the central nervous system.
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Moreover, gut microbes influence the efficacy of cancer

immunotherapies, especially ICIs. Vétizou et al. (77) found

that the anti-tumor effects of CTLA-4 blocker were related to

the presence of different Bacteroides species. In tumors treated

with antibiotics or in germ-free mice, blocking CTLA-4 had no

therapeutic effect, whereas supplementation with Bacteroides

fragilis significantly enhanced the therapeutic effect. Another

study showed that oral administration of Bifidobacterium

enhanced DC function, leading to CD8+ T cells that exerted

tumor-killing effects and accumulated in the TME. Combined

application of Bifidobacterium and PD-L1 checkpoint blockade

virtually eliminated tumor growth (78). In addition, with anti-

PD-1/PD-L1 therapy, overall survival was higher in patients who

did not receive conventional indications of antibiotics compared

with that of tumor patients receiving antibiotics, suggesting that

disruption of the gut microbiota after antibiotic administration

affects the response to immune checkpoint blockade (79). In

general, if patients responding to ICIs show a higher abundance

of Faecalibacterium and Ruminococcaceae, the number of CD4+

T cells and CD8+ T cells will increase, resulting in an overall

better anti-tumor effect (80). When stool samples from patients

responding to PD-1 blockade were transferred to germ-free

mice, the tumor growth rate was significantly reduced, which

was attributed to an increase in CD8+ T cells and a decrease in

Tregs in the TME. In recent years, several studies have emerged

to confirm the relationship between the gut microbiota and ICI

treatment in patients with several cancers, including nonsmall

cell lung cancer, hepatocellular carcinoma, melanoma, and renal

cell carcinoma; however, the association in GBM patients still

needs to be further explored.
4 Immunotherapy for GBM

Tumor immunotherapy is a therapeutic method to

control and eliminate tumors by reactivating the tumor-

specific immune response and restoring normal anti-tumor

immune system activity. With increasing recognition of the

immunosuppressive microenvironment created by the

persistence of immunosuppressive cells in GBM, clinical

treatment is seeing a shift to using ICIs to target immune cell

inhibitory receptors (81) (Figure 3). Other forms of tumor

immunotherapy include passive CAR-T cell immunotherapy

and active immunotherapy such as vaccines.
4.1 Immune checkpoint inhibitors

4.1.1 CTLA-4 inhibitors
CTLA-4 (CD152) is a negative regulator of T-cell activation,

blocking co-stimulatory signals and weakening the function

provided by differentiated clusters of CD28 binding B7 (82).

Unlike CD28, CTLA-4 is expressed in both activated T cells and
Frontiers in Immunology 07
Tregs. The affinity between CTLA-4 and CD80/86 was found to

be 10- to 20-fold higher than that of CD28, and CD28 was

competitively inhibited (83). Therefore, CTLA-4 disrupts the co-

stimulatory signaling pathway and inhibits the activation of

naive and memory T cells, effectively inhibiting the immune

response (84). CTLA-4 inhibitors can block the binding of

CTLA-4 with its ligand on the surface of APCs, thereby

blocking the inhibitory immune signal and restoring the anti-

tumor immune effect of the body. Given the complexity of the

GBM immune microenvironment, disrupting CTLA-4/CD80

complex formation in the tumor was found to contribute to

the improved survival of GBM-bearing mice (85).

In recent years, CTLA-4 inhibitors have also proven to be

successful in tumor immunotherapy in clinical trials.

Tremelimumab is a monoclonal antibody targeting CTLA-4

that has shown an effective response in clinical trials when

used in combination with a PD-1/PD-L1 inhibitor in various

tumors (86, 87). Ipilimumab (Yervoy) is a humanized IgG

monoclonal antibody targeting CTLA-4, which showed a

clinical benefit in nonsmall cell lung cancer, and its

effectiveness in more tumors is currently being evaluated. Its

safety and tolerability when combined with other agents, such as

temozolomide or radiotherapy, are currently being investigated

in phases I and II trials (88). Studies on CTLA-4

immunosuppressants have also shown good effects in patients

with glioma. However, further comprehensive analysis of the

expression of CTLA-4 in patients is needed to determine the

standard drug concentration of CTLA-4 inhibitors in clinical

trials (89). Quavonlimab (MK-1308) is a novel humanized

immunoglobulin (Ig) monoclonal antibody targeting CTLA-4,

thereby preventing the binding of CTLA-4 to CD80/86. The

combination of quavonlimab plus pembrolizumab showed a

good safety profile in a phase I trial in patients with advanced

solid tumors (90). Zalifrelimab (an anti-CTLA-4 antibody) is a

novel checkpoint inhibitor, and its combination with balstilimab

(an anti-PD-1 agent) in the treatment of recurrent/metastatic

cervical cancer has shown promising results. After a two-group

phase II study, zalifrelimab was evaluated for safety, tolerability,

and efficacy in patients with advanced cervical cancer exhibiting

disease progression following chemotherapy (91).

4.1.2 PD-1/PD-L1 inhibitors
PD-1 is expressed in B cells, T cells, MDSCs, TAMs, and NK

cells in the GBM microenvironment (92). Among the PD-1

ligands, PD-L1 is highly expressed on the cell surface of a

variety of tumor cells, which is related to the immune escape of

tumors, whereas PD-L2 is usually only expressed in activated

macrophages, DCs, and a few B cells but shows lower expression

in tumor tissues. PD-L1 has been more extensively studied than

PD-L2 and has become the primary ligand of the

immunosuppressive receptor. The binding of PD-1 to PD-L1

forms the immunomodulatory axis, which plays an

immunosuppressive role by inducing T-effector cell dysfunction
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and enhancing Treg function (93). At the same time, the

immunomodulatory axis can inhibit the production of

numerous cytokines such as ILs and interferon (IFN). PD-L1

has been found to be overexpressed in GAMs and GBM (94, 95).

Analysis of a database of clinical samples showed that PD-L1

expression was correlated with the grade of glioma. A higher

expression level of PD-L1 in tumor cells was associated with a

stronger immunosuppressive effect on T cells, suggesting a new

biomarker of glioma (96, 97). Numerous studies have shown that

the high level of PD-L1 in the GBMmicroenvironment is not due

to the tumor cells themselves but rather to the abundant myeloid

cells such as macrophages infiltrating the tumor (17).

Nivolumab (Opdivo) is a human IgG4 monoclonal antibody

that targets PD-1 by binding to the PD-1 receptor, thereby

blocking its inhibitory effect. Blocking the binding of PD-1 to its

receptor with nivolumab helped boost the T-cell response and

restore anti-tumor immunity. Nivolumab has shown efficacy in

patients with advanced liver cancer and is currently being tested

to expand its use in other populations (98, 99). A National

Institutes of Health-led national trial demonstrated that

ipilimumab, which targets the CTLA-4 protein, and nivolumab

combined with the adjuvant TMZ were safe and tolerable in

patients with newly diagnosed GBM. The toxicity of the

ipilimumab plus nivolumab combination was not higher than

that of the single drug. These data provided necessary safety

evidence for subsequent efficacy trials. Phase I of the CheckMate

143 trial (NCT02017717), which was the first to evaluate

immune checkpoint inhibition with the first-line treatment of

glioblastoma, showed that patients with unmethylated MGMT
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nivolumab plus radiotherapy (100). A randomized phase III

study (NCT02667587) demonstrated that nivolumab did not

add clinical benefit to standard-of-care radiotherapy plus

temozolomide in newly diagnosed GBM with methylated

MGMT (101). In another phase III trial (NCT02617589),

results showed that the survival of patients with unmethylated

MGMT increased more in radiotherapy plus TMZ than in

radiotherapy plus nivolumab; therefore, nivolumab was not a

suitable replacement for TMZ (102). Pembrolizumab (Keytruda)

is another drug targeting PD-1, which is considered to be one of

the drugs that helped usher in the era of immuno-oncology

(103). In 2019, Cloughesy et al. (104) showed that neoadjuvant

pembrolizumab-mediated PD-1 blockade led to an increase of

intratumoral T cells, upregulated expression of IFN-g–related
genes, and downregulated expression of cell cycle-related genes,

effectively enhancing the local and systemic anti-tumor effect in

patients. This mechanism was found to be more effective than

adjuvant therapy alone. Durvalumab (Imfinzi) is a high-affinity

IgG1 monoclonal antibody that blocks the binding of PD-L1 to

PD-1, which has been tested in the treatment of patients with

unresectable malignant tumors. Durvalumab showed sustained

clinical activity in early clinical trials, both as monotherapy and

in combination with tremelimumab (an anti-CTLA-4 agent)

(105, 106). Avelumab (Bavencio) is an antibody targeting PD-L1

that has been approved in several countries for the treatment of

locally advanced or metastatic urothelial carcinoma (107).

Awada et al. (108) reported that avelumab combined with

axitinib (a highly selective VEGFR inhibitor) had a synergistic
FIGURE 3

Mechanistic model of the action of monoclonal antibodies against immune molecules in GBM therapy. Classical immune checkpoints such
as CTLA-4, PD-1, B7-H6, B7-H4, and TIM-3 bind to their ligands to inhibit T-cell activation and proliferation, thereby creating an
immunosuppressive microenvironment. Blocking these immune checkpoint molecules by single or combination therapy with monoclonal
antibodies may serve as a potential treatment for glioblastoma.
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effect in the treatment of recurrent GBM, with the combination

having an acceptable toxicity profile.
4.1.3 TIM-3 inhibitors
T−cell immunoglobulin and mucin−domain containing−3

(TIM-3) is considered as a negative regulator of T-cell activation.

TIM-3 has been shown to play a role in a variety of diseases,

including cancer, by regulating the activity and function of

immune cells. TIM-3 is involved in the resistance to PD-1/PD-

L1 monoclonal antibodies, and its expression level is increased in

mouse models and in patients exposed to anti-PD-1 (109).

Galectin-9 is the ligand of TIM-3, and their binding can

induce T-cell apoptosis and negatively regulate T-cell

immunity. When Th1 cells exert an adaptive immune

response, the expression of TIM-3 on differentiated Th1 cells

inhibits the Th1 immune response by upregulating galectin-9. In

gliomas, TIM-3 can antagonize the inflammatory response and

inhibit T-cell–mediated immunity against the tumor (110).

Based on RNA-sequencing data from the CGGA Project, Li

et al. (111) found that TIM-3 was abundantly expressed in

glioblastoma and IDH–wild-type glioma with the highest

malignant degree. Kim et al. (112) found that TIM-3 was

expressed in tumor cells and their surrounding cells (including

glial cells and T cells) in an in situmouse glioma model. In TIM-

3-mutant mice with intracellular signal transduction deficiency

and TIM-3 transgenic mice induced by Cre, TIM-3 affected the

expression of immune-related molecules such as iNOS and PD-

L1 under exposure to a conditioned medium of primary glial

cells from the brain tumor (112). These findings suggested that

TIM-3 exerts a positive and unique response to brain tumors

and plays an important role in intracellular and intercellular

immunoregulation, which differs from its role in the

microenvironment of brain tumors.

Several drugs targeting TIM-3 are currently in early-stage

clinical trials for different tumor types. Sabatolimab (MBG453) is a

humanized IgG4 monoclonal antibody targeting TIM-3, which

could block the interaction between TIM-3 and its ligand

phosphatidylserine. Sabatolimab also partially blocks the

interaction between TIM-3 and galectin-9. In phase I/II trials,

sabatolizumab alone or in combination with spartazumab

(PDR001, which binds PD-1) was shown to be safe and effective

in the treatment of patients with advanced solid tumors (109). A

monoclonal antibody targeting TIM-3 (IBI104) blocks the

interaction between TIM-3 and phosphatidylserine but not

galectin-9. When combined with anti-PD-1, IBI104 shows

strong anti-tumor effects in vivo (113). Cobolimab (TSR-022), a

humanized anti-TIM-3 antibody developed by Tesaro, was found

to be safe, which was subsequently tested in combination with

dostarlimab (TSR-042; an anti-PD-1 antibody) (114). Another

TIM-3 blocking antibody, LY3321367 (Eli Lilly and Company,

New York, NY, USA), was found to be successful in early trials. In

phase I clinical trials, dose-limiting toxicity was not observed,
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inhibitor (114).

4.1.4 B7-H4 inhibitors
B7-H4 is a newly identified member of the B7 family (115),

which inhibits T-cell proliferation and cytokine secretion.

Recent studies found that the B7-H4 protein is highly

expressed in tumor tissues but shows low expression in

normal tissues, enabling tumor cells to escape attack by the

body’s immune system. Yao et al. (116) evaluated the level of B7-

H4 in glioma tissue/cerebrospinal fluid among patients with

different grades of glioma. They found that the expression level

of B7-H4 was related to the prognosis of patients with GBM and

was directly related to the degree of malignancy. Glioma initiates

the interaction between CD133+ cells and Mjs/microglia and

activates the expression of B7-H4 in tumor cells and in the TME

through IL-6 and IL-10. Chen et al. (117) found that most

patients with gliomas expressed PD-L1 or B7-H4; however, few

patients showed a high level of co-expression. Patients with high

expression of B7-H4 can be regarded as harboring “ultra-cold”

gliomas, characterized by a significant lack of TILs, indicating

that B7-H4 may inhibit the entry of T cells into the CNS. PD-L1

and B7-H4 thus act as complementary immune molecules in

GBM and can be used in immune-targeted or active-specific

immunotherapy. The B7-H4 pathway regulating T-cell function

and immune escape in patients with GBM is worthy of further

exploration for immunotherapy.

Transfection of B7-H4 with small interfering RNA (siRNA)

not only reduced the carcinogenicity of the human gastric

carcinoma cell line MGC-803 but also induced apoptosis

(118). B7-H4 immunoglobulin has been shown to directly

regulate the functional level of inflammatory CD4+ T cells and

is currently under clinical study (119). The B7-H4/CD3

bispecific antibody (BsAb) showed strong anti-tumor activity

against B7-H4–positive breast cancer cells and injection of BsAb

in humanized mouse models led to the infiltration of CD8+ and

granzyme B+ CTL of tumors. FPA-150 (first-in-class agent

developed by Five Prime Therapeutics) is a full-human

antibody targeting B7-H4 that blocks the T-cell checkpoint

pathway, showing enhanced antibody-dependent cell-mediated

cytotoxicity. This is the first therapeutic monoclonal antibody

targeting B7-H4 to enter the clinical stage. At present, FPA-150

is in the phase I clinical trial stage, showing a good safety profile

when tested as a single drug or in combination with PD-1.

4.1.5 B7-H6 inhibitors
B7-H6 is not expressed in normal human tissues but is

highly expressed in human tumor cells. B7-H6 can act as a

damage-related molecular pattern to trigger innate immunity

(120). B7-H6 was identified as a receptor for NKp-30, an

activating receptor for NK cells. The B7-H6–NKp30 complex

activates NK cells and kills tumor cells by releasing TNF-a and
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IFN-g (121). However, B7-H6 can also be shed from tumors,

which may be a mechanism by which tumors evade immune

surveillance (122). A study found that B7-H6 and the stem cell

marker Sox2 were overexpressed in glioma tissues (123). In

addition, B7-H6 was the only gene in the B7 family found to be

preferentially expressed in GSLCs. SiRNA-mediated knockdown

of B7-H6 inhibited cell proliferation, reduced the expression of

the oncogene Myc, and inactivated the PI3K/AKT and ERK/

MAPK signaling pathways. Lipopolysaccharide-induced

expression of B7-H6 and B7-H6 gene knockout inhibited the

proliferation, clone formation, migration, and invasion of glioma

cells by inducing epithelial–mesenchymal transition-related

signal changes (124).

Since B7-H6 is expressed in a variety of malignancies, it is an

attractive target for cancer therapy using specific monoclonal B7-

H6 antibodies (125). Gacerez et al. (126) constructed CARs based

on human single-chain antibodies (scFvs). The results showed that

CAR-T cells using human scFvs effectively triggered T-cell effector

function when stimulated by tumor cells expressing B7-H6. In

addition, human scFv B7-H6–specific CAR-T cells showed different

sensitivities to B7-H6 expression on tumor cells and showed

effective anti-tumor activity. In the same year, the same group of

researchers co-expressed B7-H6–specific CAR and the transcription

factor T-bet (T-box expressed in T cells); CD4+ T cells were found

to enhance the toxicity to B7-H6+ tumor cells and improve survival

in a RMA/B7-H6 lymphoma mouse model (127). Production of T

cells based on the NKp30 chimeric receptor is considered an

effective method to detect and treat B7-H6–positive tumor cells

(128), which can increase NK cell-mediated tumor destruction and

increase the release of bispecific immune oligomeric

proinflammatory cytokines (129). Sun et al. (130) constructed

bispecific anti-B7-H6 × anti-CD3 (B7-H6Bi antibody-armed T-

cells) to target hematological tumors, which showed a significant

cytotoxic effect on B7-H6+ hematological tumor cells.
4.2 CAR-T therapy

Amplification or mutation of EGFR occurs in approximately

50% of patients with primary GBM. EGFRvIII, which is the most

common consequence of EGFR-amplifying gene rearrangement,

is expressed only in tumor tissues but not in normal tissues,

making it an attractive target for CAR-T therapy. However, in a

phase I trial, the third generation of CAR-T EGFRvIII cells

derived from human antibodies did not delay the progression or

prolong the survival time of patients with recurrent GBM (131).

Although EGFRvIII is an attractive target, it has increased the

production of antigen-negative escape variants due to its

instability. Therefore, overexpression of wild-type EGFR,

which is found in more than 60% of GBM cases, may be a

more attractive target for CAR-T therapy. Choi et al. (132)

integrated CART-EGFRvIII with a bispecific T-cell engager

(BiTE) that works against EGFR. CAR-T.BiTE cells effectively
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eliminated heterogeneous tumors in a mouse GBM model.

These results suggested that bi-targeted anti-EGFR/EGFRvIII

CAR-T cells may be a promising therapeutic strategy in EGFR/

EGFRvIII-overexpressing glioblastoma. However, in numerous

clinical trials, EGFRvIII-CAR-T has shown many problems.

Thus, finding methods to improve the local microenvironment

by combining CAR-T and other therapeutic methods has

become a research hotspot. A phase I trial of EGFRvIII-CAR-

T cells in combination with the anti-PD-1 antibody

pembrolizumab was completed last year (NCT03726515).

IL-13 receptor subunit alpha-2 (IL-13RA2) is highly expressed

in more than 75% of patients with GBM and is a GBM-restricted

receptor associated with a poor prognosis (133). The affinity of IL-

13 to IL-13RA2 was found to be stronger than that to IL-13RA1,

which inhibits the IL-13RA1/IL-4R signaling pathway (134),

suggesting IL-13RA2 as a powerful target for anti-glioma therapy

(135). Treatment with IL-13RA2-CAR-T demonstrated a

radiographic response of both intracranial and metastatic spinal

tumors in patients with multifocal GBM for 7.5 months, and the

levels of cytokines and immune cells in the cerebrospinal fluid were

correspondingly increased (135, 136). YYB103 is a newly developed

CAR-T cell targeting IL-13RA2, which was demonstrated to inhibit

tumor growth and prolong the overall survival of U87 MG

xenogeneic animal models (137). In addition, transgenic

expression of IL-15 is a promising strategy to enhance the effector

function of CAR-T cells. IL-13RA2-CAR.IL15 T cells recognize

glioma cells, are more proliferative, and produce more cytokines,

thus exhibiting more potent anti-tumor activity (138). CAR-T cells

targeting IL-13RA2 are currently in phase I clinical trials for

ependymoma, GBM, and medulloblastoma (NCT04661384).

Moreover, intratumoral delivery of CAR-T cells is being tested in

recurrent or refractory malignant glioma (NCT02208362) (139).

Human epidermal growth factor receptor 2 (HER2) is a

receptor tyrosine kinase that is a potent immunotherapeutic

target for GBM, which is overexpressed in nearly 80% of GBM

patients (140). Autologous HER2-CAR-T cells have the ability to

kill primary GBM and GBM stem cells and can also induce

degeneration in patient-derived xenografts (141, 142). A phase I

clinical trial (NCT03500991) of the infusion of HER2-CAR-T

cells for the treatment of CNS tumors in children found no dose-

limiting toxicity, which resulted in elevated CXCL10 and CCL2

levels in the cerebrospinal fluid (143). Combined with other

targets, HER2 is often applied in the study of second- or third-

generation CAR-T cell therapy. Given the heterogeneous

expression of IL-13RA2 and HER2 in GBM, Hegde et al. (144)

hypothesized that a bi-specific CAR molecule, called TanCAR,

could target both antigens, which was predicted to eliminate

more than 90% of tumors in 20 cohorts of patients with primary

GBMs. A recent study reported that HER2-specific CAR-NK

cells derived from the human NK cell line NK-92 could

effectively kill GBM cells and also showed anti-tumor activity

in vivo in a mouse model. Currently, HER2-specific CAR-NK

cells are in phase I clinical trials (NCT03383978) (139).
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4.3 Vaccines

Although GBM is associated with many mutation types,

EGFRvIII is the only mutant that has been studied as a vaccine

target for patients with GBM to date (145). Rindopepimut

(CDX-110) is a vaccine developed against EGFRvIII, which

was designed by combining an EGFRvIII-specific peptide with

keyhole anthocyanin. Phase I/II clinical trials found that overall

survival and cessation of steroids were greater than 6 months

after treatment in newly diagnosed GBM patients (146). In the

phase II clinical trial, the titer of the anti-EGFRvIII antibody

increased by approximately four times in 85% of the patients and

further increased with the prolongation of treatment time (147).

The aim of the phase III clinical trial was to evaluate whether the

addition of CDX-110 to standardized treatment could improve

the survival of patients with EGFRvIII-mutant GBM, which was

terminated after mid-term analysis. In the final analysis, overall

survival was not significantly different between the two

groups (148).

The novel multipeptide vaccine IMA950 contains 11 tumor-

associated peptides (TUMAPs), which have the ability to activate

CTLs and limit immune evasion. A phase I trial in GBM patients

found that IMA950 was well-tolerated as standardized therapy,

with 90% of patients having at least one CD8+ T-cell immune

response TUMAP and 50% responding to two or more

TUMAPs (149). The combination of an IMA950/Poly-ICLC

polypeptide vaccine with TMZ in 19 patients (16 with GBM and

three with grade III astrocytoma) was confirmed to be safe (150).

To date, peptide vaccines have mainly been used for grade IV

tumors, but they are slowly being expanded for the treatment of

grade II/III gliomas. The nine antigens that make up the IMA950

vaccine were expressed in patients with grade II/III astrocytoma

and oligodendroglioma, and the presence of antigen expression

and spontaneous immune responses suggested that

immunotherapy of grades II and III gliomas could be

performed based on the peptide set selected from the IMA950

glioma vaccine (151).

Isocitrate dehydrogenase 1 (IDH1)monoallelic point mutations

define a molecularly distinct glioma subtype, with 90% of IDH1

mutations having an arginine-histidine substitution at position 132.

IDH1 (R132H) is a potential immunotherapeutic target because it

contains an immunogenic epitope suitable for the formation of

specific vaccines (152). Previous studies have shown that IDH1-

specific peptide vaccines (IDH1-Vac) induce specific therapeutic T

helper cell responses and are effective against tumors in IDH1+

homologous MHC-humanized mice (153, 154). In a phase I trial

(NCT02454634) including 32 patients with grade III/IV glioma,

approximately 90% of patients demonstrated an immune response

after treatment with an IDH1-R132H+–specific vaccine (155, 156).

To enhance the efficacy of vaccination, AMPLIFY-NEOVAC

(2017-000587-15) proposed combining IDH1 mutation-specific

peptide vaccination with PD-L1 checkpoint inhibition to

effectively improve therapeutic responsiveness (157).
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Heat-shock protein peptide complex-96 (HSPPC-96) is a

molecular chaperone of the endoplasmic reticulum and can be

ingested by APCs. In a multicenter, open-label phase II trial of 41

adults with surgically resectable GBM who received the HSPP-96

vaccine after total resection, more than 90% of the patients

survived for 6 months and nearly 30% survived for 12 months,

with a median overall survival of 42.6 weeks (158). Another phase

I study (NCT02122822), in which patients with newly diagnosed

GBM received the HSPPC-96 vaccine plus standard therapy,

found a significant 2.3-fold increase in tumor-specific immune

response (TSIR) after vaccination (159). At present, many

research centers are exploring the potential of the HSPPC-96

vaccine combined with radiotherapy and chemotherapy in the

treatment of primary GBM and the combination of the HSPPC-96

vaccine with bevacizumab in the treatment of recurrent GBM.

In addition to peptide vaccines, autologous formalin-fixed

tumor vaccines (AFTV) are undergoing clinical trials as

therapeutic agents for glioma. The original method for the

preparation of AFTV was developed by Dr. Tadao Ohno

(Tsukuba, Ibaraki, Japan). AFTV is prepared using surgically

resected formalin-fixed and/or paraffin-embedded patient tumor

tissues (160). In the initial clinical trial, 12 patients with primary

GBM who were inoculated with AFTV exhibited low expression

of p53 and high expression of MHC-I molecules, both of which

could significantly improve GBM prognosis (161). Sakamoto

et al. (162) described that, in one patient with primary GBM and

two patients with secondary GBM, AFTV combined with

adjuvant TMZ therapy resulted in a large number of

CD3+CD8+ T cells in surgical specimens. In a prospective

phase I/II trial (C000000002), AFTV combined with

fractionated radiotherapy (FRT) was used in 24 patients with

newly diagnosed GBM: the median overall survival was 19.8

months, and the therapy was well tolerated with low toxicity

(163). In another phase I/II trial (UMIN000001426), AFTV and

FRT were combined with TMZ adjuvant therapy in patients with

newly diagnosed GBM: 33% of the 24 patients had progression-

free survival of ≥2 years; the median overall survival was 22.2

months, actuarial 2- and 3-year survival rates were 47% and

38%, respectively, and the therapy was well tolerated (164). A

recent case report showed that radiotherapy combined with

AFTV therapy resulted in a 91% reduction in tumor volume

and maintained regression for 5 years in a patient with

brainstem glioma (165). Aruga et al. (166) demonstrated that

chemotherapy plus AFTV combined with a peptide vaccine

resulted in a strong immune response in patients with biliary

tract cancer. However, the combination of AFTV with peptide

vaccines or other vaccines in GBM requires further investigation.
5 Conclusion

The immunosuppressive microenvironment of GBM facilitates

the immune escape of tumor cells and is also an important factor
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hindering the progress of GBM treatment. Immunosuppression is

ultimately the cause of treatment failure for many cancers.

Considering the abundance of immunosuppressive cells such as

GAMs, Tregs, and MDSCs and their paramount roles in the

maintenance of the immunosuppressive TME, we expect such

cells to serve as the entry point of targeted treatments to greatly

reduce the degree of immunosuppression in GBM. Furthermore,

the immunosuppressive environment of GBM has many

interrelationships with the gut microbiota, which play an

important role in the occurrence, development, and treatment of

GBM. Investigating the composition of the gut microbiota and

deciphering the gut–immune–brain cancer axis will create further

opportunities for the development of effective immunotherapies for

malignant brain cancer. There is accumulating evidence that

immune cells are inhibited in the glioma microenvironment

through a variety of mechanisms, including the presence of

immune checkpoints such as PD-1/PD-L1 and CTLA-4. The

discovery of immune checkpoints offers new hope for cancer

treatment. Peptide- and cell-based vaccines and immunotherapy

with immune checkpoint inhibitors are designed to enhance the

adaptive immune system with the overall aim to promote a more

robust anti-tumor response. In this context, combination therapy

targeting complementary mechanisms of action may be required to

achieve lasting anti-tumor benefits by improving the GBM

immunosuppressive microenvironment.
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