
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Chris Wincup,
King’s College Hospital NHS
Foundation Trust, United Kingdom

REVIEWED BY

Karen Costenbader,
Division of Rheumatology,
Inflammation, and Immunity, Brigham
and Women’s Hospital and Harvard
Medical School, United States
Ioannis Parodis,
Karolinska Institutet (KI), Sweden
Xiaoxiang Chen,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Shumei Ma
Shmm2001@126.com
Xiaodong Liu
liuxd2014@126.com

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Autoimmune and Autoinflammatory
Disorders : Autoimmune Disorders,
a section of the journal
Frontiers in Immunology

RECEIVED 23 August 2022
ACCEPTED 17 October 2022

PUBLISHED 01 November 2022

CITATION

Chen H, Huang L, Jiang X,
Wang Y, Bian Y, Ma S
and Liu X (2022) Establishment and
analysis of a disease risk prediction
model for the systemic lupus
erythematosus with random forest.
Front. Immunol. 13:1025688.
doi: 10.3389/fimmu.2022.1025688

COPYRIGHT

© 2022 Chen, Huang, Jiang, Wang,
Bian, Ma and Liu. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 01 November 2022

DOI 10.3389/fimmu.2022.1025688
Establishment and analysis
of a disease risk prediction
model for the systemic
lupus erythematosus
with random forest

Huajian Chen1†, Li Huang1†, Xinyue Jiang1, Yue Wang1,
Yan Bian1, Shumei Ma1* and Xiaodong Liu1,2,3*

1School of Public Health and Management, Wenzhou Medical University, Wenzhou, China, 2South
Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University,
Wenzhou, China, 3Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou
Medical University, Wenzhou, China
Systemic lupus erythematosus (SLE) is a latent, insidious autoimmune disease, and

with the development of gene sequencing in recent years, our study aims to

develop a gene-based predictive model to explore the identification of SLE at the

genetic level. First, gene expression datasets of SLE whole blood samples were

collected from the Gene Expression Omnibus (GEO) database. After the datasets

were merged, they were divided into training and validation datasets in the ratio of

7:3, where the SLE samples and healthy samples of the training dataset were 334

and 71, respectively, and the SLE samples and healthy samples of the validation

dataset were 143 and 30, respectively. The training dataset was used to build the

disease risk prediction model, and the validation dataset was used to verify the

model identification ability. We first analyzed differentially expressed genes (DEGs)

and then used Lasso and random forest (RF) to screen out six key genes (OAS3,

USP18, RTP4, SPATS2L, IFI27 andOAS1), which are essential to distinguish SLE from

healthy samples. With six key genes incorporated and five iterations of 10-fold

cross-validation performed into the RFmodel, we finally determined the RFmodel

with optimalmtry. Themean values of area under the curve (AUC) and accuracy of

the models were over 0.95. The validation dataset was then used to evaluate the

AUC performance and our model had an AUC of 0.948. An external validation

dataset (GSE99967) with an AUCof 0.810, an accuracy of 0.836, and a sensitivity of

0.921 was used to assess themodel’s performance. The external validation dataset

(GSE185047) of all SLE patients yielded an SLE sensitivity of up to 0.954. The final

high-throughput RF model had a mean value of AUC over 0.9, again showing

good results. In conclusion, we identified key genetic biomarkers and successfully

developed a novel disease risk prediction model for SLE that can be used as

a new SLE disease risk prediction aid and contribute to the identification of SLE.
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1. Multiple GEO datasets were merged into one large

sample data.

2. Analysis of SLE biomarkers using whole blood.

3. The Lasso and random forest joint exploration of SLE

biomarkers.

4. For the first time, a robust random forest algorithm-

based SLE disease risk prediction model was developed

using 6 key genes (OAS3, USP18, RTP4, SPATS2L,

IFI27 and OAS1).

5. Models are not only constructed in arrays, but also built

in the context of high-throughput sequencing.
Introduction

Systemic lupus erythematosus (SLE) is an autoimmune

disease characterized by multi-organ inflammatory damage

and widespread autoantibodies, mainly affecting women of

childbearing age (1). The heterogeneity of the clinical

manifestations of SLE can affect multiple organs including the

skin, joints, central nervous system, vascular system and kidneys

(2). Dysregulation of the immune system is one of the main

causes of the pathogenesis of SLE, in which abnormal activation

of B and T cells leads to loss of immune tolerance to

autoantigens as well as to a high frequency of autoantibody

production in lupus (1, 3). SLE is a disease that cannot be cured

(4) and requires lifelong medication. Its pathogenesis is still not

fully understood, and its effective identification becomes a

crucial role, as it can improve patient prognosis. Due to the

key role that immune dysregulation plays in SLE, immune

biomarkers have emerged to help better diagnose SLE and

thus improve disease control (5). However, the variety and

non-specific symptoms of SLE make it difficult to obtain a

correct and timely diagnosis (6). Therefore, there is an urgent

need for more precise diagnostic and therapeutic targets for SLE.

Over the past decade or so, rapid advances in microarray and

high-throughput sequencing technologies have provided a

reliable and extensive approach to deciphering the genetic and
eviations: AUC, area under the curve; BP, biological processes; DEGs,

entially expressed genes; DO, Disease Ontology; FDR, false discovery

GEO, Gene Expression Omnibus; GO, Gene Ontology; GSEA, Gene Set

hment Analysis; IFN, Interferon; KEGG, Kyoto Encyclopedia of Genes

Genomes; Log2FC, log2fold change; NCBI, National Center for

chnology Information; RF, random forest; ROC, receiver operator

acteristic; RFE, recursive feature elimination; SLE, Systemic

erythematosus.
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epigenetic landscapes of disease. The wealth of evidence

provided simultaneously facilitates the prediction of various

diseases (7, 8). Vilhjálmsson et al. reported that prediction

models based on multiple biomarkers can significantly

improve predictive accuracy (9). However, feature selection

remains a major bottleneck in building multi-gene

classification models. This concern is well addresses by the

application of various machine learning techniques in biology

nowadays (10–12). These algorithms, when used individually or

in combination, have made significant contributions to the

classification of gene expression data, disease detection, and

microbiome studies (13–15).

We developed a novel disease risk prediction model for SLE

at the transcriptome level based on the key genes screened in

the GEO database. Lasso and RF were first used to jointly

determine which genes were most important for SLE

classification. Then, the RF of optimal mtry was selected by

grid search, and a genetic disease risk prediction model for SLE

was developed based on the key genes. We evaluated the

performance of the disease risk prediction model using a

validation dataset to confirm its accuracy and discriminatory

power. In addition, we performed the disease risk prediction

model for SLE modeling not only on array but also on high-

throughput sequencing as well.
Materials and methods

Data sources

The datasets for this study were obtained from the Gene

Expression Omnibus (GEO) database, a gene expression

database created and maintained by the National Center for

Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi). The study was conducted using the

keyword “systemic lupus erythematosus” , which was

extensively searched through the NCBI database platform. The

type of dataset we chose was array expression profiling and high-

throughput sequencing, the type of organism was Homo sapiens,

the sample type was whole blood, and the sample size of the

dataset was greater than 30.

The datasets GSE138458, GSE154851, GSE50635,

GSE61635, GSE99967, GSE185047, GSE72509, GSE110685 and

GSE112087 were obtained. GSE138458 is a dataset containing

307 SLE patient samples and 23 healthy samples. The whole

blood samples were obtained from the Oklahoma Medical

Research Foundation. The gene expression was analyzed using

the Illumina HumanHT-12 V4.0 expression bead chip.

GSE154851 is a dataset containing 38 SLE patient samples and

32 healthy samples. The whole blood samples were obtained

from Trakya University. The gene expression was analyzed using

Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray
frontiersin.org
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039381 (Feature Number version). GSE50635 is a dataset

containing 33 SLE patient samples and 16 healthy samples.

The whole blood samples were obtained from Mayo Clinic.

The gene expression was analyzed using the Affymetrix Human

Gene 1.0 ST Array [transcript (gene) version]. GSE61635 is a

dataset containing 99 SLE patient samples and 30 healthy

samples. The whole blood samples were obtained from Eli

Lilly and Company. Gene expression was analyzed using the

Affymetrix Human Genome U133 Plus 2.0 Array. GSE110685 is

a dataset containing 36 SLE patient samples and 18 healthy

samples. The whole blood samples were obtained from NIAMS.

Gene expression was analyzed using the Illumina HiSeq 2500

(Homo sapiens). GSE112087 is a dataset containing 62 SLE

patient samples and 59 healthy samples. The whole blood

samples were obtained from CSL Limited/bio21 Institute.

Gene expression was analyzed using the Illumina HiSeq 2500

(Homo sapiens). GSE112087 is a dataset containing 99 SLE

patient samples and 19 healthy samples. The whole blood

samples were obtained from Genentech. Gene expression was

analyzed using the Illumina HiSeq 2500 (Homo sapiens). The

information about the seven datasets and the two external

validation datasets (GSE99967 and GSE185047) is displayed in

Table 1 and Table S1.
Data processing

Next, we corrected the quantile-normalized signal intensity

for the log2-transformed dataset of the array expression

spectrum and output the correction results. The dataset of

high-throughput sequencing only output the results after log2

change, in which we transformed the Count of GSE112087 into

RPKM and output the results after log2 change to maintain

consistency with the data form of GSE72509 and GSE110685.

Finally, we merged the datasets of array expression spectra with

those of high-throughput sequencing separately each and used

the ComBat function in the sva package to remove the batch

effect of data from different platforms (Supplement Figure S1A).
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Stratified random sampling

To be able to better represent the robustness of the disease risk

prediction model, we use stratified random sampling method for

reasonable sample division. We used the createDataPartition

function in the R package caret to divide the datasets

(GSE138458, GSE154851, GSE50635, and GSE61635) of the

array expression spectrum into a training dataset and a

validation dataset, with a sample size ratio of 7:3. The training

dataset is used to develop the disease risk prediction model and

the validation dataset to verify the effectiveness of the model.
Screening for DEGs

Differential expression analysis was performed using

traditional Bayesian methods to screen the training dataset for

DEGs using the limma package. A false discovery rate (FDR) less

than 0.05 and an absolute value of log2 fold change (log2FC)

greater than 1 were used as significance criteria for DEGs. DEGs

heatmap was created using the pheatmap package. The volcano

map was created using the ggplot2 package.
Gene enrichment analysis

The DEGs were interpreted using Gene Ontology (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Disease Ontology (DO). In this study, we used the

clusterProfiler package for GO and KEGG analysis, and the

DOSE package for DO analysis. The GO was interpreted in

terms of biological processes (BP). We have shown them in the

form of a ring diagram. In addition, we again performed the

Gene Set Enrichment Analysis (GSEA) study using the

clusterProfiler package to pinpoint the pathway differences

between SLE and normal blood. As SLE has historically been

studied in relation to the immune system, we immediately

investigated the potential immune relationship between SLE

and healthy samples by GSEA to explore whether there are
TABLE 1 The information on the Systemic lupus erythematosus (SLE) datasets of the gene expression omnibus (GEO).

GEO accession Expression profiling Tissue SLE Health Total

GSE138458 Array Whole blood 307 23 330

GSE154851 Array Whole blood 38 32 70

GSE50635 Array Whole blood 33 16 49

GSE61635 Array Whole blood 99 30 129

GSE99967 Array Whole blood 38 17 55

GSE185047 Array Whole blood 87 0 87

GSE110685 High-throughput sequencing Whole blood 36 17 53

GSE112087 High-throughput sequencing Whole blood 62 58 120

GSE72509 High-throughput sequencing Whole blood 99 18 117
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immune differences between the two. The immune gene sets

were downloaded from the ImmuneSigDB subset of MSigDB

(http://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?

collection=IMMUNESIGDB).
Feature selection

We performed the least absolute shrinkage and selection

operation (Lasso) regression using the glmnet package. Lasso

regression provides a new feature selection algorithm that can

solve the collinearity problem well and screen out representative

variable features. The recursive feature elimination (RFE)

method combined with a random forest classifier was used for

feature selection using the caret package and a 10-fold cross-

validation was performed. Immediately after, the importance

scores of the random forest classifier for the feature genes were

also performed using the caret package and the randomForest

package. Firstly, a grid search method was used to find the best

parameter mtry for fitting the random forest dataset. Secondly,

the 10-fold cross-validation with five repetitions and multiple

training rounds was performed. Finally, the signature genes’

importance score was performed, and the genes with score >10

were marked as the most important genes we need. The mtry

parameter is the number of variables randomly sampled when

constructing decision tree branches in random forest modeling.

Choosing the appropriate value of mtry can reduce the

prediction error rate of the random forest model and thus

improve the performance of the model.
Random forest for building a disease risk
prediction model for SLE

To begin with, we incorporated the signature genes screened

in the feature selection into the disease risk prediction model for

SLE with random forest. Next, a grid search method using the

caret package and randomForest package was used to determine

the best parameter mtry for a good random forest fitted dataset.

Thirdly, a 10-fold cross-validation with five iterations and

multiple training rounds was performed to optimize the model

and reduce overfitting based on accuracy. Ultimately, the SLE

random forest diagnostic model with optimal parameters mtry

was constructed and applied to the training dataset for 10-fold

cross-validation to determine model robustness. The accuracy of

the results was calculated by the confusionMatrix function.

Using the pROC package, we calculated the area under the

receiver operator characteristic (ROC) curve (AUC).
Verification using validation datasets

On the validation dataset and the external validation dataset

(GSE99967 and GSE185047), the efficacy of the disease risk
Frontiers in Immunology 04
prediction model for SLE with random forest was confirmed. For

batch effects between GSE99967 (Supplement Figure S1B) and

the training dataset as well as between GSE185047 (Supplement

Figure S1C) and the training dataset, we once more utilized the

Combat function to adjust before running the model testing. To

further demonstrate the validity of the developed model, we

determined the optimal parameter mtry, and a 10-fold cross-

validation of the optimal disease risk prediction model for SLE

with random forest using the same signature genes in the context

of high-throughput sequencing. The AUC was calculated using

the pROC package. The accuracy was estimated using the

confusionMatrix function.
Statistical analysis

All statistical analyses were performed with R software

(version 4.1.3). P < 0.05 was considered statistically significant.
Results

Study design

Figure 1 depicts the entire study flow.
Identification of DEGs

We performed a stratified random sampling of the data and

divided it into a training dataset (70%) and a validation dataset

(30%), where the SLE samples and healthy samples of the

training dataset were 334 and 71, respectively, and the SLE

samples and healthy samples of the validation dataset were 143

and 30, respectively. Then, Differential expression analysis was

performed on the training dataset for the DEGs screening, and

22 significant DEGs associated with SLE were finally identified

based on significance criteria. A volcano plot was used to depict

the expression status of all DEGs (Figure 2A). We found that the

expression trends of all DEGs were up-regulated. Through the

heat map, we could see that the expression levels of DEGs in SLE

were all trended up-regulated and significantly different

compared to the control group (Figure 2B).
Enrichment analysis

We performed the GO, KEGG and DO enrichment analysis

of 22 DEGs. In terms of biological processes (Figure 3A), the

results showed that DEGs were significantly enriched in

response to viral responses and in response to type I

interferon. According to KEGG analysis (Figure 3B), the

results showed a major enrichment in viral-related disease
frontiersin.org
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pathways as well as nod-like receptor signaling pathways. In

terms of DO analysis (Figure 3C), it suggested that important

genes associated with SLE were also closely associated with

inflammatory diseases such as hepatitis, encephalitis and

influenza. Subsequently, the results of GSEA pathway

differences (Figure 3D) showed that SLE patients cluster many
Frontiers in Immunology 05
inflammatory signaling pathways as well as inflammation-

related diseases. Among them, lipids and atherosclerosis were

positively associated with SLE. Intriguingly, we also found that

necrotizing apoptosis also showed an up-regulation trend in SLE

patients. The results of GSEA immune differences (Figure 3D)

showed that SLE patients were enriched with many datasets of
FIGURE 1

The flow chart of this study. Step 1: We merged the GSE50635, GSE61635, GSE138458 and GSE154851 datasets into a large dataset. Step 2:
Stratified random sampling methods were used by us for the partitioning of large data sets, and the ratio of the training dataset to the validation
dataset was 7:3. Step 3: We performed differential expression analysis, Lasso regression, RF-RFE and feature importance score of RF in the
training dataset to screen key genes. Step 4: A random forest prediction model was constructed through the inclusion of key genes. Step 5: We
used 10-fold cross-validation to check the robustness of the training dataset and validated the model using the validation dataset and two
external validation datasets to obtain the AUC, accuracy, and sensitivity. Step 6: In high-throughput sequencing (GSE72509, GSE110685 and
GSE112087), we directly incorporated key genes using 10-fold cross-validation to demonstrate that the random forest prediction model is
equally well robust in the context of high-throughput sequencing.
A B

FIGURE 2

Differential genes. (A) Volcano diagram with 22 genes with significant differences, red dots indicate up-regulated genes, black dots indicate
non-differentiated genes, and green dots indicate down-regulated genes. (B) Heat map of 22 differential genes with upregulation trends.
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reduced peripheral blood mononuclear cells, while T

lymphocytes showed a negative association with SLE patients.
Screening for key genes

To obtain the key genes, first, we entered 22 DEGs into the

Lasso regression and performed a 10-fold cross-validation.
Frontiers in Immunology 06
Based on Lambda at minimum binomial deviation as a

criterion (Figures 4A, B), we identified 20 candidate genes by

compressing the feature variables. Second, we performed the

feature selection of RF-RFE, and as shown in Figure 4C, it is clear

that the model has the highest accuracy in the condition of 12

candidate genes. Third, we obtained the best model by

incorporating 12 candidate genes into the random forest

classifier and repeating the 10-fold cross-validation five times.
A B

D

C

FIGURE 3

Enrichment Analysis. (A) Ring diagram of biological processes analyzed by GO enrichment. (B) Ring diagram of KEGG enrichment analysis. (C)
Ring diagram of DO enrichment analysis. (D) About pathway-related and immune-related GSEA.
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To reduce the number of feature variables and still with good

predictive power, we performed further analysis by identifying

six genes with importance score> 10 as the final key genes. As

shown in Figure 4D, OAS3 was the most important gene,

followed by USP18, RTP4, SPATS2L, IFI27 and OAS1.
Construction of the random
forest model

We incorporated OAS3, USP18, RTP4, SPATS2L, IFI27, and

OAS1 into the random forest classifier. To optimize the

performance of the model, we performed a grid search of the

mtry parameters as well as calculated the model accuracy for

each mtry using repeated 5 times 10-fold cross-validation.

Finally, we locked the highest accuracy of the random forest

disease risk prediction model when mtry was 3 and obtained the

optimal random forest disease risk prediction model.

Immediately after, we performed a robustness test on the

model with a 10-fold cross-validation, and each result was

represented by a ROC curve (Figure 5), while results for each

accuracy have been shown in Table 2. The fact that the average
Frontiers in Immunology 07
AUC of the 10-fold cross-validation results exceeds 0.95 proved

the reliability of the model. Finally, we estimated the AUC and

accuracy for the whole training dataset, and the result was an

AUC of 1 and its accuracy of 1 (Figure 6A).
Internal validation of the random
forest model

In the validation dataset, the AUC value estimated by ROC

curve analysis was 0.948 and the accuracy estimated by

confusion matrix was 0.9306, indicating the robustness of the

model in identifying SLE (Figure 6B). These results suggested

that we successfully developed a disease risk prediction model

for SLE based on differential gene expression between SLE and

normal samples. Additionally, we created model of OAS3

and model without OAS3, and their respective AUCs were

0.822 and 0.926 (Supplement Figure S2). We discovered that

the addition of the most important gene, OAS3, boosted rather

than diminished the model performance for the models built

based on the other five genes based on the AUC values of the

prior validation set of six gene disease risk prediction model.
A B

DC

FIGURE 4

Feature selection. (A) The lasso regression curve of 22 DEGs. (B) The 10-fold cross-validation parameter (l) options. (C) The 10-fold cross-
validation of RMSE of signature gene combination of RF-RFE. (D) Gene importance scores for random forests.
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External validation of the random
forest model

We further performed model validation using an external

validation dataset (GSE99967). The result of the ROC curve

analysis shows (Figure 6C) that the AUC value is 0.810, which

still has high differential diagnostic power. Using the confusion

matrix, we found an accuracy of 0.836 and a sensitivity of 0.921.

The above sensitivity illustrates the better sensitivity of the

model in patients suffering from SLE. Thus, we extracted the

gene expression profiles of 87 SLE patients from another external

validation dataset (GSE185047). By incorporating the data into

the model, we found that 83 SLEs were detected in 87 SLE

patients, with a sensitivity of 0.954.
Frontiers in Immunology 08
Application of random forest model in
high-throughput sequencing

Due to the slight differences between high-throughput

sequencing and array expression matrix, we separate high-

throughput sequencing from array expression matrix and

construct a disease risk prediction model for SLE in the

context of high-throughput sequencing. We still used OAS3,

USP18, RTP4, SPATS2L, IFI27 and OAS1 to incorporate the

random forest classifier. The optimal model was filtered using

repeated 5 times 10-fold cross-validation for grid search of mtry,

and the best model was finally obtained when mtry was 3. Model

robustness was also demonstrated using 10-fold cross-

validation, as was done for the array expression matrix. Each

result was represented by a ROC curve (Figure 7), and results for

each accuracy have been shown in Table 3. The fact that the

average AUC of the 10-fold cross-validation results exceeds 0.90

again demonstrated that the model was still reliable for high-

throughput sequencing.
Discussion

SLE is a chronic autoimmune disease with limited treatment

options. Effective prediction and identification is the key to

improve the survival of SLE patients (16). However, the

precise mechanism of SLE’s occurs remains unknown.

Currently, the conventional diagnostic criteria for SLE are still

based on clinical manifestations and serum autoantibodies (17),

with SLE suspected based on clinical findings and then

laboratory tests to support the diagnosis. Clinical diagnosis of
TABLE 2 The 10-fold cross-validation results.

Accuracy AUC

Cross-validation 1 1.000 1.000

Cross-validation 2 0.975 0.965

Cross-validation 3 0.925 0.935

Cross-validation 4 0.976 0.996

Cross-validation 5 0.975 0.996

Cross-validation 6 0.976 0.992

Cross-validation 7 0.976 0.992

Cross-validation 8 1.000 1.000

Cross-validation 9 0.929 0.917

Cross-validation 10 0.875 0.907
FIGURE 5

The 10-fold cross-validation verifies ROC curve results.
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SLE is rarely made promptly because symptoms overlap with

those of other skin diseases and other autoimmune disorders. It

is essential to identify biomarkers that have a strong correlation

with SLE. Due to the advances in machine learning and public

gene expression data, we are better able to infer biomarkers

significantly associated with disease (18).

In our study, we built the disease risk prediction model for SLE

on a random forest algorithm as a way to distinguish SLE patient

blood from normal human blood. With the rapid development of

bioinformatics, the classification evidence of diseases like SLE can

be well supported by strong evidence. To identify the DEGs of SLE,

we first combined four GEO datasets (GSE50635, GSE61635,

GSE138458 and GSE154851) and performed stratified random
Frontiers in Immunology 09
sampling to divide the training dataset (70%) from the validation

dataset (30%). GO, KEGG, DO, and GSEA enrichment analysis

were then performed. According to GO and KEGG analysis, the

DEGs were associated with a large number of biological processes

and pathways which reflect the dynamics and complexity of the

pathogenesis. Many studies have been conducted to support our

findings, and previous studies have shown that type I interferon is a

key pathway in the pathogenesis of SLE (19, 20). A recent study by

Vital et al. (21) found that anifrolumab, a type I interferon (IFN)

receptor antagonist, showed the therapeutic benefit of anifrolumab

in patients with SLE in patients with high interferon gene profile

with greater baseline disease activity and abnormal serologic

markers. Biswas et al. (22) found that type I interferon and Th17
FIGURE 7

The ROC curve results were verified by 10-fold cross-validation under high-throughput conditions.
A B C

FIGURE 6

The ROC curves and their respective AUC values were used to evaluate the performance of the random forest model on the training (A),
validation (B) and external validation (C) datasets.
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pathways coexist and jointly regulate the pathogenesis of SLE. In a

recent study, Caielli et al. (23) reported that mitochondrial

dysfunction contributes to SLE pathogenesis, where the

mechanism is a defect in the autophagic removal of the

mitochondrial pathway during erythroid maturation, leading to

the accumulation of red blood cells carrying mitochondria in SLE

patients and the induction of IFN production through the

activation of cGAS in macrophages. GSEA analysis is superior to

KEGG analysis and provides a better understanding of the internal

changes in the organism. The aggregation of many inflammatory

signaling pathways and inflammation-related diseases in SLE

patients indicates that the pathogenesis of SLE patients is

associated with autoimmune abnormalities, which has been the

consensus of those studying SLE. Among them, lipids and

atherosclerosis were positively correlated with SLE, which

suggests that SLE patients are prone to atherosclerosis, consistent

with the SLE Complications Study (24, 25), and the development of

atherosclerosis is closely related to immune inflammation. We

found that necroptosis, a cysteine-independent form of

programmed necrotic cell death, is upregulated in SLE patients

and that necroptosis is closely associated with immune

inflammation (26), with the pathway-essential RIPK3 promoting

NLRP3 inflammasome activation and IL-1 b inflammatory

response (27) as a way to induce and amplify inflammatory

responses. Recently, it has also been suggested that necroptosis

may be involved in the pathogenesis and development of SLE and

that elevated IFN signaling in SLE increases necroptosis, which

leads to tissue damage (28). Nonetheless, necroptosis remains

poorly studied in SLE, and its role in the pathogenesis and

development of SLE still needs further exploration.

Further performance of the RF classifier importance score

screened for 6 key genes, namely OAS3, USP18, RTP4, SPATS2L,

IFI27 and OAS1. Previous studies support our findings. 2’-5’-

oligoadenylate synthetase 3 (OAS3), one of the genes encoding

interferon-inducible antiviral enzymes, plays a key role in antiviral

action and signal transduction. Ubiquitin specific peptidase 18

(USP18) is a member of the ubiquitin-specific protease (UBP)

family of enzymes. This gene is not only physiologically relevant,
Frontiers in Immunology 10
but has also been implicated in the pathogenesis of various human

diseases, including infectious diseases, neurological disorders, and

cancer (29). It is strongly induced by type I IFN but is also able to

negatively feedback inhibit type I IFN signaling (30, 31). Receptor

transporter protein 4 (RTP4) is associated with lupus nephritis (32).

It has been shown that type I IFN induces RTP4 and binds to the

TANK-binding kinase (TBK1) complex, interfering with the

expression of TBK1 and IFN regulatory factor 3 (33).

Spermatogenesis associated serine rich 2 like (SPATS2L) has been

poorly studied in SLE, but we were able to find, based on previous

studies, that SPATS2L has an important role in the development of

asthma (34) and is closely associated with the prognosis of glioma

patients (35). Interferon Alpha Inducible Protein 27 (IFI27) is

involved in type I interferon-induced apoptosis (36) and may be

a potential diagnostic marker for SLE as well as an

immunotherapeutic target (37). 2’-5’-oligoadenylate synthetase 1

(OAS1) is a type I interferon-inducible gene that plays a key role in

the innate cellular antiviral response and is associated with other

cellular processes such as cell growth and apoptosis, and is an SLE

diagnostic biomarker. Although the screened genes were all

reported in SLE, this can illustrate the reliability of machine

learning to screen key genes.

The highlights of our study are the innovative combination

of Lasso and RF methods and the excellent results produced in

terms of predictive power. The feature selection method of Lasso

(38–41) and RF (42–45) has been widely used in biology as a way

to better identify key biomarkers. Before that, there is still no

study to construct a prediction model for SLE based on gene

sequencing, especially since our study is based on whole blood

samples from SLE patients, which are easy to obtain and

manipulate. On the other hand, due to the high-speed

advances of sequencing and the difference between array

expression matrix and high-throughput sequencing, we

constructed the disease risk prediction model for SLE

separately as a way to accommodate the difference of

different sequencing.

The AUCs of our model on the training dataset, validation

dataset, and external validation dataset (GSE99967) are 1, 0.948,

and 0.810, respectively, in the matrix expression of the array,

indicating the strong robust of our model. In addition, our

model demonstrated a high SLE sensitivity of 0.954 in the

external validation dataset (GSE185047) and a sensitivity of up

to 0.921 in GSE99967, showing a very high sensitivity of the

model to SLE. In the high-throughput sequencing datasets, the

average AUC of all 10 cross-validations is above 0.9, which also

indicates that our model is very robust and well suited for

Identification and diagnosis of SLE.

Using the gene transcriptome level, we investigated the

validity and reliability of machine learning in the disease risk

prediction of SLE. As a result, we were able to successfully

construct a novel disease risk prediction model for SLE that can

be utilized as a novel SLE disease risk prediction tool and help to

identify SLE.
TABLE 3 The 10-fold cross-validation results.

Accuracy AUC

Cross-validation 1 0.793 0.911

Cross-validation 2 0.857 0.953

Cross-validation 3 0.897 0.928

Cross-validation 4 0.800 0.890

Cross-validation 5 0.828 0.889

Cross-validation 6 0.862 0.928

Cross-validation 7 0.967 0.960

Cross-validation 8 0.897 0.956

Cross-validation 9 0.759 0.926

Cross-validation 10 0.857 0.924
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Even so, there are some limitations to our study. 1) Many of

these public data do not contain detailed clinical data on patients

and health samples, thus lacking attention to the different kinds

of SLE and medication use. 2) Although we merged as many

datasets as possible into a larger dataset to build the model, it still

falls short of the number of data samples needed for machine

learning. If conditions permit, we can include more research

data in the training dataset in the future. 3) The overfitting of the

model construction is objective and difficult to eliminate, but we

use 10-fold cross-validation in the modeling process to minimize

the overfitting problem. Checking for overfitting is not a

complete solution, but it is still very helpful. However, this

means that even if we get good model results on the validation

dataset, there is no shortage of different data with noise in reality,

and the actual generalization ability may not be good. 4) The

model has not been tested in practical applications to predict

SLE patients. Thus, we still need more research data in the future

to test the robustness and generalization ability of the model.
Conclusions

In conclusion, in our thorough examination of the SLE

dataset in the GEO database, we found that the key

biomarkers OAS3, USP18, RTP4, SPATS2L, IFI27 and OAS1,

which were significantly associated with SLE, were able to jointly

construct the disease risk prediction model for SLE with random

forest. And for the first time, we used random forest machine

learning algorithms to create a strong prediction model based on

six genes to predict SLE.
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