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Introduction: Considering the likely need for the development of novel

effective vaccines adapted to emerging relevant CoV-2 variants, the

increasing knowledge of epitope recognition profile among convalescents

and afterwards vaccinated with identification of immunodominant regions

may provide important information.
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Methods: We used an RBD peptide microarray to identify IgG and IgA binding

regions in serum of 71 COVID-19 convalescents and 18 vaccinated individuals.

Results: We found a set of immunodominant RBD antibody epitopes, each

recognized by more than 30% of the tested cohort, that differ among the two

different groups and are within conserved regions among betacoronavirus. Of

those, only one peptide, P44 (S415-429), recognized by 68% of convalescents,

presented IgG and IgA antibody reactivity that positively correlated with nAb

titers, suggesting that this is a relevant RBD region and a potential target of IgG/

IgA neutralizing activity.

Discussion: This peptide is localized within the area of contact with ACE-2 and

harbors the mutation hotspot site K417 present in gamma (K417T), beta

(K417N), and omicron (K417N) variants of concern. The epitope profile of

vaccinated individuals differed from convalescents, with a more diverse

repertoire of immunodominant peptides, recognized by more than 30% of

the cohort. Noteworthy, immunodominant regions of recognition by

vaccinated coincide with mutation sites at Omicron BA.1, an important

variant emerging after massive vaccination. Together, our data show that

immune pressure induced by dominant antibody responses may favor

hotspot mutation sites and the selection of variants capable of evading

humoral response.
KEYWORDS

linear antibody epitopes, peptide array, RBD, immunepressure, sarbecovirus, betacoronavirus
Introduction

SARS-CoV-2 vaccines have been mainly evaluated based on

the generation of B cell responses to induce the production of

neutralizing antibodies. The receptor binding domain (RBD) in

the S1 subunit of the SARS-CoV-2 spike glycoprotein is

responsible for binding to the aminopeptidase N region of the

angiotensin converting enzyme-2 receptor (ACE-2) and is the

main binding receptor for the entry of SARS-CoV-2 into human

cells (1, 2), making it a relevant target for the development of

neutralizing antibodies, inhibitors, and vaccines (2, 3).

Serological studies performed with a cohort of 647 SARS-

CoV-2-infected individuals have shown that RBD is

immunodominant within the spike protein and targeted by

90% of the neutralizing activity of circulating antibodies (4).

Despite the vast amount of data on SARS-CoV-2 infection,

generated since the 2019 pandemic outbreak, many important

issues remain poorly understood. So far, RBD has been reported

to essentially lack sequential epitopes for antibody binding (3, 5,

6). A deeper understanding of SARS-CoV-2 antibody responses

directed to different epitopes throughout the course of infection,

their potential involvement in different disease outcomes, and

the identification of immunodominant epitopes await deeper
02
investigation. It is not clear if antibody responses directed to

multiple or to some dominant SARS- CoV-2 antigenic regions

account for significant neutralizing capacity and whether

responses to specific epitopes are associated with distinct

clinical outcomes.

Some concern has emerged regarding the rapid evolution (7,

8) of the virus, with a concomitant decrease or loss of

neutralization activity against novel variants (9–11). Exploring

the RBD antibody epitope profile can allow the identification of

immunodominant regions and mutation hotspots, among

different variants, providing information to explore immune

pressure, selection, surges of new variants, critical to improve

vaccine strategies to face emerging variants of SARS- CoV-2.

We analyzed the linear epitope landscape of SARS-CoV-2

RBD IgG and IgA antibody responses, to identify potential

immunodominant epitopes among convalescents from the first

wave of infection. Eight immunodominant epitopes were

detected. The top one contains a hotspot mutation site (K417)

present in all VOCs before omicron surge and presents intensity

of antibody reactivity directly correlated with neutralizing titers.

The epitope profile recognition following vaccination differed

from convalescents and displayed immunodominant peptides

within regions that are mutated in omicron.
frontiersin.org
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Materials and methods

Study population

Seventy-one COVID-19 convalescent individuals (52%

female, 48% male, median age 42 years old) with diagnostic

confirmation by RT-PCR from March to April 2020 were

included in this study. Samples were collected 30-50 days after

symptoms onset at the Hospital das Clıńicas da Universidade de

São Paulo, Brazil. Participants were selected from a larger cohort

and grouped based on displaying high (≥1:160) or low (<1:160)

neutralization titers. Of the selected individuals, 21 individuals

had been hospitalized, of which 9 were in the intensive care unit

without mechanical ventilation. Fifty participants (70%)

presented mild symptoms that did not require hospitalization.

Eighteen vaccinated individuals (77,78% female, 22,22% male,

median age 52,5 years old) were selected from whom two

samples were collected: one 15 days after second dose of

Coronavac and the other 90 days after a booster with miRNA-

273 Pfizer vaccine. The study was approved by CAPPesq

(Comissão de Et́ica Para Anaĺise de Projetos de Pesquisa do

HC-FMUSP) and CONEP (Comissão Nacional de E ́tica em

Pesquisa) (CAAE: 30155220.3.0000.0068) . All study

participants signed informed consents.
Serum IgG ELISA specific for RBD

Ninety-six-well high-binding half-area polystyrene plates

(Corning, USA) were coated with 25 µL of 1 mg/mL RBD

protein (GenScript Biotech, USA) diluted with carbonate-

bicarbonate buffer (pH 9.6, 0.1 M) and incubated overnight at

4°C. Coat solutions were discarded and 80 µL of 1% BSA, 5%

non-fat dried milk and 0.05% Tween-20 in phosphate saline

buffer (PBS) was added to each well to block. Blocking was

performed at room temperature for 2 h. Serum or plasma

samples were thawed at room temperature and incubated at

56°C for 30 min for inactivation. The samples were then diluted

in 0.25% BSA, 5% non-fat dried milk and 0.05% Tween-20 in

PBS. Blocking solution was discarded and 50 µL of serum

solutions diluted at 1:100 was added to each well and the

plates were incubated at 37°C for 45 min. Following the

incubation step, plates were washed five times with 0.05%

Tween-20 in PBS. Secondary antibody solution of goat anti-

human IgG conjugated to peroxidase (Jackson Immunoresearch,

USA) diluted 1:10,000 in 0.25% BSA, 5% non-fat dried milk and

0.05% Tween-20 in PBS was prepared and 25 µL added to each

well. Plates were incubated at 37°C for 30 min and then washed

five times. o-Phenylenediamine dihydrochloride (OPD) tablets

(Sigma, USA) were dissolved in 0.05 M phosphate-citrate buffer

(pH 5.0) at a concentration of 0.4 mg/mL. Immediately prior to

use, 5 µL of 30% hydrogen peroxide was added to the solution.
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Then, 50 µL of the final solution was added to each well and the

plates were incubated in the dark at room temperature for 30

minutes. After the incubation period, the reaction was stopped

by adding 50 µL of 2N H2SO4 solution to each well. The plates

were then read at 490 nm on a plate reader (GloMax,

Promega, USA).

Results are given as the ratio of the individual sample/

control sample. An antibody ratio ≥1.2 was considered positive.
RBD peptide array

The mapping of IgG and IgA-specific epitopes was

performed by microarray using PEPperMAP® Linear Epitope

Mapping from PEPperPRINT (Heidelberg, Germany). The

SARS-CoV-2 Spike RBD sequence (S335 to S516) was

synthesized as overlapping peptides of 15 amino acid residues

in length with 13 overlapping residues, totalizing 91 peptides

(Supplementary Table 1). Peptides were printed in duplicates

onto glass slides. Each chip contained peptides derived from

Influenza Hemagglutinin and Polio Virus as positive controls.

To ensure that the secondary antibodies do not

unspecifically interact with the antigen-derived peptides

printed on the arrays, a copy of the array was pre-stained with

goat anti-human IgG (H+L) DyLight680 (Invitrogen, USA)

secondary antibody or goat anti-human IgA (chain alpha)

DyLight800 (Rockland Immunochemicals Inc., USA) diluted

1:2000 in staining buffer (PBS with 10% blocking buffer) and

incubated at room temperature for 45 min on an orbital shaker.

No background fluorescence due to nonspecific binding of the

secondary antibody was observed. Subsequently, serum samples

from convalescent individuals were serially diluted from 1:10 to

1:1000 in staining buffer. The best dilution of 1:10 was chosen

and added to the microarrays for overnight incubation at 4°C.

After three washing steps of 1 min each with 200 µL of the

standard buffer, microarrays were incubated with anti-IgG and

anti-IgA on an orbital shaker at room temperature for 45

minutes. Following secondary antibody incubation, three wash

steps were performed and microarrays were dipped in dipping

buffer (1 mM TRIS, pH 7.4) and centrifuged at 250 g for 5

minutes for drying.
Peptide microarray spot quantification

Fluorescence signals on microarrays were detected with an

Odyssey Scanner (LI-COR Biosciences , USA). The

quantification of spot intensities and peptide annotation were

performed using GenePix Pro 4.0 (Molecular Devices, USA).

The software analysis provided fluorescence intensities (FI)

broken down into raw, foreground, and background signal.

Mean fluorescence was calculated subtracting background

from raw values. The foreground mean FI of reactivity to each
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1010105
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Oliveira et al. 10.3389/fimmu.2022.1010105
peptide was averaged over the duplicates, and signal-to-noise

ratios were additionally calculated for each peptide spot.

Duplicate mean values for each peptide were plotted as a heat

map of the median value from the 91 spots separately for IgG

and IgA reactivity. The heatmap was generated using the

pheatmap R package (v1.0.12). For the heatmap, MFI (mean

fluorescence intensity) values were standardized by adding +1

and then applying log2.
Virus neutralization assay

SARS‐CoV‐2 (GenBank: MT MT350282) was used to

conduct a cytopathic effect (CPE)‐based virus neutralization test

(VNT), as previously described (12). We used 96‐well plates

containing Vero cells (ATCC CCL‐81), at 5 x 104 cells/mL.

Inactivated sera were diluted (1:20 to 1:5120) for the assay.

Serum dilutions were mixed in equal volumes with the virus

(100 tissue culture infectious doses, 100% endpoint per well –

VNT100) and pre-incubated for virus neutralization for 1 hour at

37°C. The mixtures containing serum and virus were transferred

to the confluent cell monolayer and incubated at 5% CO2 for

3 days at 37°C. After 72 hours, plates were analyzed by light

microscopy. Gross CPE was observed on Vero cells, distinguishing

the presence or absence of CPE‐VNT. To determine the

neutralizing antibody titers, the highest serum dilution that was

able to neutralize virus growth was considered. This was

confirmed by fixing and staining plates with amido black (0.1%

amido black [w/v] solution with 5.4% acetic acid, 0.7% sodium

acetate) for 30min. As a positive control, an internal serum from a

RT‐qPCR positive individual with a plaque reduction in the

neutralization test >1:640 was used in each assay. Following

recommendations of the World Health Organization, all

cytopathic effect-based virus neutralization assays were

performed in a Biosafety Level 3 laboratory. The study

individuals were clustered into two groups, resulting in 52 with

high neutralization capacity (≥1:160 titers) and 19 individuals

with low neutralization (<1:160 titers) (Supplementary Figure S1A),

following the EU recommendation for COVID-19 plasma donation

(13). Neutralizing antibody titers were transformed into natural

logarithms (ln) for normal distribution.
In silico B cell epitope prediction

Linear B cell epitopes of RBD were predicted using the

BepiPred-2.0 web server (http://www.cbs.dtu.dk/services/

BepiPred/) (14). BepiPred-2.0 is based on a random forest

algorithm trained on epitopes annotated from antibody-

antigen protein structures. This method was found to be

superior to other available tools for sequence-based epitope

prediction, with regard to epitope data derived from solved 3D

structures and a large collection of linear epitopes downloaded
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from the IEDB database, respectively. In this study, we used a

threshold value of 0.55.
Comparative amino acid
sequence analysis

Receptor-binding domain (RBD) sequence of spike protein

from SARS-CoV-2 (319-540, Genbank: QIG55955) and other

sarbecoviruses such as SARS-CoV (306-526, Genbank:

AAR86775), Civet-SARS SZ3 (306-526, Genbank: AAU04646),

Pangolin-CoV (319-540, Genbank: QIQ54048), Bat-CoV

Rs3367 (307-527, Genbank: AGZ48818) and Bat-CoV RaTG13

(319-540, Genbank: QHR63300) were aligned using the

MUSCLE program (https://www.ebi.ac.uk/Tools/msa/muscle/)

(15). Results were exported to Weblogo website (http://

weblogo.threeplusone.com) (16) to generate a graphical

representation of the multiple sequences alignment.
Structural analyses

Structural representations of RBD interacting with ACE2

(pdb: 6M0J) and with the neutralizing antibodies B38 (pdb:

7BZ5) and COVA1-16 (pdb: 7JMW) were generated using

UCSF Chimera (https://www.cgl.ucsf.edu/chimera/) (17).
Statistical analyses

GraphPad Prism 9.0.1 was used for statistical analyses of

individual peptide reactivity comparing sera from individuals

with high and low neutralization capacity (Mann-Whitney),

Spearman for correlation analysis, and p values <0.05 were

considered statistically significant. The one-sided Mann-

Whitney test was performed to investigate differences between

the mean MFI values of high and low neutralization groups, for

each peptide, using the rstatix R package (v0.6.0). To visualize

results, -log2 (p-values) were plotted in a heatmap using the

ggpubr package (0.4.0). The statistical power (1-b) of 50 (VNT

≥1:160) versus 21 (VNT <1:160) individuals for P44

was calculated.
Results

IgG and IgA peptide recognition profile

Individuals were grouped into two groups: (i) 52 individuals

with high neutralization (≥1:160 titers), (ii) 19 individuals with

low neutralization (<1:160 titers). Among the low neutralizers,

the majority presented 1:40 titers, while among the high

neutralizers the majority presented VNT 1:1280 and were
frontiersin.org
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FIGURE 1

(A) Heatmap representing the magnitude of recognition of SARS-CoV-2 RBD peptides tested for IgG and IgA reactivity using a peptide
microarray (columns: ordered by the primary structure sequence) for all convalescents (rows: grouped by antibody isotype and level of
neutralizing activity tested in the same samples, and clustered using median values within each group). Highlighted is peptide P44 (S415-429) and
its respective amino acid sequence. High: individuals displaying serum with high neutralizing activity (≥1:160), Low: individuals displaying serum
with low neutralizing activity (<1:160). MFI: mean fluorescence intensity. (B) Number of peptides recognized per individual considering high and
low VNT for IgG and IgA (C, D) Selected immunodominant peptides recognized by IgG (P12, P14, P18, P30, P44, P50 and P66) and IgA (P6, P12,
P14, P18, P30, P44 and P66), of at least 30% of the individuals in the cohort (n=71) are represented with their total percentage of recognition
and neutralization titers ranges. P6: peptide 6 (S353-367), P12: peptide 12 (S365-379), P14: peptide 14 (S370-384) and P18: peptide 18 (S378-392), P30:
peptide 30 (S397-401), P44: peptide 44 (S415-429), P50: peptide 50 (S427-441) and P66: peptide 66 (S459-473).
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equally distributed among 1:320, 1:640, and 1:2560

(Supplementary Figure S1A).

We successfully identified linear anti-CoV-2 RBD antigenic

regions for both IgG and IgA antibodies in the RBD microarray

(Figure 1A). Overall, IgA recognition was broader, with 4 to 51

peptides being recognized per individual (median of 25

peptides), compared to IgG, with 0 to 32 peptides per

individual (median of 7 peptides) (p <0.0001) (Supplementary

Figure S1B).

Considering neutralization titers, we observed that

individuals with VNT <1:160 recognized more peptides, for

both IgG (Figure 1B) (p=0.002) and IgA (Figure 1C)

(p=0.0002). On the other hand, individuals with higher VNT

(≥1:160) recognized fewer peptides, indicating that high

neutralization titers were associated with a less diverse peptide

response. Next, we determined the topmost recognized peptides

for both IgG and IgA reactivity. We detected eight peptides

recognized by IgG and/or IgA (P6, P12, P14, P18, P30, P44, P50

and P66) by at least 30% of individuals in the cohort. Of note, in

contrast with IgG, for IgA antibodies, P50 was not an

immunodominant peptide, but P6 was (Figure 1D).

Overall, individuals displaying IgG P44-reactivity presented

mostly high VNT (>1:160) compared to individuals recognizing

other peptides, while for IgA the VNT distribution was more

homogeneous (Figure 1D).
Immunodominant peptides are
structurally localized within conserved
regions among coronaviridae

Eight peptides (P6, P12, P14, P18, P30, P44, P50 and P66)

recognized by at least 30% of the convalescent cohort were

considered immunodominant and therefore, selected for in-

depth analysis.

A conservation analysis of RBD proteins from coronaviruses

of the B lineage, SARS-CoV-2, SARS-CoV, SARS-SZ3, Rs3367-

bat, CoV-pangolin, and RaTG13-bat, showed that the selected

peptides are located within well conserved regions (Figure 2A).

The exceptions are P50 and P66 that lie within less conserved

regions, although the positive charges of K and R amino acids

seem to be conserved in these peptides (Figure 2A).

Therefore, we verified where these peptides are structurally

located relative to virus binding sites of B38 (8), a therapeutic

neutralizing antibody with binding sites around P44 (Figure 2B)

and ACE2 (Figure 2C). P44 is the only peptide present in the

RBD contact region with ACE2 (Figure 2C) and with the

therapeutic nAb B38 (Figure 2B). In contrast to P44, peptides

P12, P14, P18 and P30 are located outside the nAb B38 binding

region (Figure 2B).
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Reactivity to the majority of
immunodominant peptides does not
correlate with VNT

The top eight peptides recognized by IgG and/or IgA (six

recognized by both IgG and IgA) were analyzed considering

relation to high or low serum Wuhan SARS-CoV-2 neutralizing

capacity (Figure 3). P44 was the only peptide significantly more

recognized by high neutralizers (p=0.0015) for IgG and IgA

(Figure 3). In contrast, P12, P14, P18 and P30 showed higher

IgG binding intensities in individuals with low neutralization

titers, as well as P6 for IgA (Figure 3), suggesting being of lower

relevance for virus neutralization. This is in line with the structural

analyses showing that peptides P12, P14, P18 and P30 are located

outside the nAb B38 binding region (Figure 2B). The intensity of

IgG reactivity to P50 and P66 was not significantly different

comparing high and low neutralizers (Figure 3).
IgG and IgA reactivity to peptide
P44 positively correlates with
virus neutralization

Since P44 (S415-429 TGKIADYNYKLPDDF) was the most

recognized peptide, with 68% of convalescents showing IgG

reactivity, and 82% IgA, and the only peptide more recognized

by high neutralizers, we pursued further investigation. In silico B

cell epitope predictions revealed that P44 lies within an area with

high epitope probability (Figure 4A). Noteworthy, P44 IgG

reactivity was positively correlated with neutralization titers

(r= 0.4846, p<0.0001, 95% confidence interval 0.2769 -

0.6491). IgA reactivity also presented a weak but statistically

significant correlation (r=0.3103, p=0.0084, 95% confidence

interval 0.07602 - 0.5121) (Figure 4C). Notably, IgA reactivity

to P44 was higher in hospitalized individuals (p=0.0092), but the

same did not occur for IgG (p=0.051) (Figure 4D). In addition,

P44 signal intensities on the array also positively correlated

(r=0.2443; p=0.04) with IgG levels for RBD measured in

ELISA (Figure 4B).

Considering that P44 bears the K417 mutation hotspot, we

investigated the potential relevance of K417 mutations for

antibody binding, by performing in silico equilibrium

molecular dynamics simulations of beta (mutations: E484K,

K417N, and N501Y) and gamma (mutations: E484K, K417T

and N501Y) RBD variants interacting with the therapeutic mAb

REGN10933, previously shown to present loss of neutralizing

activity in a mutated K417N pseudovirus assay (18). Our

structural results indicate that ancestral RBD presents several

binding bridges nearby E484 residue, while gamma and beta

variants do not (Supplementary Figure S2).
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P44 is located at the interface of
neutralizing antibodies

Structural analysis suggested that P44 lies within the recognition

region of the nAb B38 (Figure 2B). We further investigated whether

the other topmost peptides localized in regions already reported to be
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contact of nAbs, as shown in Figure 5A. Except for residue K417, all

RBD residues that contact ACE-2 are located inside RBM

(Figure 5A). P44 displayed the highest contact frequency shared

with nAbs (n=56), followed by P66 (n=45) (Figure 5B) although P66

did not present statistically significant recognition by high

neutralizers (Figure 2), nor correlation with neutralizing titers (data
A B

DC

FIGURE 2

Structural and conservation evaluation of topmost recognized peptides (A) Conservation analysis of the top recognized peptides among RBD
proteins from coronaviruses of the B lineage, SARS-CoV-2, SARS-CoV, SARS-SZ3, Rs3367-bat, CoV-pangolin, and RaTG13-bat. The height of
the letters in the logo plot reflects the frequency of the amino acid in the multiple sequence alignment. (B) Entropy of aminoacid residues, top
peptides highlighted, of the alignment made at (A, C). RBD binding to the therapeutic neutralizing antibody B38 (pdb: 7BZ5) and with ACE-2
(D) interacting with P44, with contact amino acid residues in red. SARS-CoV-2 RBD (light gray). Colored regions show the most frequently
recognized peptides identified among convalescents, namely, orange: P44: peptide 44 (S415-429), silver P6: peptide 6 (S353-367), golden P12, P14
and P18, peptide 12, 14, and 18 (S365-379, S370-384, S378-392), blue P30: peptide 30 (S397-401), violet P50, peptide 50 (S427-441) and green P66,
peptide 66 (S459-473).
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not shown). Structural analysis showed that RBD presents a large

contact surface with nAbs, and three non-neutralizing interfaces that

are not in contact with nAb target regions (18) (Figure 5C). By

overlaying the amino acid sequences of the top peptides within these

mapped binding areas to RBD surface, it is clearly observed that P44

is almost entirely located within the binding regions of the nAbs. In

fact, there are several interactions of P44 with the nAbs, while the

other peptides are mainly situated outside these regions (Figure 5D).
Peptide recognition profile
among vaccinated

Considering the great impact of vaccination for protection

against SARS-CoV-2 infection and its potential role in the
Frontiers in Immunology 08
selection of novel variants, we examined RBD peptide

antibody recognition profile in 18 individuals after 2 doses of

the Coronavac vaccine and also after one booster of mRNA-

1273 (Comirnaty).

We found 13 peptides that were recognized by more than

30% of the cohort, showing a more diverse repertoire than

convalescents (Figures 6A, B). From those, only P14, P18 and

P44 are coincident with top peptides recognized by

convalescents (Figure 6C). A conservation analysis comparing

Wuhan with alpha, beta, gamma, delta and omicron BA.1 VOCs

showed that these peptides lie within less conserved regions

(Figure 6D), or regions presenting high degree of

entropy (Figure 6E).

Next, we verified where these peptides are structurally

located relative to virus binding sites to COVA1-16, a
A

B

FIGURE 3

Differential intensity of reactivity to selected RBD peptides, comparing convalescents with high or low neutralizing capacity. (A) IgG profile.
(B) IgA profile. High N: individuals with high neutralization capacity (≥1:160 virus neutralization titer); Low N: individuals with low neutralizing
capacity (<1:160 virus neutralization titer); MFI: mean fluorescence intensity; the median is shown as a solid line, the box indicates the 25th and
75th percentiles, whiskers range from the highest to the lowest value (all data points shown). Mann Whitney *p<0.05; **p<0.001; ***p<0.0001.
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therapeutic neutralizing antibody with binding sites in the

region of peptides P14 and P18, the most recognized region

among vaccinated (Figure 7A) and ACE2 (Figure 7B). Contact

residues with COVA1-16, S371 and S375, are mutated in

Omicron BA.1, S3171L and S375F (Figure 7A). Besides P44,
Frontiers in Immunology 09
we found P75, P82, P84 and P89 located in the RBD contact

region with ACE2 (Figure 7B).

Since the immunodominant RBD epitope profiles of IgG

recognition were distinct between the convalescent and

vaccinated groups, we raised the hypothesis of differential
A B

D

C

FIGURE 4

Profile of P44 recognition. (A) In silico epitope prediction using BepiPred. Highlighted is the region corresponding to P44, showing a high
epitope predictive value. (B) Positive correlation of P44 MFI and RBD IgG recognition in ELISA. (C) Positive correlation of IgG and IgA MFI
specific for P44 and virus neutralization titers (Spearman correlation for IgG r= 0.4846, p<0.0001, 95% confidence interval 0.2769 - 0.6491, and
for IgA r=0.3103, p=0.0084, 95% confidence interval 0.07602 - 0.5121). (D) Mean fluorescence intensity (MFI) of P44 antibody recognition of
hospitalized compared to non-hospitalized individuals, showing higher IgA reactivity in hospitalized individuals (p=0.0092, Mann Whitney).
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immune pressure taking place along the vaccination period, in

comparison with the surge of VOCs, in Brazil (Figure 7C).

Interestingly, these novel regions, dominantly recognized among

vaccinated, are located in regions that are mutated in Omicron

BA.1, an important variant emerging after massive

vaccination (Figure 7D).
Discussion

The identification of B cell epitopes that induce the

production of neutralizing antibodies is critical to understand

the dynamics of virus evolution. In addition, it also provides

relevant information to improve strategies for the development

of vaccines against SARS-CoV-2 and its continuously emerging
Frontiers in Immunology 10
new variants. Our peptide array approach provided a

comprehensive profile of IgG and IgA reactivity to Wuhan

SARS-CoV-2 derived peptides, in convalescents from the first

wave of the pandemic as well as in vaccinated individuals

without previous infection, allowing us to identify a set of

mostly different immunodominant peptides. Reactivity to the

topmost immunodominant pept ide (P44) amongst

convalescents positively correlated with high neutralizing

capacity, suggesting that this region is an important

neutralization target. Further, we detected that this topmost

immunodominant peptide comprises a hotspot mutation site

reported for several variants, as Gamma, Delta and Omicron.

Peptide recognition repertoire differed from convalescents to

vaccinated. Since we did not evaluate individuals with hybrid

immunization, SARS-Cov-2 antigenic stimulation - vaccine and
A

B

D

C

FIGURE 5

Structural localization of the eight most recognized peptides and monoclonal binding faces of RBD. (A) Linear RBD sequence showing the RBM
region, highlighting ACE-2 contact residues. Top eight IgG and/or IgA recognized peptides (P6, P12, P14, P18, P30, P44, P50 and P66) are
shown according to RBD residues. The pink heatmap represents the frequency at which nAbs contact each amino acid in RBD, according to a
previous review (18). Mutation sites are shown in green in upper part. (B) Frequency of nAbs in contact with each amino acid in the RBD
depicted in (A, C). Surface structure of different RBD views showing regions where neutralizing antibodies bind to (in pink), and three non-
neutralizing faces, in gray. (D) Top recognized peptides are shown in colors and non-neutralizing faces are highlighted in gray according to B.
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A

B

D

E

C

FIGURE 6

RBD peptide recognition profile of vaccinated individuals. (A) Heatmap representing the magnitude of recognition of SARS-CoV-2 RBD peptides
tested for IgG reactivity using a peptide microarray (columns: ordered by the primary structure sequence) for all individuals (rows: grouped by
vaccine regimen and clustered using median values within each group). 2nd dose: individuals who received two doses of Coronavac. Booster:
individuals who received two doses of Coronavac followed by one dose of MiRNA-273 (Comirnaty). (B) Selected immunodominant peptides
recognized by IgG by at least 30% of the individuals in the vaccinated cohort (n=18), showing the total percentage of recognition and
neutralization titer ranges. (C) List of top peptides among convalescents or vaccinated. (D) Conservation analysis of the top recognized peptides
among RBD proteins from different VOCs (alfa, beta, gamma, delta and omicron BA.1) compared to Wuhan. The height of the letters in the logo
plot reflects the frequency of the amino acid in the multiple sequence alignment. (E) Entropy of amino acid residues considering the alignment
performed, as in D with top peptides highlighted.
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infection – we cannot specify which repertoire of peptides would

be the most recognized by both exposures.

Overall, for convalescents, IgA peptide recognition profiles

were more diverse than IgG profiles, different from what was

found in a cohort of COVID-19 convalescents using Virscan,

showing that IgG and IgA recognize the same protein regions

with similar frequencies across the population viral (19).

Notably, a more constrained repertoire of IgG-recognized

peptides was found in convalescents associated with higher

neutralization titers. If, on one hand, a more antigen restricted

Ab response can indicate a more focused and robust immune

response, on the other, it could also favor the selection of escape
Frontiers in Immunology 12
variants. In line with this interpretation, it was recently reported

that, due to humoral immune imprinting, Omicron

breakthrough infections caused significant reductions in the

epitope diversity of NAbs and increased proportion of non-

neutralizing mAbs. This in turn would have concentrated

humoral immune pressure and promoted convergent

evolution (20).

Peptides recognized by more than 30% of our cohort were

defined as immunodominant (21). We first determined the

reactivity profile of convalescents and only antibody reactivity to

the topmost immunodominant peptide, P44 (S415-429
TGKIADYNYKLPDDF), positively correlated with neutralizing
A B

D

C

FIGURE 7

Structural evaluation of topmost recognized peptides among vaccinated and analysis of occurrence at mutation sites. (A) RBD binding to the
therapeutic neutralizing antibody COVA1-16 (pdb:7JMW) and with ACE-2 (B) interacting with P14/18, the most recognized region, with contact
amino acid residues in black. SARS-CoV-2 RBD (light gray). Colored regions show the most frequently recognized peptides identified among
vaccinated. (C) Timeline showing collection period of samples, vaccination and surge of VOCs in Brazil. (D) Linear RBD sequence showing
mutation sites of Beta, Gamma, Delta and Omicron BA.1. Regions highlighted in yellow are the most recognized among vaccinated. Top thirteen
from vaccinated (orange) and top seven (blue) IgG recognized peptides are shown according to RBD residues.
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capacity, suggesting that responses to the other immunodominant

peptides may not have, individually, generated antibodies with

neutralizing capacity.

P44 encompasses the mutation hotspot residue K417 present in

the gamma (K417T), beta and omicron (K417N) VOCs, which

have been shown to be less recognized by neutralizing antibodies

from both Covid-19 first wave convalescents (21) and anti-SARS-

CoV-2 vaccinated individuals (22). This residue contacts the human

ACE-2 and is likely a result of adaptive evolution of the SARS-CoV-

2, displaying stronger receptor binding (23). Selective pressure

could have favored new variants’ immune evasion from a potent

established humoral response directed to this residue, possibly due

to robust humoral response against this immunodominant region.

Recognition of other immunodominant peptides was not correlated

with neutralizing activity and these peptides are not within hotspot

mutation sites.

It has been shown that broadly neutralizing monoclonal

antibodies that recognize RBD epitopes that are conserved

among SARS-CoV-2 variants and other sarbecovirus outside

the receptor-binding motif were able to neutralize Omicron (24).

Several monoclonal antibodies cross react with and neutralize

sarbecoviruses beyond the SARS-CoV-2 clade, indicating that

neutralizing antibodies targeting the sarbecovirus conserved

region remain effective (24, 25).

Conformational data from the literature indicate that mutations

occurring at residues with higher structure-based antibody

accessibility scores, such as residue 417 when RBD is in the open

form, are more likely to comprise antibody recognition epitopes

(26). Accordingly, our data show that amino acid substitutions in

this region can impact the polyclonal antibody response.

The very same P44 sequence has been shown to be target of IgG

antibodies from some COVID-19 convalescents and recipients of

Spike-mRNA vaccines (27). Although neutralizing capacity was not

evaluated in these studies and very few individuals were analyzed,

these results support the immunodominant nature of this peptide,

herein also observed for IgA. Intriguingly, in two microarray studies

performed with smaller peptides of 12-mer overlapping the P44

sequence, no antibody reactivity directed to T415GKIADYNYKLP426

was found (3, 28). This could be due to the short length of the

peptide used in that study and suggest we have been able to detect

the precise epitope, within our peptide. This is also corroborated by

the fact we did not find a dominant antibody reactivity directed to

the flanking peptides of P44 (P43 and P45), but in fact we found the

opposite, very low recognition. On the other hand, sera from

COVID-19 convalescent individuals reacted with longer peptides

containing the P44 sequence, such as the peptides G413QTGIA

DYNYKLPDDFTGC432 (29) and V407RQIAPGQTGIADYNY

KLPDDFTGCVIAW436 (5), reinforcing our data.

Furthermore, we should mention that P44 localizes close to the

binding sites of several therapeutic antibodies, frequently shown to

overlap with the ACE2 binding site20. In fact, the therapeutic

neutralizing antibodies REGN10933 (7) and B38 (8) recognize the

core RBD binding region containing P44 sequence. Our data show
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that P44 presents 56% of contact frequency with neutralizing

antibodies. Also, others have shown that all sites at which

mutations strongly escape binding are in direct (<4 Å) or

proximal (4–8 Å) contact with antibodies in resolved structures

(9). Accordingly, the exchange of the positively charged K417 to the

neutral asparagine (beta variant) or threonine (gamma variant) has

been shown to promote a shift in the helix structure (30), further

increasing the distance of molecular interaction, possibly impairing

antibody binding. The half-maximal inhibitory concentration

(IC50) of REGN10933 dropped 13.0- and 8.2-fold against beta

and gamma, respectively, largely because of the K417N/T and

E484K mutations (31). Therefore, antibodies recognizing the

observed sequential peptide within the P44 region would possibly

fail to neutralize variants with K417N mutation, as previously

reported (30–32). Of note, residue E484, another hotspot

mutation site, is in a molecular loop stabilized by two close

disulfide bonds (26), probably establishing a conformational but

not a linear antibody binding epitope, probably explaining why

reactivity to this peptide was not detected in our peptide array.

Therefore, we raise that immunodominant epitopes may

favor immune pressure and the selection of variants bearing

hotspot mutations, capable of evading antibody response. To put

forward this hypothesis we analyzed the peptide profile of

individuals vaccinated and not previously infected. It is

important to highlight that the variety of peptides being most

recognized among vaccinated was greater than among

convalescents. Also, the number of RBD mutations occurring

in Omicron are higher compared to previous VOCs (alpha, beta,

delta and gamma). The emergence of the same mutation sites

occurring independently in different parts of the globe may

reflect the adaptation of SARS-CoV-2 to humans against a

background of increasing immunity (33).

Our results showed that amongst convalescents a more focused

response, with fewer peptides being recognized, was associated

with higher neutralization titers. We reason that immune pressure

following vaccination contributed to epitope spreading and likely

surge of omicron that presents several mutations at RBD and the

capacity of escaping antibody neutralization.

An important challenging issue is that all current vaccines

express the ancestral SARS-CoV-2 Spike, whereas currently

circulating variants such as Omicron have several mutations

that promote evasion of the immune response. The so-called

“original antigenic sin”, that describes the phenomenon in which

the development of immunity against pathogens/antigens is

shaped by the first exposure to a related pathogen/antigen

(34), could be an additional hurdle to developing broadly

neutralizing vaccines based on mutated spike. The virus

continues to adapt in humans, and further divergence from

the initial Wuhan sequences is expected. Accordingly, such

vaccines could, in fact, boost responses to conserved epitopes

rather than induce responses to the new variants. It is uncertain

if a broad immunity conferred by a bivalent vaccine containing

Wuhan and Omicron strains will prove to be the best choice (35)
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especially considering the antigenic sin phenomenon that may

impair specific responses to Omicron (36). Maybe the next steps

will be to develop specific vaccines based on novel dominant

and/or subdominant variants without boosting the index strain,

as shown by promising results in pre-clinical assays (37).

In summary, we have identified a set of antibody

immunodominant sequential peptides contained in Wuhan

SARS-CoV-2 RBD that differs from convalescents of the first

wave of infection with Wuhan strain and vaccinated individuals

following two or three-dose regimen. Among convalescents, only

reactivity to the most frequently recognized peptide, P44, positively

correlated with neutralization titers, suggesting that it comprises

neutralizing antibody epitopes due to its RBD localization. This

immunodominant B-cell RBD peptide harbors a leading mutation

hotspot site in three independent SARS-CoV-2 VOCs: beta,

gamma, and omicron. Further, RBD immunodominant peptides

are more diverse among vaccinated and were detected in regions

that coincide with mutation sites of Omicron BA.1, a very relevant

VOC emerging after massive vaccination worldwide. Our results

provide evidence that immunodominant epitopes recognized by

convalescent and mainly by vaccinated may favor selective pressure

for variants bearing mutations at these sites, favoring

immunological escape.
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