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It is often difficult to regain neurological function following spinal cord injury

(SCI). Neuroinflammation is thought to be responsible for this failure.

Regulating the inflammatory response post-SCI may contribute to the

recovery of neurological function. Over the past few decades, studies have

found that macrophages/microglia are one of the primary effector cells in the

inflammatory response following SCI. Growing evidence has documented that

macrophages/microglia are plastic cells that can polarize in response to

microenvironmental signals into M1 and M2 macrophages/microglia. M1

produces pro-inflammatory cytokines to induce inflammation and worsen

tissue damage, while M2 has anti-inflammatory activities in wound healing

and tissue regeneration. Recent studies have indicated that the transition from

the M1 to the M2 phenotype of macrophage/microglia supports the regression

of inflammation and tissue repair. Here, we will review the role of the

inflammatory response and macrophages/microglia in SCI and repair. In

addition, we will discuss potential molecular mechanisms that induce

macrophage/microglia polarization, with emphasis on neuroprotective

therapies that modulate macrophage/microglia polarization, which will

provide new insights into therapeutic strategies for SCI.
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Introduction

Spinal cord injury (SCI) usually leads to permanent loss of

motor, sensory and autonomic function below the site of injury

(1). Unfortunately, about 1.3 million people worldwide suffer

from SCI, with almost 180,000 new cases occurring yearly (2).

Traumatic spinal cord injuries devastate the physical, financial,

and psychological well-being of the injured person and their

caregivers (3). The pathophysiological process of SCI can divide

into primary and secondary injuries (4). Primary injury is

irreversible, and the treatment of SCI is focused on

minimizing the inflammatory response to secondary injuries

(5, 6). To date, there is still a lack of effective treatment for

neuroinflammatory conditions. Important neuroprotective

measures presently applied in clinical practice include early

surgical decompression, blood pressure augmentation, and

intravenous glucocorticoids (GCs) (7, 8). However, these

methods do not fundamentally improve the function of the

injured spinal cord, and there is an urgent need to develop new

therapeutic approaches to treat SCI.

As an important player in the immune response process,

macrophages/microglia dominate the inflammatory process

following SCI (9). After the injury, macrophages initially

originated from resident activated-microglia and later

primarily from circulating monocytes (10). As both infiltrating

macrophages and resident microglia are derived from bone

marrow mononuclear cells, they share similar molecular

markers and functional characteristics, making it difficult to

distinguish them at present (11). As a consequence, we use the

term “macrophage/microglia” to describe these cells collectively.

Studies have found that macrophage/microglia may have

detrimental and beneficial roles in the injured spinal cord (12,

13). These seemingly contradictory functions of macrophages/

microglia reflect the different phenotypes they acquire in

response to different microenvironmental cues (14).

Conventionally, macrophages/microglia are divided into two

significant phenotypes: M1 and M2 (15). Classically activated

macrophages/microglia (M1) is primed by Th1 cytokines, such

as tumor necrosis factor-alpha (TNF-a) and interferon (IFN)-g,
and produce high levels of pro-inflammatory cytokines

interleukin -6(IL-6), IL-23, IL-1b, and TNF-a (16, 17), which

are pro-inflammation, induce axonal degeneration and cause

neurotoxicity (18, 19). In contrast, alternatively activated

macrophages/microglia (M2) are induced by Th2 cytokines

such as IL-4 and IL-13 (17, 20). These cells secrete

transforming growth factor-beta (TGF-b), IL-4, and IL-10 to

suppress inflammation, induce angiogenesis, and promote tissue

repair (20, 21). Growing evidence suggests that the transition of

inflammatory macrophages/microglia to the M2 phenotype

leads to reduced secondary damage and improved locomotor

recovery after SCI (22, 23).

The current review will present and discuss the role of the

inflammatory response and macrophages/microglia in SCI and
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repair. In addition, we will discuss potential molecular

mechanisms that induce macrophage/microglia polarization,

with emphasis on neuroprotective therapies that modulate

macrophage/microglia polarization. It is hoped to provide

direction and basis for future research on the mechanism of

macrophage/microglia polarization and the treatment of SCI via

regulating macrophages/microglia polarization.
The inflammatory response
after SCI

Primary injury results from initial trauma to the spinal cord,

which can cause rupture of the blood-spinal cord barrier (BSCB),

bleeding, edema and oxidative damage (24, 25). This process

initiates a secondary injury cascade that begins only a few hours

after injury, leading to an inflammatory response, ischemia and

progressive neuronal death (Figure 1) (25, 26). The BSCB consists

of continuous endothelial cells, pericytes and glial cells with

molecular junctions (27). Similar to the blood-brain barrier, the

BSCB is critical for the exclusion of peripheral immune cells,

various inflammatory and toxic metabolites from the CNS, which

maintains microenvironmental stability (28, 29). Barrier integrity

is compromised following SCI by disruption of interendothelial

tight junctions (TJs) and adherent junctions (AJs) and by overall

mechanical damage to the vasculature (30). The sustained

permeability of the BSCB allows infiltration of peripheral

inflammatory cells and factors into the spinal cord and leads to

secondary injury (24). During the recovery stage, BSCB repair and

glial scar formation limit the recruitment of “fresh” M2

macrophages/microglia to the injury site (14). This could also

contribute to the persistence of inflammation after SCI.

An inflammatory response is critical in the secondary injury

cascade after SCI. It involves activated resident cells (microglia,

astrocytes) and macrophages, neutrophils, and lymphocytes

recruited from the peripheral blood to the site of injury (31,

32). These cells secrete pro-inflammatory cytokines, such as IL-

1, IL-6, and TNF-a, all of which enhance the magnitude of the

inflammatory response (4, 33). Damaged cells release damage-

associated molecular patterns (DAMPs), such as small molecules

and proteins, that induce sterile neuroinflammation after SCI

(34, 35). DAMPs are perceived by pattern recognition receptors

(PRRs), leading to the rapid activation of resident cells, such as

microglia and astrocytes (36, 37). Activated microglia secrete

various pro-inflammatory cytokines, including INF-g, IL-6,
TNF-a, and other cytotoxic factors (38, 39). At the same time,

they were inducing vascular endothelial cells to express a variety

of chemokines and cell adhesion molecules that contribute to the

recruitment of peripheral immune cells to the site of injury (40,

41). As resident immune cells in the CNS, microglia also possess

positive qualities. Fu et al. found that microglia may play a

protective role after SCI by regulating astroglia scar formation,

which insulates peripheral inflammatory cells in the core of the
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lesion, thus avoiding inflammation-mediated tissue damage

(42). Similar to microglia, astrocyte membranes express a

variety of PRRs, which can interact with DAMPs to initiate

inflammatory responses (37, 43). Reactive astrocyte-derived

permeability factor thymidine phosphorylase, which interacts

with vascular endothelial growth factor A to induce blood-brain

barrier disruption (44), alters the local microenvironment and

facilitates the entry of peripheral immune cells into the CNS

parenchyma. However, astrocytes are essential for regulating

and alleviating inflammation after SCI and restoring

microenvironmental homeostasis (45). First, the reactive

astrocytes of the formed glial scar can constrain the harmful

microenvironment (46). Second, astrocytes specifically eliminate

glutamate, thereby reducing excitotoxic damage (46, 47).

Neutrophils are the first peripheral immune cells to be

recruited to a site of SCI (24, 48). These cells can promote

phagocytosis and clearance of cellular debris and facilitate repair

by secreting protease inhibitory factors (49, 50). However,

infiltrating neutrophils release neutrophil extracellular traps

(NETs), which subsequently promote BSCB disruption and

neuroinflammation to exacerbate neuronal apoptosis and

spinal cord edema following SCI (51). The endocytosis effect

of macrophages on apoptotic neutrophils after tissue injury is

the basis for eliminating inflammation and initiating tissue

remodeling, which also plays an essential role in modulating

neutrophil production (52, 53). Several studies have shown that
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macrophages are neurotoxic. For example, in the SCI model,

macrophage depletion and lack of CX3CR1 signaling

contributed to improved neurological function and tissue

repair (54–56). In particular, macrophage depletion promoted

recovery of TJ between vascular endothelial cells and reduced

leakage of BSCB from the injured core post-SCI (57). These

harmful or protective effects of macrophages on tissue

regeneration are primarily owed to their different cellular

phenotypes and the activation of specific intracellular signaling

pathways. Like macrophages, activated lymphocytes have

conflicting effects on SCI. On the one hand, T lymphocytes

secrete various pro-inflammatory cytokines, such as IL-1b and

INF-g, resulting in neurological tissue damage (58). On the other

hand, they could play an essential role in SCI and repair by

regulating the function and recruitment of both innate and

acquired immune cells following SCI (59). The conflicting

results concerning the effects of T lymphocytes in restoration

from SCI may be attributed to differences in the role of helper T-

cell subsets (60).

Inflammation has both damaging and repairing effects.

While the inflammatory response to SCI is beneficial and

necessary for tissue repair following damage, sustained

inflammation can be detrimental to tissue repair. As a result,

effective suppression of excessive inflammation in SCI can

improve the prognosis of SCI and promote nerve function

recovery and tissue regeneration.
FIGURE 1

This figure shows the combination of pathophysiological events that occur post-SCI. This includes hemorrhage, oedema, inflammation,
apoptosis, necrosis, oxidative damage, ischemia and vasospasm. Following primary injury, resident cells (astrocytes, microglia) are immediately
activated and migrate to the site of injury. Subsequently, peripheral inflammatory cells, including neutrophils, macrophages and lymphocytes,
infiltrate into the center of the damaged spinal cord. These activated immune cells can exacerbate the injury, causing neuronal death, which
leads to axonal demyelination and disruption of synaptic transmission. In the subacute phase, fluid-filled cavities form in the center of the spinal
cord. Astrocytes form a glial scar to isolate the damaged area. These sustained pathophysiological changes eventually lead to severe
dysfunction below the damaged segment.
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Role of macrophages/microglia
in SCI

The inflammatory response following SCI leads to the

infiltration of many inflammatory cells, and macrophages/

microglia play a critical role in the evolution and development

of inflammation.
Role of M1 macrophages/microglia
in SCI

M1 macrophages/microglia can be induced by the Th1

cytokines such as TNF-a, IFN-g, and lipopolysaccharide

(LPS), which secrete destructive factors such as TNF-a, IL-1b,
IL-6, and ROS (17, 61, 62), and can initiate the development of

inflammation. Several studies have shown that the disruptive

effects of activated macrophages/microglia are mainly ascribed

to their M1 phenotype. For example, an increase in M1 polarized

macrophages/microglia was observed in the context of SCI,

which may inhibit M2 cells from repairing damaged tissue

(63). Similarly, another study reported that Quercetin inhibits

macrophages/microglia polarization towards the M1 phenotype

via inhibition of the STAT1/NF-kB pathway, reduces neural

tissue damage, and suppresses inflammatory response with a

neuroprotective effect on SCI (64). macrophage/microglia have

been demonstrated to contribute to spinal cord cavity formation

and expansion after SCI. Fan et al. found that M1 macrophages/
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microglia may induce necroptosis in astrocytes following SCI

through activation of TLR4/MyD88 signaling, which leads to

enlargement of the spinal cord cavity (Figure 2) (65). These

investigations suggest that M1 hinders neurogenesis and

exacerbates secondary injury. However, M1 macrophages/

microglia also possess positive qualities. These cells secrete

soluble protein mediators such as vascular endothelial growth

factor and enzymes that modify the extracellular matrix, which

promote the proliferation of vascular endothelial cells (34).

These seemingly conflicting results suggest that the M1

phenotype exerts some pro-tissue repair functions after all,

such as clearance of cell debris soon after SCI. These findings

suggest that future therapeutic strategies will need to inhibit M1

polarization at the correct time to improve the results of SCI.
Role of M2 macrophages/microglia
in SCI

M2 macrophages/microglia have anti-inflammatory

functions and regulate tissue repair and remodeling, express

CD206 (mannose receptor) and arginase (Arg)-1, and secrete

anti-inflammatory cytokines such as IL-4 and TGF-b (62, 66).

M2 macrophages/microgl ia remove cel lular debris

through phagocytosis, release many neuroprotective and

trophic factors (14, 67), and produce anti-inflammatory

cytokine IL-10, inducing the conversion of M1 macrophages/

microglia to the M2 phenotype (68, 69), which plays a role in

wound healing. In addition, M2 macrophages/microglia secret
FIGURE 2

M1 and M2 macrophages/microglia have different roles in SCI. M1 macrophages/microglia are neurotoxic and release destructive factors that
impair axon repair/regeneration. These cells can induce the necroptosis of astrocytes and promote the formation of the spinal cavity. In
contrast, M2 macrophages/microglia have anti-inflammatory and neuroprotective effects, releasing neuroprotective factors such as IL-10 and
TGF-b to improve SCI repair/regeneration. In addition, the M2 phenotype facilitates axon regeneration and angiogenesis by secreting activin A
and matrix metalloproteinase 9 (MMP-9).
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matrix metalloproteinase 9 (MMP-9) as a single tissue

metalloproteinase 1 inhibitor, increasing their angiogenic

potential (14, 70). Several studies have confirmed the

neuroprotective role of the M2 phenotype in SCI. For

example, in an SCI model, transplantation of M2 macrophages

was effective in suppressing neuroinflammation and promoting

functional recovery (71). Wang et al (22). Found that

Butylphthalide plays an essential role in the anti-inflammatory

response to SCI by promoting macrophages/microglia M2

polarization and inhibiting macrophages/microglia M1

polarization by activating the p38 pathway. In another study,

azithromycin (AZM) was found to alter SCI macrophages/

microglia polarization towards a beneficial M2 phenotype,

thereby inhibiting the secondary injury process (23).

Furthermore, M2 macrophages/microglia are an essential

component of the CNS regenerative response, facilitating

myelin regeneration by generating activin A to drive

oligodendrocyte differentiation (Figure 2) (72). These studies

suggest that M2 is crucial in suppressing inflammation and

tissue repair. But it should be noted that excessive or prolonged

M2 polarization may contribute to scar formation and fibrotic

reactions that will hinder axonal regeneration and recovery of

neurological function (73). Because M2 macrophages/microglia

involved in wound healing also secrete large amounts of TGF-b,
which subsequently activates fibroblasts, initiates and promotes

the process of fibrosis (74, 75). Another potential concern is that

long-term maintenance of the M2 phenotype may harm

immune defenses and cause serious health consequences, such

as tumor development (17). However, the dominance of M1

macrophages/microglia and the reduction in the number of M2

macrophages/microglia following SCI can expand tissue

damage (76). Given the evidence in favor of a role for M2
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macrophages/microglia in SCI anti-inflammatory and

regeneration, M1-to-M2 phenotypic switches may create a

favorable microenvironment for SCI repair.
Macrophages/microglia polarization

Macrophages/microglia polarization involves the interaction

of various cytokines, chemokines, and transcription factors

(Figure 3). Signaling molecules from the microenvironment

bind specifically to receptors on the surface of the macrophages/

microglia membrane and activate the corresponding signaling

pathways and transcription factors, which initiate the

macrophages/microglia polarization pathway (77, 78).
Macrophages/microglia polarization to
the M1 phenotype

Classically activated macrophages/microglia are activated by

Th1 cytokines (IFN-g , GM-CSF, and TNF-a) and

lipopolysaccharide (LPS) (79, 80). Studies have shown that the

TLR4/NF-kB pathway plays an essential role in M1

macrophages/microglia polarization (78, 81). For example, The

LPS/TLR4 pathway activates NF-kB and interferon regulatory

factor 3 (IRF3) to induce M1 polarization and facilitate the

production of inflammatory factors (82). Members of the STAT

family, including STAT1 and STAT3, are involved in regulating

the M1 macrophages/microglia phenotype. For instance, IFN-g
binds to its receptor and activates Janus kinase, which

phosphorylates STAT1, thereby inducing macrophages/

microglia polarization to M1 (83). The roles of STAT3 are
FIGURE 3

The molecular mechanisms of macrophages/microglia polarization and their functions.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1014013
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fu et al. 10.3389/fimmu.2022.1014013
various as they are not only related to IL-6 induced M1

polarization but are also involved in IL-10 stimulated M2

polarization (84, 85). Notably, IL-17 enhances IFN-gM1-

induced polarization by enhancing STAT1 phosphorylation

while inhibiting IL-4-mediated M2 transformation by

inhibiting STAT6 activation (86). To date, transcription

factors, including NF-kB, STAT1, STAT5, IRF3, IRF5, and
IRF8, have been shown to regulate transcription programs that

control M1 macrophages/microglia polarizations (Figure 3) (85,

87–89).
Macrophages/microglia polarization to
the M2 phenotype

The M2 phenotype can be primed by Th 2 cytokines, IL-13

and IL-4 (77, 90), as well as other factors, including IL-10, IL-33,

M-CSF and TGF-b (77, 87, 91). Interestingly, IL-13 and IL-4

directly induce M2 macrophages/microglia activation, while

other cytokines, such as IL-25 and IL-33, indirectly induce the

M2 phenotype through the production of Th2 cytokines (92).

STAT6 was the main transcription factor that induced M2

polarization (93, 94). IL-4 and IL-13 regulate the balance

between M1/M2 macrophages/microglia in favor of the M2

phenotype via the IL-4Ra-STAT6 pathway (82, 95). We also

found that IL-10 can polarize macrophages/microglia towards

the anti-inflammatory M2 phenotype by activating the IL-10/

STAT3 pathway (96). The importance of other transcription

factors in phenotypic regulation has also been highlighted in

several recent discoveries. For instance, IRF4 is an important

transcription factor that controls M2 polarization (97, 98), and

PPAR-g and Kruppel-like factor 4(KLF4) control M2

polarization (99, 100).

M2 produce complex cytokines and have multiple functions,

so they can be further subdivided into M2a, M2b, M2c, and M2d

subtypes (Figure 3) (101). M2a, also known as wound healing

macrophages/microglia, is induced by IL-4 and IL-13, express

CD206 and C-C motif chemokine ligand 17 (CCL17), and

secrete IL-10, TGF-b, and insulin-like growth factor (IGF) to

promote tissue repair (102, 103). In addition, M2a macrophages/

microglia are involved in tissue fibrosis, Th2 immune responses,

and allergic reactions (78). Polarization of M2a macrophages/

microglia promotes arginase 1 expression, restores axonal

regeneration, promotes axonal regeneration and improves

functional recovery post-SCI (104). M2b and M2c have similar

immunomodulatory functions but different inducers. M2b

macrophages/microglia are induced by immune complexes,

Toll-like receptor (TLR) agonists or IL-1 receptor ligands,

which produce both pro-inflammatory factors (IL-1b, IL-6 and

TNF-a) and anti-inflammatory factor IL-10 (103), and play a

role in Th2 activation and immune regulation (105, 106). In

addition, M2b releases anti-inflammatory cytokines without

causing neurotoxicity, facilitating recovery from SCI (107).
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M2c shows a regulatory phenotype induced by glucocorticoids,

IL-10, and TGF-b exerts anti-inflammatory effects by secreting

IL-10 and TGF-b (106, 108) and is associated with

immunosuppressive behavior, matrix remodeling, and tissue

repair (109, 110). Enhances M2b and M2c phenotypes. May

coordinate the proliferative phase of wound healing and

promote SCI repair (111). M2d macrophages/microglia, also

called tumor-associated macrophages/microglia (TAM), are

triggered by co-stimulation with TLR ligands and A2

adenosine receptor (A2R) agonists or IL-6 (103); these cells

secrete IL-10, vascular endothelial growth factor (VEGF) and

TGF-b (109), and contribute to angiogenesis and tumor

metastasis (106).

Much knowledge of the phenotypic and functional

characteristics of macrophages/microglia mentioned above is

obtained from rodents. Notably, there are apparent differences

between rodent macrophages/microglia and their human

counterparts (112). For example, iNOS and Arg1 are mouse

M1 andM2markers, but are not expressed at significant levels in

human macrophages/microglia at all (113, 114). Furthermore,

macrophages/microglia responses to stimuli are variable

between species, with GM-CSF and M-CSF being inducers of

M1 and M2 polarization in mice but not in human

macrophages/microglia (115). In several mouse tumor models,

circulating monocytes are the major precursors of TAM (116,

117); in humans, in the context of bone marrow transplantation,

lymphoma-associated macrophages/microglia were found to

originate from bone marrow precursors (116), which suggests

that human and mouse macrophages/microglia may differ in

origin. More importantly, the M1/M2 dichotomy following

macrophage/microglia polarization in animal models is not as

evident in humans, and there is a continuum of activation states

between M1 macrophages/microglia and M2 macrophages/

microglia, the boundaries of which remain unclear (118).

Some studies have found that human monocytes polarize to

an M1 phenotype and M2 repair macrophages/microglia when

microenvironmental conditions change, and vice versa (119,

120). This indicates that the phenotype and polarization

mechanisms of human macrophages/microglia are much more

complex than those of rodents. Consequently, a better

understanding of the phenotypic and functional characteristics

of human macrophages/microglia will provide a theoretical and

research basis for the therapy of SCI.
Advances in neuroprotective
therapies that regulate
macrophages/microglia polarization
in SCI

In healing wounds, the M1 to M2 macrophage/microglia

phenotype transition supports the regression of inflammation
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and tissue repair (121). However, a similar M1 to M2 transition

was not observed in spinal cord tissue repair process. Therefore,

regulating macrophages/microglia to an anti-inflammatory

phenotype is potentially a prospective therapeutic strategy for

treating SCI.
Delivery of molecules to alter the
macrophages/microglia phenotype

Several studies have demonstrated that inhibition of the M1

phenotype can be applied to the treatment of SCI, including

blocking the activity of inflammatory cytokines and

transcription factors involved in the induction of the

phenotype. For example, in a mouse model of SCI, the

blockade of IL-7 receptors further inhibits M1 polarization

and promotes M2 polarization via down-regulating the

expression of Th1 cytokines (IFN-g, TNF-a) and up-regulating

Th2 cytokines (IL-4, IL-13), which improved function following

SCI (122). Similarly, blockade of IL-6 signaling promotes

functional regeneration by inhibiting M1 and stimulating M2

macrophages/microglia activation post-SCI (123). In addition,

Infliximab antagonism of TNF-a inhibited NF-kB activity,

which is essential for M1 polarization (124), resulted in

suppression of M1 polarization and improved motor function

after acute SCI in rats (125). It was found that TNF-a levels

increased shortly after SCI and that TNF-a activity had to be

blocked immediately after injury to reduce the deleterious effects

induced by TNF-a (126). Because delayed blockade of TNF-a
activity do not effectively suppress M1 activation, which has no

effect on repair following SCI (127). Finally, Nanoparticle

delivery of siRNA silences the transcription factor IRF5, which

downregulates M1 macrophage/microglia-related gene

expression, resulting in a dramatic reduction in M1

macrophages/microglia numbers and a significant increase in

the number of M2 macrophages/microglia in the wound,

reducing neuroinflammation, inhibiting demyelination and

promoting wound healing (128).

Numerous studies have shown that in addition to supplying

M1-inhibiting molecules, releasing M2-promoting molecules

can also promote tissue repair. For instance, systemic or

intraspinal administration of IL-4 after SCI increased levels of

the anti-inflammatory cytokine IL-10 and promoted M2

replacement activation of macrophages/microglia (129, 130).

Regardless of the route of administration, IL-4 treatment

significantly reduced the expression of the inflammatory

marker nitric oxide synthase (iNOS) (129, 130). Similarly,

sustained delivery of IL-10 improved neurological function

post-SCI, which induces conversion of macrophages/microglia

to an anti-inflammatory M2 phenotype and reduces the

inflammatory response following SCI with depression of TNF-

a and IL-1b production (68). In addition, IL-10 upregulates

anti-apoptotic factors such as B-cell lymphoma 2 (Bcl-2), which
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exhibits direct trophic effects on neurons and improves the

neurotoxic microenvironment (131).

Peroxisome proliferator-activated receptor gamma (PPAR-

g) is a ligand-dependent nuclear receptor that regulates the

immune-inflammatory response (132). As we mentioned

earlier, PPAR-g plays an important role in macrophages/

microglia polarization. Several studies have revealed that

PPAR-g activation-induced anti-inflammatory effects are

associated with macrophages/microglia polarization (133, 134).

activation of PPAR-g induces macrophages/microglia

polarization towards the M2 subtype, thus exerting its

beneficial anti-inflammatory effects (135). Importantly, PPAR-

g is a broadly distributed nuclear receptor whose activation has

caused to a reduction in the pro-inflammatory cascade in

various CNS diseases (136). Because activation of PPAR-g in

CNS diseases suppresses the expression of proinflammatory

cytokines TNF-a, IL-1b and iNOS, increases neuronal survival

(137, 138). For example, the PPAR-g agonist thiazolidinediones
(TZDs) inhibited the inflammatory cascade and increased tissue

retention, thereby improving motility in a rodent model of SCI

(139, 140), and TZDs effectively reduced the release of pro-

inflammatory factors such as IL-1b, IL-6 and TNF-a from

macrophages/microglia (136). It is clear that PPAR-g
activation plays an important anti-inflammatory role in SCI.

However, to date, there is very little direct in vivo evidence

demonstrate that PPAR-g activation improves anatomical and

motor recovery after SCI through promoting the polarization of

M2 macrophages/microglia.
Mesenchymal stem cell and
exosome therapy

The therapeutic effect of MSCs on SCI may be partly

attributed to the transplantation-induced polarization of

macrophages/microglia towards an anti-inflammatory

phenotype (141). Because MSCs have immunomodulatory

properties and secrete immunomodulatory factors such as IL-

10, TGF-b, IDO, TNF-inducible gene-6 (TSG-6) and

prostaglandin-E2 (PGE2), these cytokines induce polarization

of macrophages/microglia towards the M2 phenotype (96, 142–

145), thereby inhibiting inflammation leading to remodeling and

disease healing effects. Our previous study found that PBMSCs

effectively induced macrophages/microglia polarization towards

the M2 phenotype, upregulated the expression of M2 surface

markers (Arg-1, CD206) and cytokines (IL-10, CCL22, TGF-b1),
while significantly inhibiting the production of IL-1b, IL-6 and

TNF-a, and promoted functional recovery after spinal cord

injury (146, 147). In the acute phase of SCI, MSC

transplantation regulated macrophages/microglia polarization

from M1 to M2 cells, promoted the expression of anti-

inflammatory mediators IL-4 and IL-13, inhibited the

production of pro-inflammatory mediators TNF-a and IL-6,
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and suppressed scar formation and neuronal demyelination,

providing a permissive environment for axonal extension and

functional recovery (148, 149).

Although MSCs have great potential to treat SCI, the poor

microenvironment after injury is not conducive to MSCs survival,

which hinders their further clinical application. Therefore, any

approach to improve the biological activity of transplanted MSCs

in vitro and in vivo is of great value. Notably, pretreated MSCs

show better immunomodulatory capacity, enhanced cell survival

and homing ability, resulting in more effective repair of damaged

spinal cord (150, 151). A number of pretreatment methods have

been explored to enhance MSC therapeutic capacity, including

hypoxia, inflammatory cytokines, genetic modifications and 3D

culture (150, 152–154). For example, MSCs cultured under

hypoxic conditions secrete more cytokines and growth factors,

resulting in enhanced therapeutic function (155, 156). In vivo,

hypoxic preconditioning (HP) improves the survival and

migration of MSCs and enhances their therapeutic potential

against SCI (157). It was found that stimulation of MSCs with

IL-1b and IFN-g enhanced their ability to induce macrophages/

microg l ia polar iza t ion to the M2 phenotype and

immunomodulatory functions (158, 159). TNF-a was also used

as a pretreatment for MSCs, and TNF-a pretreatment exhibited

anti-inflammatory effects by promoting the secretion of

immunomodulatory factors (such as IDO, PGE2 and HGF) by

MSCs (160). Genetic modifications have been reported to improve

the efficacy of MSCs. Basic fibroblast growth factor overexpressing

MSCs significantly improved treatment outcomes, for example,

reducing glial scar formation, improving nerve regeneration and

endogenous neural stem cell (NSC) proliferation, and increasing

recovery of motor function in the hind limb (161). Similarly,

MSCs transplanted with IL-10 overexpressing cells were more

capable of inducing M2 type macrophages/microglia, significantly

improving functional recovery and reducing lesion size and

demyelination area after SCI (162). 3D culture could be another

unique method to further improve the immunomodulatory

capacity of MSCs. Compared to 2D culture, MSCs in 3D culture

were able to secrete high yields of highly productive and active

exosomes (163). Han et al (164). found that bone marrow-derived

mesenchymal stem cells cultured in 3D collagen scaffolds

exhibited unique characteristics, including significantly reduced

in vitro LPS-induced macrophage/microglia activation and

enhanced neurotrophic factor secretagogues. These results

suggest that pretreatment enhances the biological function of

MSCs in vivo and in vitro and could help them adapt to the

new transplant microenvironment.

Recent studies have found that the therapeutic effects of

MSCs are largely attributable to exosomes (165). Exosomes are

important paracrine factors that can be used as direct

therapeutic agents (166). They not only modulate the immune

response and suppress inflammation, promote axonal

regeneration and angiogenesis, but also play an important role
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in the repair of SCI by inhibiting apoptosis as well as

maintaining the integrity of the blood-spinal cord barrier

(166–169). Several studies have confirmed the therapeutic

effect of MSC-exosomes in relation to the induction of

macrophages/microglia polarization (76). For example,

BMSCs-derived exosome miR-124-3p attenuated spinal cord

ischemia-reperfusion injury (SCIRI)-induced tissue damage

and nerve injury by silencing endoplasmic reticulum-to-

nucleus signaling 1 leading to polarization of macrophages/

microglia towards M2 and inhibiting apoptosis (170). Sun et al

(165). found that human umbilical cord mesenchymal stem cells

exocytosis triggered the polarization of macrophages/microglia

from M1 to M2 phenotype and improved functional recovery

after SCI by downregulating inflammatory cytokines such as IL-

6, TNF-a, and IFN-g. Subsequently, MSC-derived exosomes

exhibited neuroprotective effects by altering the M1/M2

macrophages/microglia ratio and shifting the balance towards

the M2 phenotype (171, 172). Compared to MSCs, MSC-derived

exosome therapy avoids the problems of low MSC survival and

the potential differentiation of MSCs into other cell types (172).

In addition, exosomes are more stable, safer and less

immunogenic (168). Therefore, MSC-derived exosomes may

be a promising therapeutic strategy for the treatment of SCI.
MicroRNAs regulate macrophages/
microglia polarization

A large number of microRNAs (miRNAs) have been

identified in the mammalian central nervous system and play

an important role in neural regeneration, genesis and

development (3, 173). miRNAs are a class of small non-coding

RNAs that act as transcriptional regulators, which are involved

in the pathophysiological processes of SCI and are considered to

be effective therapeutics for SCI (174, 175). Some investigators

have found that miR-155 deletion not only reduces

macrophages/microglia-mediated neurotoxicity and increases

neuroprotection, but also improves functional recovery and

reduces neuropathic pain (176, 177). miR-182 has inhibitory

effects on the inflammatory response to various types of injury,

and in a mouse model of SCI, miR-182 ameliorates the

secondary injury after SCI by blocking the IKKb/NF-kB
pathway to inhibit apoptosis and inflammatory responses

(178). Similarly, miR-494 is important in regulating the onset,

progression and repair of SCI; Huang et al. Showed that miR-

494-modified exosomes delivered to the diseased spinal cord

improved the local immune environment, inhibited neuronal

apoptosis and the release of pro-inflammatory factors, thereby

promoting neurofilament regeneration and recovery of

behavioral function (3). This evidence from the literature

suggests that miRNAs are modulators of secondary injury and
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repair after SCI and a novel intervention pathway to improve

recovery after SCI.

Recent studies have shown that miRNAs control

macrophage/microglia differentiation and activity by regulating

the signaling of key transcription factors (179, 180), which

subsequently influence the progression of inflammation. The

main transcription factors involved in regulating macrophages/

microglia polarization include signal transducers and activators

of transcription (STATs), KLF, interferon regulatory factors

(IRFs), PPAR, C-MYC, and C/EBPs (Figure 4) (179, 181).

miR-146b, for example, targets the transcription factor IRF5 to

significantly inhibit M1 polarization and improve the

development of colitis (182). miR-155 reduced myocardial

inflammation and improved cardiac function by increasing

STAT6 phosphorylation that promoted M2 but prevented M1

polarization (183). Subsequently, miR-125a negatively regulated

IRF5, promoting M2 polarization and improving inflammation

after SCI (184). Another study revealed that miR-22-3p reduced

ischemia/reperfusion (I/R) injury in the spinal cord by inhibiting

IRF5 to promote macrophages/microglia shift to the M2

phenotype and suppress tissue inflammation (185).

Interestingly, multiple miRNAs can target the same

transcription factor, each with a different target. For example,

miR-27a, miR-130a and miR-130b promote M1 polarization by

inhibiting PPAR-g expression (186–188). In contrast, miR-124

can target different transcription factors, such as STAT3 and C/

EBP-a, respectively, to promote M2 polarization (189, 190). To

date, accumulating evidence confirms that miR-27a (186), miR-

27b (191), miR-130a (187), miR-155 (183, 192), miR-21 (193),

miRNA-125b (194) and miRNA-26a (195, 196) have been

shown to promote M1 polarization, whereas miR-146b (197),
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miR-223 (198), miR-93 (199), miR-124 (189), and let-7c (200)

induce M2 macrophages/microglia polarization via targeting

various transcription factors and adapter proteins (Figure 4).

These miRNAs regulate the transcriptional expression of target

genes by targeting transcription factors, which determine the

functional polarization of macrophages/microglia.

The mechanisms by which miRNAs regulate macrophage/

microglia polarization via transcription factors appear complex.

For example, it has been demonstrated that in adipocytes miR-

34a promotes M1 and inhibits M2 polarization by directly

targeting KLF4 (100, 201). However, it has also been shown

that miR-34a can inhibit pro-inflammatory macrophages/

microglia polarization and enhance anti-inflammatory

macrophages/microglia phenotypes (181, 202). The reasons

behind the conflicting effects of miR-34a on macrophage/

microglia polarization are unclear. These may be attributed to

the specificity of miRNAs for different tissues and cell types. And

each miRNA can have different targets and multiple miRNAs

can have the same target gene (203, 204). This may result in

miR-34a having different effects on macrophage/microglia

polarization. Understanding the molecular mechanisms by

which miRNAs regulate macrophages/microglia can help

provide the basis for macrophages/microglia-centric

therapeutic strategies.
M2 macrophages/microglia adoptive
immunotherapy

M1 macrophages/microglia and anti-inflammatory M2

macrophages/microglia were detected early in the local
FIGURE 4

miRNAs control macrophages/microglia polarization by regulating the signaling of key transcription factors. Multiple miRNAs can target the
same transcription factor, and each miRNA can have a different target.
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microenvironment after SCI injury, but 1 week after injury, M1

was predominant and M2 was minimal (205). It has been found

that using bone marrow-derived M2 adoptive transfer 7 days

after SCI increases the proportion of M2 macrophages/microglia

in the injured spinal cord and has a neuroprotective effect (206,

207). The increase in the number of M2, through the production

of anti-inflammatory cytokines such as IL-10 and TGF-b, shifts
the immune response from a Th1-dominant to a Th2-dominant

one, induces more local macrophages/microglia polarization to

the M2 phenotype, and creates a local microenvironment

conducive to the protection of neuronal function and

inhibition of demyelination (206). Chen et al. found that M2

macrophages/microglia adoptive immunity can reduce the

expression of genes associated with inflammatory signaling

pathways such as antigen processing and presentation,

phagosomes, cell adhesion molecules, cell-mediated cytotoxic

natural killing, endocytosis, and proteasomal and Toll-like

receptor signaling pathways (207). These could explain the

mechanism by which M2 adoptive immunotherapy provides

neuroprotection against SCI. However, the specific mechanisms

of adoptive immunotherapy remain to be investigated in depth.
Conclusion

SCI causes complex pathophysiological changes that are

fundamental to the pathogenesis of secondary injury. Among

all changes, inflammation is the main obstacle to neurological

recovery and directly influences disease progression.

Macrophages/microglia are one of the primary cells involved

in neuroinflammation in SCI. In response to damaged spinal

cord microenvironment signals, macrophages/microglia can

polarize into pro-inflammatory (M1) and anti-inflammatory

(M2) macrophages/microglia. In recent years, many studies

have demonstrated that the transition of inflammatory

macrophages/microglia to the M2 phenotype leads to a

reduced secondary injury and recovery of motor capacity

following SCI. Based on insights into the effects of

macrophages/microglia and their polarization on SCI and

repair , several neuroprotect ive therapies target ing

macrophages/microglia polarization in SCI have been

investigated. These approaches have contributed to neural

tissue regeneration and functional recovery post-SCI.

However, the therapeutic approach to inflammation in SCI

should switch from broad promoting macrophages/microglia

polarization towards M2 to subtle regulation of the balance

among their phenotypes. As mentioned above, excessive

accumulation of any one phenotype of macrophages/microglia
Frontiers in Immunology 10
is detrimental. The accumulation of large numbers of M1

macrophages/microglia results in chronic inflammation and

tissue destruction; at the same time, excessive or prolonged

M2 polarization can promote scar tissue proliferation that will

impede axonal regeneration. As a result, we must carefully

enhance the correct phenotype at the right time to effect

neuroinflammation regression, reduce secondary damage and

promote functional recovery.
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