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Immunogenic cell death-related
risk signature predicts prognosis
and characterizes the tumour
microenvironment in lower-
grade glioma

Jiayang Cai1,2†, Yuanyuan Hu3†, Zhang Ye1,2, Liguo Ye1,2,
Lun Gao1,2, Yixuan Wang1,2, Qian sun1,2, Shiao Tong1,2,
Ji’an Yang1,2* and Qianxue Chen1,2*

1Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China, 2Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, China, 3Department of Ophthalmology,
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China
Lower-grade glioma (LGG) is a common malignant primary tumour in the

central nervous system, and most patients eventually develop highly aggressive

gliomas despite comprehensive traditional treatment. Tumour molecular

subtypes and prognostic biomarkers play a crucial role in LGG diagnosis and

treatment. Therefore, the identification of novel biomarkers in LGG patients is

crucial for predicting the prognosis of glioma. Immunogenic cell death (ICD) is

defined as regulated cell death that is sufficient to activate the adaptive immune

response of immunocompetent hosts. The combination of ICD and

immunotherapy might exert a greater and more persistent antitumour effect

in gliomas. In our study, we explored the expression, function, and genetic

alterations of 34 ICD-related genes. Using 12 ICD-related genes, including

IL17RA, IL1R1, EIF2AK3, CD4, PRF1, CXCR3, CD8A, BAX, PDIA3, CASP8, MYD88,

and CASP1, we constructed and validated an ICD-related risk signature via least

absolute shrinkage and selection operator (LASSO) Cox regression analysis. All

the information was obtained from public databases, including The Cancer

Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and the Chinese

Glioma Genome Atlas (CGGA) databases. Our results revealed that ICD-high

risk groups have a poor prognosis and might be more sensitive to immune

checkpoint blockade (ICB) immunotherapy. In addition, ICD-high risk groups

were associated with 1p19q noncodeletion, higher WHO grade, wild type IDH,

and an immunosuppressive tumour microenvironment. We verified the

prognostic value of 12 ICD-related genes in TCGA and CGGA databases.

Immunohistochemistry was performed to verify the expression of several

ICD-related genes at the protein level. Our study provides a novel and

comprehensive perspective to elucidate the underlying mechanisms of LGG

prognosis and direction for future individualized cancer immunotherapy.
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Introduction

The most common malignant primary brain tumour in

adults is glioma, which accounts for 81% of central nervous

system (CNS) malignancies (1). Gliomas are classified into low-

grade glioma (LGG) and high-grade glioma (HGG) according to

the WHO classification. LGG accounts for 6% of primary

tumours of the central nervous system in adults and generally

has a better prognosis than HGG. However, comprehensive

treatment, including surgical resection combined with

chemotherapy and radiation therapy, still cannot avoid

treatment resistance and tumour recurrence, and greater than

half of LGG patients will eventually develop highly aggressive

gliomas (2–4). At present, the WHO classification system of

central nervous system tumours increasingly emphasizes the

importance of tumour molecular subtypes and prognostic

biomarkers for diagnosis and treatment (5). Although IDH

mutation, 1p/19q codeletion status, and other prognostic

biomarkers have been discovered, these factors are far from

sufficient to overcome the dilemma of glioma treatment and

prognosis. Therefore, the identification of novel biomarkers in

LGG patients is crucial for predicting the prognosis of glioma.

In the latest recommendations of the Nomenclature

Committee on Cell Death (NCCA), twelve types of regulatory

cell death (RCD) were clearly defined; among them,

immunogenic cell death (ICD) was defined as regulated cell

death that is sufficient to activate the adaptive immune response

of immunocompetent hosts (6). ICD is caused by a relatively

limited set of stimuli, including some FDA-approved

chemotherapeutic agents, viral infections, specific forms of

radiotherapy, and photodynamic therapy. These agents can

trigger the timely release of a range of damage-associated

molecular patterns (DAMPs) and further stimulate an

immune response that is generally associated with the

establishment of immune memory (6). In tumours, ICD-

promoting therapy can activate tumour-specific immune

responses, thereby stimulating the long-term efficacy of

antitumour drugs by combining the direct killing of cancer

cells and antitumour immunity (7). Notably, two FDA-

approved antitumour drugs for use in humans, lurbinectedin

(8, 9) and belantamab mafodotin (10), have recently been

demonstrated to drive ICD in cancer. In the past few years,

various preclinical studies have explored the molecular

mechanism of ICD, but few researchers have studied patients

in a clinical context to evaluate the possibilities of ICD, such as

the identification of biomarkers to classify patients according to

their response to ICD immunotherapy, which would be

extremely beneficial.

In the present study, we identified ICD-associated

biomarkers and developed an ICD-related risk signature that
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can predict patient prognosis, the immune microenvironment,

ant i tumour drug sens i t iv i ty , and the response to

immunotherapy in LGG. This risk signature will potentially

serve as a significant tool for physicians to make judgements

about LGG therapy in the future.
Materials and methods

Datasets

Whole-genome RNA-seq expression data and matching

clinicopathological data of LGG patients were acquired from

The Cancer Genome Atlas (TCGA) database (https://portal.gdc.

cancer.gov/) and the Chinese Glioma Genome Atlas (CGGA)

database (http://www.cgga.org.cn). A total of 529 LGG samples

in TCGA database and 625 LGG (WHO II-III grade) samples in

the CGGA database (including CGGA mRNAseq_325 and

CGGA mRNAseq_693) were used as training sets and test

sets, respectively. In the present study, we eliminated cases

with no survival data or those with ≤30 days of survival as

these patients potentially die of haemorrhage, intracranial

infection, heart failure, or foetal complications rather than

LGG. In addition, we used complete mRNA_seq data of 409

normal brain samples from GTEx as a control set, and the

“normalizeBetweenArrays” function of the R package “limma”

was used to remove multiple batch effects when merging the

mRNA_seq data of TCGA, GTEx, CGGA mRNAseq_325 and

CGGA mRNAseq_693 (11, 12).
Identification of differentially expressed
genes (DEGs) between low-grade glioma
and normal tissues

We combined TCGA-LGG and GTEx databases and

analysed DEGs from ICD-related genes using the Wilcoxon

test. A P value< 0.05 was established as the criterion. Then, we

constructed a coexpression network of these significant genes

using GeneMANIA (http://www.genemania.org/), which can

identify internal associations in gene sets.
Consensus clustering

To identify molecular subtypes linked to ICD, we conducted

consensus clustering using the R package “ConcensusClusterPlus”.

We obtained stable results by assessing the ideal cluster numbers

between k = 2–10 1,000 times.
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Identification of differentially
expressed genes

The R package “limma” was used to assess differential

mRNA expression. We examined adjusted P values to rectify

false-positive TCGA data. Adjusted P values less than 0.05 and

abs of logFC greater than 0.585 were established as the criteria.
Functional enrichment analysis of DEGs

To investigate the differential signalling pathways and

potential functions of DEGs, we conducted Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) analyses. The R package ‘‘clusterProfiler’’ (13)

was used to evaluate KEGG and GO pathways, and q-value or

FDR thresholds of<0.05 were considered significant.
Somatic mutation analysis

We downloaded somatic mutation data of LGG from TCGA

database and generated waterfall plots using the R package

“Maftools”. Waterfall plots are used to visualize and

summarize the mutated gene situation.
Construction and validation of the ICD-
related risk signature

The prognostic value of ICD-related genes was assessed by

univariate Cox regression analysis. Then, genes with statistical

significance were used to formulate a risk signature through the

least absolute shrinkage and selection operator (LASSO) Cox

regression analysis. Genes and their regression coefficients were

obtained based on the most suitable l value. The following

formula is used to calculate the risk score:

 Risk   Score   =o
n

1
kn*An

where An is the expression level of ICD-related genes, kn is the

regression coefficient of prognosis-related genes, and n is the

number of ICD-related genes.
Prognostic analysis of ICD-related
risk signature

The R packages “survminer” and “survival” were utilized to

compare the overall survival (OS) between the low and high ICD

risk cohorts through Kaplan−Meier (KM) analysis. We also
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constructed a nomogram that contains relevant clinical

parameters and independent prognostic factors using R

packages “rms,” “foreign,” and “survival”. Univariate Cox

analysis was used to identify prospective prognostic indicators,

and multivariate Cox analysis was used to analyse whether the

risk score and the nomogram were independent risk factors for

OS in LGG. In addition, we generated receiver operating

characteristic (ROC) curves of the ICD-related risk signature,

nomogram and other clinical risk factors to predict the 1-, 3-,

and 5-year overall survival of patients with LGG. Furthermore,

we calculated the area under the ROC curve (AUC-ROC), which

represents the accuracy of a diagnostic technique. Low accuracy:

0.5< AUC-ROC ≤ 0.7, moderate accuracy: 0.7< AUC-ROC ≤ 0.9,

and high accuracy: 0.9< AUC-ROC ≤ 1 (14). Moreover, to

evaluate the clinical net benefit of the nomogram, risk, and

clinicopathological prognostic factors in predicting 1-, 3-, and 5-

year overall survival, we plotted decision curve analysis (DCA)

curves by the R package “ggDCA”.
Clinicopathological relevance of the
ICD-related risk signature

LGG patients were separated into high- and low-risk groups,

and the differences in gender, age, 1p19q codeletion status,

WHO grade and IDH mutation status between the high- and

low-risk groups were analysed using the chi-square test. P

values< 0.05 were considered significant.
Tumour-infiltrating immune cells profiles

The CIBERSORT algorithm was used to estimate the

abundance profile of 22 immune cell types. Then, we

compared the fraction of immune cells between the high- and

low-risk groups using the Wilcoxon test. In addition, we

calculated the stromal score, immune score, estimate score,

and tumour purity of each LGG sample based on the

“estimate” package and compared them between the high- and

low-risk groups. Furthermore, the expression levels of immune

checkpoint (ICP) and human leukocyte antigen (HLA) genes

between the low- and high-risk groups were analysed.
Gene set variation analysis and single-
sample gene set enrichment analysis

Gene set variation analysis (GSVA) was performed to study

KEGG pathways between the low- and high-risk groups. Single-

sample gene set enrichment analysis (ssGSEA) was used to assess

immune function scores between the low- and high-risk groups.
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Prediction of drug sensitivity

The Genomics of Drug Sensitivity in Cancer (GDSC)

database, Gene Set Cancer Analysis (GSCA) (http://bioinfo.life.

hust.edu.cn/GSCA/) and CellMiner (http://discover.nci.nih.gov/

cellminer/) were used to analyse the drug sensitivity of ICD-

related risk genes. All drugs were approved by the FDA or

through clinical trials.
Human glioma and control brain tissues

All LGG (collected from surgical resection) and control

normal brain tissues (collected from patients with traumatic

brain injury during emergency surgeries) used in this study were

obtained from the Department of Neurosurgery, Renmin

Hospital of Wuhan University, China. All patients provided

written informed consent, and all specimens had a confirmed

pathological diagnosis by pathologists at Renmin Hospital of

Wuhan University. The procurement and rational use of

specimens in this study were approved by the Institutional

Ethics Committee of the Faculty of Medicine, Renmin

Hospital Affiliated to Wuhan University (approval number:

2012LKSZ (010) H).
Immunohistochemistry (IHC)

We immobilized the brain tissues in formalin, cut them into

slices and embedded them in paraffin. Sodium citrate (10 mM,

pH 6.0) was used for antigen retrieval after deparaffinization and

hydration of the tissues. The sections were incubated with 3%

H2O2 for 10 min and blocked with serum for 1 h. Tissues were

incubated the primary antibodies (anti-caspase-8 [Proteintech];

anti-MYD88, anti-PERK (EIF2AK3), and anti-CD8 alpha

(CD8A) [Servicebio]) (at dilution of 1:1000) at 4°C overnight.

Then, samples were incubated with the secondary antibody (at

dilution of 1:200) at room temperature for 1 h. Finally, we

stained the tissues with DAB (Servicebio) followed by

haematoxylin counterstaining. Then, an Olympus BX51

microscope (Olympus) was used to obtain images.
Western blot analysis

The protein sample was electrophoretically separated

on 12% SDS−PAGE gels after measuring the protein

concentration and transferred onto 0.45-mm PVDF

membranes (Millipore). Then, the membranes were incubated

with primary antibodies (anti-caspase-8, anti-MyD88, anti-

PERK (EIF2AK3), and anti-CD8A [ABclonal]) at 4 °C

overnight followed by HRP-conjugated secondary antibodies
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(ABclonal). The primary antibody was diluted at 1:1000 and

the secondary antibody was diluted at 1:3000. Finally, a

ChemiDoc Imaging System (Bio-Rad, USA) was used to

capture the images, and ImageJ was used for quantitative

analysis. Student’s t test was used for data comparisons

between glioma tissues and normal brain tissue groups.
Statistical analysis

The statistical analysis of bioinformatic sections has been

described above in detail. Bioinformatics analyses and R

packages were all conducted by R software (version 4.2.0). For

the molecular biology experiment, GraphPad Prism 8 was used

for the statistical analysis. The means between two groups of

normally distributed variables were compared using unpaired

Student t-tests. Data that were not normally distributed were

compared by the Wilcoxon test. All molecular biology

experiment results are reported as means ± SD and were

repeated at least three times. *P<0.05, **P<0.01, and

***P<0.001 were regarded as significant.
Results

Expression patterns and consensus
cluster of ICD-related genes

The research flowchart is presented in Figure 1. In previous

research, Abhishek et al. summarized 34 ICD-related genes

through a large-scale meta-analysis (15). We first explored the

expression patterns of ICD genes in LGG samples and normal

tissues. The results showed that most ICD genes, including

IL17RA, PIK3CA, EIF2AK3, LY96, FOXP3, CD4, PRF1,

CXCR3, P2RX7, NLRP3, IL10, TLR4, ENTPD1, HSP90AA1,

ATG5, BAX, PDIA3, CALR, MYD88, IFNGR1, CASP1, IL1B,

TNF, and NT5E, were highly expressed in LGG, whereas CD8A,

CD8B, HMGB1, and IL6 were expressed at low levels in LGG

(Figures 2A, B). Then, we constructed a coexpression network

and explored related functions to further reveal the connections

among these ICD-related genes (Figure 2C). These genes

revealed a complex PPI network, which has co-expression of

37.30%, physical interactions of 32.81%, predicted of 19.53%, co-

localization of 4.97%, pathway of 4.55%, and genetic interactions

of 0.84%. We next identified two clusters (A and B) in TCGA

cohort using consensus clustering (Figures 2D–F). Difference

analysis between these two gene clusters showed that most ICD-

related gene expression levels in Cluster B were higher than

those in Cluster A (Figure 2G). Therefore, we define Cluster A as

the ICD-low subtype and Cluster B as the ICD-high subtype.

Survival analyses revealed that the ICD-low subtype had a better

prognosis (Figure 2H).
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Analysis of the differentially expressed
genes (DEGs) and functional enrichment
analysis in different ICD subtypes

We next conducted difference analysis between the ICD-

high subtype and ICD-low subtype (Figures 3A, B). A total of

1145 differentially expressed genes were obtained and used for

GO and KEGG enrichment analyses. The results showed that

these genes are mainly involved in leukocyte-mediated

immunity, leukocyte activation involved in immune response,

MHC class II protein complex, and immune receptor activity

pathways in GO enrichment analysis (Figure 3C). KEGG

analysis showed that these genes were enriched in phagosome,

human T−cell leukaemia virus 1 infection, Toll−like receptor

signalling pathway, Th17 cell differentiation, antigen processing

and presentation, and other pathways (Figure 3D). These results

indicated that these ICD-related DEGs played an important role

in the immune microenvironment.
Somatic mutations in ICD-high and ICD-
low subtypes

To visualize and summarize mutated genes, we generated

waterfall plots for the two gene subtypes. We found different

somatic mutation profiles in these subtypes. In ICD-high

subtypes, IDH1, TP53, CIC, ATRX, and FUBP1 were the most

frequent mutations, responsible for 84.1%, 36.8%, 30.1%, 25.5%,

and 12.3% of all mutations, respectively (Supplementary

Figure 1A). In the ICD-low subtypes, the most frequent

mutations included IDH1, TP53, ATRX, TTN, and EGFR,
Frontiers in Immunology 05
which were responsible for 72.6%, 65.8%, 50.5%, 17.9%, and

10% of total mutations, respectively (Supplementary Figure 1B).
Construction and validation of the ICD
risk signature

Based on ICD-related genes, we constructed a prognostic

model. Cox univariate analysis found that a total of 16

prognosis-related genes were linked to the OS of patients

(Figure 4A). Through LASSO regression analysis, 12 ICD-

related genes were included in the optimal prediction model

(Figures 4B, C). Supplementary Table 1 presents the names of

the 12 genes and their corresponding coefficients. In addition, we

explored the distributions of risk score, survival status, and risk

gene expression in both TCGA (Figures 4D–F) and CGGA

(Figures 4G–I) databases. The results showed that the low-risk

cohort included an increased number of alive patients compared

with the high-risk cohort in both the TCGA and CGGA

databases. Moreover, we conducted KM analysis and found

that high-risk patients had a poor prognosis in TCGA

database, which was further verified in the CGGA database

(Figures 4J, K).
ICD risk score might be an independent
factor to predict the overall survival and
related to clinicopathological features

To better explore the prognostic significance of the ICD risk

score, we conducted univariate and multivariate Cox analyses.
FIGURE 1

The flow chart of research design.
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Our results revealed that the ICD risk score might serve as an

independent factor predict the OS of LGG patients (Figures 5A,

B). Based on the ROC curves of risk scores, WHO grade, gender,

age, IDH mutational status, and 1p19q codeletion status, we

found that the risk score had a higher area under the ROC curves

than other clinical factors in predicting 1-, 3-, or 5-year survival

(Figures 5C–E). In addition, we explored the relationship

between risk scores and other clinical factors and found that

1p19q noncodeletion, higher WHO grade, and wild type IDH

status had statistically higher risk scores, and this difference was

not noted for age or gender (Figures 5F–J).
Frontiers in Immunology 06
Furthermore, to more accurately predict the prognosis of

LGG patients, we constructed a nomogram based on risk scores

and clinical features (Figures 6A, B). ROC curves show that

nomograms have a better value in predicting the 1-, 3-, or 5-year

survival of patients than risk scores alone (Figures 6C–E).

Univariate and multivariate Cox analyses of the nomogram

also showed that this nomogram was an independent factor in

predicting the OS of LGG patients (Figures 6F, G). Moreover,

DCA curves showed that nomograms and risk scores have a

better clinical net benefit than other factors in predicting 1-, 3-,

or 5-year survival (Supplementary Figures 2A–C).
A B

D E

F

G

H

C

FIGURE 2

Expression patterns and consensus cluster of ICD-related genes. (A, B) Heatmap (A) and box plot (B) show 28 of 34 ICD genes with significantly
different expression profiles between normal and LGG samples in TCGA and GTEx databases, ***P< 0.001. (C) Differentially expressed genes and
their coexpressed genes were analysed via GeneMANIA. (D) Heatmap of consensus clustering solution (k = 2) for 34 genes in 529 LGG samples.
(E, F) The delta area curve of consensus clustering indicates the relative change in the area under the cumulative distribution function (CDF)
curve for k = 2 to 10. (G) Heatmap of the expression of 34 ICD-related genes in different subtypes. Red represents high expression, and blue
represents low expression. (H) Kaplan–Meier curves of OS in Cluster A and Cluster B subtypes.
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Analysis of the DEGs, functional
enrichment analysis and somatic
mutations in the high- and
low-risk groups

Next, we conducted differential analysis between the high-

and low-risk groups, and a total of 690 DEGs were obtained

(Figures 7A, B). We conducted GO and KEGG functional

enrichment analyses of these genes. KEGG analysis and GO

analysis, including biological process (BP), molecular function

(MF), and cellular component (CC) analyses, showed that these

genes are mainly involved in immune-related pathways

(Figures 7C–F). In addition, we also explored the mutated

genes in the high- and low-risk groups. In the low-risk group,

the top 5 mutated genes were IDHI, TP53, ATRX, CIC, and

FUBP1. In the high-risk group, the top 5 mutated genes were

IDHI, TP53, ATRX, TTN, and CIC (Figures 8A, B). Notably,

IDH1 mutations occurred more frequently in the low-risk group
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compared with the high-risk group, which is consistent with the

better prognosis of IDH1-mutated LGG patients.
Tumour microenvironment (TME)
landscape in ICD low- and ICD
high-risk groups

Growing evidence suggests that tumour-infiltrating immune

cells play an essential role in the tumour microenvironment. We

investigated stromal score, immune score, estimate score, and

tumour purity between the ICD low- and ICD high-risk groups.

We found that stromal score, immune score, and ESTIMATE

score were higher and tumour purity was lower in high-risk

samples (Figures 9A–D). Next, we assessed the relative fraction

of immune infiltration in 22 types of immune cells using the

“CIBERSORT” algorithm, and the results of LGG patients from
A B

DC

FIGURE 3

Analysis of differentially expressed genes (DEGs) and functional enrichment analysis in different ICD subtypes. (A) Volcano plot of the distribution
of DEGs between ICD-high and ICD-low subtypes in TCGA cohort. (B) Heatmap of the DEG expression between ICD-high and ICD-low
subtypes. (C, D) Dots plot of the KEGG (C) and GO (D) enrichment analysis. The size of the dot represents the gene count, and the colour of the
dot represents the q value.
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TCGA dataset were summarized (Figure 9E). In detail, the

proportions of activated memory CD4 T cells, M1 and M2

macrophages, and resting mast cells were increased in the high-

risk group, whereas the proportions of follicular helper T cells,
Frontiers in Immunology 08
activated NK cells, activated mast cells, and eosinophil cells were

lower in the high-risk group (Figure 9F). These results indicated

that risk scores might be associated with immune infiltration

levels to affect LGG patient prognosis.
A B

D

E

F

G

I

H

J K

C

FIGURE 4

Construction and validation of the ICD-related risk signature. (A) Forest plot of overall survival (OS) analysis using univariate Cox analysis for
evaluating the prognostic value of the ICD genes. (B, C) Lasso Cox analysis identified 16 ICD-related genes most associated with OS in the
TCGA dataset. (D–F) Risk score distribution (D), survival status of each patient (E), and heatmaps of the prognostic 12-gene signature (F) in
TCGA database. (G–I) Risk score distribution (G), survival status of each patient (H), and heatmaps of the prognostic 12-gene signature (I) in the
CCGA database. (J, K) Kaplan–Meier analysis of the prognostic significance of the risk model in TCGA and CGGA databases.
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In addition, we assessed the activities and abundances of

functions and pathways based on the ssGSEA scores. Our results

showed that the high-risk group had higher ssGSEA scores in

various immune functions (Figure 9G). GSVA revealed that the

high-risk group exhibited increased activity in primary

immunodeficiency, antigen processing and presentation, T-cell

receptor signalling pathway and other immune-related pathways

(Figure 9H). Furthermore, considering the importance of

immune checkpoints (ICPs) and human leukocyte antigen

(HLA) genes in anticancer immunity, we analysed the

expression of 47 ICPs and 24 HLA genes in different risk

groups. The results showed that almost all of the ICP and
Frontiers in Immunology 09
HLA genes were significantly upregulated in the high-risk

group (Figures 10A, B). The above results suggest that the risk

score value is strongly related to the expression level of ICPs and

HLA genes, which may represent potential biomarkers

for immunotherapy.
Prognostic value of ICD-related risk
genes and prediction of drug sensitivity

We investigated the prognostic value of 12 ICD-related

genes involved in the prediction model. Kaplan−Meier survival
A B

D E

F G

I

H

J

C

FIGURE 5

The prognostic value of the risk score and the association between risk score and clinicopathological factors. (A) Forest plot of the univariate
Cox test evaluating the association of the risk score and clinical factors with patient OS. (B) Forest plot of the multivariate Cox analysis
identifying independent risk factors for the OS of patients. (C–E) The ROC curve of the risk score and clinical factors for predicting 1- (C), 3- (D),
and 5-year (E) OS. (F–J) Distribution of ICD-related risk scores among LGG patients stratified by gender, age, 1p/19q codeletion status, WHO
grade, and IDH mutation status in TCGA database.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1011757
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2022.1011757
analysis indicated that LGG patients with high expression of the

12 ICD-related genes had a poor prognosis in both TCGA and

CGGA databases (Figures 11A, B). Subsequently, we predicted

drug sensitivity using the GDSC database and found that high-

risk patients were more sensitive to various drugs, and we listed

the top 41 drugs in the heatmap (Figure 12). Moreover, we also

explored the relationship between the expression levels of these

12 ICD-related genes and drug sensitivity in pan-cancer using

the CellMiner and GSCA databases (Supplementary Figure 3

and Supplementary Figure 4).
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Validation of ICD-related gene
expression levels in clinical tissue

We used LGG and control normal brain tissues (NBT) to

validate the expression levels of ICD-related genes. We selected

the 4 genes with the highest coefficients (including CASP8,

CD8A, EIF2AK3, and MYD88) in the risk model to perform

immunohistochemistry staining. IHC results showed that

CASP8, EIF2AK3, and MYD88 had higher expression levels in

LGG tissues, whereas CD8A exhibited the opposite trend, which
A B

D E

F G

C

FIGURE 6

The prognostic value of the risk score combined with clinicopathological features in the OS of patients from the TCGA database. (A) Nomogram
shows OS in TCGA database of patients. (B) The nomogram’s calibration plots. The y-axis represents actual survival, whereas the x-axis
represents nomogram-predicted survival. (C–E) ROC curve of risk scores and clinicopathological factors for predicting 1- (C), 3- (D), and 5-year
(E) OS. (F, G) Nomogram results based on univariate and multivariate Cox regression analyses.
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was consistent with the results obtained with TCGA database

(Figures 13A, B). Similar results were obtained based onWestern

blot analyses (Figures 13C, D).
Discussion

For a long time, people have been exploring better treatment

methods for glioma, especially in LGG, which has a relatively
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low degree of malignancy and is a relatively promising tumor for

cure in glioma, but the traditional surgical resection combined

with chemotherapy and radiotherapy are difficult to avoid tumor

resistance and progression. James Allison and Tasuku Honjo

discovered the inhibition of negative immune regulation by

cancer therapies, for which they were awarded the 2018 Nobel

Prize in Medicine (16). This finding enabled tumour

immunotherapy to reach unprecedented heights. In recent

years, immunotherapy for glioma, including immune
A B

D
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C

FIGURE 7

Analysis of the differentially expressed genes (DEGs) and functional enrichment analysis in different ICD risk scores. (A) Volcano plot of the
distribution of DEGs between the ICD-high and ICD-low risk groups in the TCGA cohort. (B) Heatmap of DEG expression between the ICD-
high and ICD-low risk groups. (C–F) GO (C–E) and KEGG (F) enrichment analyses. The outermost circle on the right represents the term on the
right, and the inner circle on the right represents the FDR of the corresponding pathway.
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checkpoint blockade (ICB), has been considered to be a

promising approach (1). However, most patients are not

sensitive to ICB treatment (17). Therefore, it is necessary to

identify novel biomarkers to combine with immune checkpoints

(ICPs) to provide benefits to patient by avoiding immune-

related adverse events and decreasing treatment costs. ICD is a

new type of regulatory cell death (RCD) defined by the NCCA in

2018 that induces adaptive immunity, thereby enhancing

antitumour immunity. Studies have shown that ICD can

improve antitumour immune efficacy in combination with

immune checkpoints (18). In glioma immunotherapy,

identifying discrepancies in response to immune checkpoint

blockade across genomic subtypes remains a challenge to

overcome (19). Moreover, the use of a single differentially

expressed gene as a biomarker is not reliable in individual

glioma patients due to the highly heterogeneous character of

gliomas (20).
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In the present study, we explored the expression, function,

and genetic alterations of 34 ICD-related genes. Based on 12

ICD-related genes, we constructed and validated an ICD-related

risk signature that serves as a novel prognostic biomarker of

LGG patients and might predict ICB immunotherapy response.

In addition, the relationship between risk scores and

clinicopathological characteristics, immunity profiles, and drug

sensitivity was explored separately. Immunohistochemistry

verified the expression of several ICD-related genes at the

protein level in LGG tissues.

Most differentially expressed ICD-related genes are highly

expressed in tumour tissues. Based on consensus clustering, we

identified two ICD subtypes through ICD-related gene

expression and found that the subtype with high ICD

expression was associated with a poor prognosis. Furthermore,

we constructed and validated an ICD-related risk signature.

Compared with other clinically independent prognostic
A

B

FIGURE 8

The somatic mutations in the ICD-high and ICD-low risk groups (obtained by LASSO Cox regression analysis). (A, B) The top 20 most frequently
mutated genes in ICD-high risk groups (A) and ICD-low risk groups (B) were visualized in waterfall plots.
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factors, including grade, age, IDH mutation status, and p/19q

codeletion status, the risk signature has a more significant

prognostic predictive value, which might effectively stratify

patients based on risk and predict individual mortality risk. Of

course, a nomogram that combines the risk signature with other

clinical factors will have greater predictive value. Given that

clinically independent prognostic factors, such as wild type IDH

and 1p19q noncodeletion, are usually associated with poor

responses to conventional radiotherapy or chemotherapy (17),
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our results showed that risk scores could distinguish LGG

patients based on IDH mutation and 1p/19q codeletion status,

indicating that LGG patients with higher risk scores may exhibit

an inadequate response to radiotherapy or chemotherapy.

Approximately 80-90% of LGG patients harbour IDH1

mutations compared with only 10% in GBM patients (21).

IDH1 mutations are associated with a better prognosis in

glioma patients. In addition to making tumour cells more

sensitive to temozolomide and radiation therapy, IDH1
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C

FIGURE 9

The immune landscape of ICD-high- and ICD-low-risk groups. (A–D) Violin plots of the stromal score, immune score, ESTIMATE score, and
tumour purity between the ICD-high and ICD-low risk groups. (E) Relative percent of immune infiltration in the ICD-high and ICD-low risk
groups. (F) Box plot visualizes significantly different immune cells between the ICD-high and ICD-low risk groups. *P< 0.05, **P< 0.01, ***P<
0.001. (G) Box plots of the difference in known functions related to immune modulation between the ICD-high and ICD-low risk groups. *P<
0.05, ***P< 0.001. (H) GSVA enrichment heatmap for ICD-high and ICD-low risk groups.
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mutations can also make glioma cells susceptible to DNA

damage and apoptosis (21). In our somatic mutation analysis

results, there were fewer IDH1 mutations in the high-risk group

and ICD-high subtype, which further suggests that traditional

treatment may not be effective in patients with high-risk scores.

Studies have shown that the presence of CIC mutations is

associated with better survival in glioma patients, which is

consistent with the better prognosis in our low-risk group of

patients (22). Similarly, high-grade glioma has a higher risk

score, which suggests that the risk signature can indicate the

degree of malignancy and participate in tumor progression.

Given that evading immune destruction is one of the

emerging hallmarks of cancer (23), research on the tumour

immune microenvironment is increasing. Yoshihara K et al.

described an ESTIMATE method to assess the score of stromal

and immune cells in tumour samples, and the score was

positively related to tumour purity (24). Patients with low-

purity LGG tumours typically exhibit an advanced stage and

poor prognosis (25). In our study, high-risk patients tended to

have higher ESTIMATE scores and lower tumour purity, which
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could explain why high-risk patients are associated with poor

prognosis. T cells follicular helper play an antitumour role in

cancers and have potential implications for PD1 and PDL1

immunotherapies (26). NK cells, which serve as the first line

of defence against cancer, are strong executors of innate

immunity and have the ability to kill circulating tumour cells

(27). It has been reported that type M2 macrophages are the

main factors that induce an immunosuppressive tumour

microenvironment (28). Previous studies have shown that

eosinophil cells exert an antitumour cytotoxic response via

degranulation (29). Mast cells can inhibit or promote several

processes in tumour biology that largely depend on the

stimulation of the microenvironment (30). Our results

revealed that T cells follicular helper, NK cells, and eosinophil

cells were significantly downregulated, whereas M2

macrophages were significantly upregulated in the high-risk

group. These results indicated that various fractions of

immune-inflammatory tumour-infiltrating cells established an

immunosuppressive tumour microenvironment in the high-risk

groups. Therefore, upregulating the number and activity of
A

B

FIGURE 10

Differential expression of immune checkpoints and HLA genes. (A, B) Box plots of differentially expressed immune checkpoints (A) and HLA
genes (B) between the ICD-high and ICD-low risk groups. *P< 0.05, **P< 0.01, ***P< 0.001.
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infiltrating T cells follicular helper, NK cells, and eosinophil cells

and repolarization of M2 into M1 macrophages in tumours

represent potentially promising methods to treat high-risk

LGG patients.

Furthermore, immune-related functions, including T cell co-

stimulation, T cell co-inhibition, checkpoint, HLA, MHC-class-I,
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were all activated in the high-risk group, indicating that patients in

the high-risk group with immune suppression features would

respond to immunotherapy (31). Tumours usually evade immune

surveillance by downregulating one or more molecules critical for

MHC antigen presentation (32). In our GSVA results, the antigen

processing and presentation pathway was active in the high-risk
A

B

FIGURE 11

Verification of the prognostic value in TCGA and CGGA databases. (A, B) Kaplan–Meier analysis of 12 ICD-related risk genes for patients in
TCGA (A) and CGGA (B) databases.
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FIGURE 13

CASP8, MYD88, EIF2AK3, and CD8A expression was verified. (A, B) Representative IHC staining images (A) and IHC scores (B) for CASP8, MYD88,
EIF2AK3, and CD8A in clinical tissues. Scale bars: 50 mm. Normal brain tissue: n = 5, LGG: n=5.(C, D) Western blotting was used to detect the protein
expression levels of EIF2AK3, Caspase 8, CD8A, and MyD88 in LGG (n=3) and normal brain tissues (n=3). *P< 0.05, **P< 0.01, ***P< 0.001.
FIGURE 12

The drug sensitivity prediction and comparison of ICD-high and ICD-low risk groups from the GDSC database are sum up in a heatmap.
***P < 0.001.
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group, which further demonstrated the effectiveness of

immunotherapy in the high-risk group. Immune checkpoint

blockade (ICB) is becoming a main treatment modality given its

ability to reverse the signalling of the immunosuppressive Tumour

Microenvironment (33). ICP expression is essential for immune

escape and ICB treatment, so immune checkpoint inhibitors have

gradually become the focus of the latest developments in cancer

immunotherapy (34, 35). In the current research, almost all 47 ICPs,

including vital ICPs (PD-1, PD-L1, and CTLA4), exhibited

significantly higher expression levels in the high-risk groups,

suggesting that high-risk patients might exhibit improved

sensitivity to ICB therapy. The potential relationship between the

ICD-related risk signature developed in this study and immune

infiltration and ICPs may represent a promising research direction

for improving the efficacy of immunotherapy in solid cancers.

In conclusion, ICD-related genes play an important role in the

immune microenvironment. The ICD-related risk signature

constructed and validated in this study for predicting LGG patient

OS were associated with changes in the LGG tumour immune

microenvironment and may predict immunotherapy response. Our

study provides a novel and comprehensive perspective to elucidate

the underlying mechanisms of LGG prognosis and provides

direction for future individualized cancer immunotherapy.
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