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Single-cell multiomics revealed
the dynamics of antigen
presentation, immune response
and T cell activation in the
COVID-19 positive and
recovered individuals
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Introduction: Despite numerous efforts to describe COVID-19's immunological

landscape, there is still a gap in our understanding of the virus's infections after-

effects, especially in the recovered patients. This would be important to

understand as we now have huge number of global populations infected by

the SARS-CoV-2 as well as variables inclusive of VOCs, reinfections, and

vaccination breakthroughs. Furthermore, single-cell transcriptome alone is

often insufficient to understand the complex human host immune landscape

underlying differential disease severity and clinical outcome.

Methods: By combining single-cell multi-omics (Whole Transcriptome

Analysis plus Antibody-seq) and machine learning-based analysis, we aim to

better understand the functional aspects of cellular and immunological

heterogeneity in the COVID-19 positive, recovered and the healthy individuals.

Results: Based on single-cell transcriptome and surface marker study of

163,197 cells (124,726 cells after data QC) from the 33 individuals (healthy=4,

COVID-19 positive=16, and COVID-19 recovered=13), we observed a reduced

MHC Class-I-mediated antigen presentation and dysregulated MHC Class-II-

mediated antigen presentation in the COVID-19 patients, with restoration of

the process in the recovered individuals. B-cell maturation process was also

impaired in the positive and the recovered individuals. Importantly, we

discovered that a subset of the naive T-cells from the healthy individuals
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034159/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034159/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034159/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034159/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034159/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1034159/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1034159&domain=pdf&date_stamp=2022-12-02
mailto:drmeghnadjoshi@gmai.com
mailto:tavpriteshsethi@iiitd.ac.in
mailto:rajesh.p@igib.res.in
mailto:rajeshp@igib.in
https://doi.org/10.3389/fimmu.2022.1034159
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1034159
https://www.frontiersin.org/journals/immunology


Chattopadhyay et al. 10.3389/fimmu.2022.1034159

Frontiers in Immunology
were absent from the recovered individuals, suggesting a post-infection

inflammatory stage. Both COVID-19 positive patients and the recovered

individuals exhibited a CD40-CD40LG-mediated inflammatory response in

the monocytes and T-cell subsets. T-cells, NK-cells, and monocyte-

mediated elevation of immunological, stress and antiviral responses were

also seen in the COVID-19 positive and the recovered individuals, along with

an abnormal T-cell activation, inflammatory response, and faster cellular

transition of T cell subtypes in the COVID-19 patients. Importantly, above

immune findings were used for a Bayesian network model, which significantly

revealed FOS, CXCL8, IL1b, CST3, PSAP, CD45 and CD74 as COVID-19 severity

predictors.

Discussion: In conclusion, COVID-19 recovered individuals exhibited a hyper-

activated inflammatory response with the loss of B cell maturation, suggesting

an impeded post-infection stage, necessitating further research to delineate

the dynamic immune response associated with the COVID-19. To our

knowledge this is first multi-omic study trying to understand the differential

and dynamic immune response underlying the sample subtypes.
KEYWORDS

COVID-19, single cell multi-omics, recovered COVID-19 individuals, immune
response, bayesian network model, T-cell activation
Introduction

COVID-19 pandemic is into its 3rd year in continuum, and it

continues to pose threat to lives, healthcare support, medical

infrastructure and livelihoods. This has been compounded by

new emerging SARS-CoV-2 variants of concern (VOC) with

differential geographical origin and emphasizing the constant

need for effective vaccines/dosage. Due to the lack of antibody

neutralization along with immune evasion, these emerging

variants of SARS-CoV-2 have posed a global threat to human

health compounded by the diversity of disease severity

symptoms. Therefore, it is important to undertake studies in

different population cohorts, especially high population density

regions, to understand and elucidate the differential immune

response. This will enable mechanistic understanding of the

hosts’ immune response during COVID-19 disease. Towards

this, studying the whole transcriptome along with surface

marker expression at the single cell resolution can provide

detailed functional insights into the COVID-19 pathology.

Previous evidence suggests that a significant immune

dysregulation occurs in severe COVID-19 patients (Su, 2020).

In particular, studies on peripheral blood mononuclear cells

(PBMCs) have revealed reduced IFN-gamma production (1),

expansion of highly cytotoxic effector T cell subsets (2), and

increased expression of the exhaustion markers programmed

cell death protein 1 and Tim-3 on CD8+ T cells in the severe

COVID-19 patients (3). Another study revealed classical

monocytes, along with monocyte chemoattractant CCL2 and
02
its receptor CCR2, the neutrophil chemoattractant CXCL8, and

TNF-a as the main mechanism of cytokine storm observed in

the COVID-19 (4). A significant decrease in the non-classical

monocyte genes (C1AQ, C1BQ, and LSTB1 expression) and a

corresponding relative increase of classical monocytes genes

(S100A8, S100A9, and S100A12 expression) in the critical

COVID-19 patients was also observed (5). Upregulation of

IL6R and IL6ST in the COVID-19 patients have been

reported, which synergist ical ly promotes increased

proinflammatory cytokines during pathogenesis. Several

interferon (IFN)-stimulated genes (ISGs; including ISG15,

IFI44, IFI44L, and RSAD2) were also specifically upregulated

in the PBMCs from the COVID-19 patients, enhancing antiviral

and immune modulatory functions (6). Presence of

lymphopenia, immune cell exhaustion, and elevated serum

pro-inflammatory cytokines are some of the striking features

of COVID-19 disease severity (1, 7, 8). Also, impaired activation

of B cell subsets provides evidence to explain the delayed viral

clearance in the severely ill COVID-19 patients (9). While

several studies have provided a comprehensive atlas of the

immune response dynamics in the COVID-19 patients, a few

studies have recently highlighted the immune repertoire of the

recovered individuals. In one study, neutrophil activation and

migration associated genes were reported to be downregulated in

the recovered individuals compared to the active infection (10).

The monocyte mediated immune response was reported to be

restored to normal in the convalescent COVID-19 patients (11).

Another study reported a decreased T cell differentiation in the
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recovered individuals post severe COVID-19, but an opposite

pattern post mild/moderate COVID-19 (12).

Above studies have augmented our understanding of the

spectrum of immune response in the COVID-19 patients

globally, except India. However, it is also true that most of the

studies have reported the immune profile between the healthy

and SARS-CoV-2 infected individuals. We think it would also be

fruitful to understand and investigate the pathophysiology that

drives the SARS-CoV-2 infection by single cell based immune

profile post-infection, in the recovered patients along with the

healthy and active infection. Along with this, in addition to the

transcriptomic response, the cell surface markers can also

provide vital clues about the pathophysiology, as they not only

are cell-type identifiers, but they also represent the cell state as

well. Yet, a comprehensive investigation of COVID-19

pathophysiology, across active COVID-19 and recovered

patients, including transcriptome as well as cell surface marker

is lacking. Here, for the first time, we performed simultaneous

single-cell transcriptomics and single-cell Ab-seq across the

healthy, COVID-19 positive and recovered individuals.

Our study reports a decreased MHC Class I-mediated

antigen presentation as well as dysfunctional MHC Class II-

mediated antigen presentation in the COVID-19 positive

patients, followed by a restoration of the function in the

recovered individuals. We also found a loss of B cell

maturation process, reduced cytotoxicity and antibody

response in the recovered individuals. Besides, we identified a

CD40-CD40 ligand interact ion-mediated increased

inflammatory, immune and stress response by the monocyte,

NK cells, CD4+ TCM, and CD8+ T cell populations in the

COVID-19 patients. We observed a faster cellular transition

within the T cell subtypes in COVID-19 patients, with a T cell-

mediated perturbation of normal cellular functions alongside the

immune/inflammatory response. Finally, using a Bayesian

Network model, we identified FOS, CXCL8, IL1b, CST3, PSAP,
CD45 and CD74 as predictors of the COVID-19 disease.

The findings will augment the understanding vis-a-vis

the heterogeneity and complexity of the immune response

in the COVID-19 positive and recovered individuals, as well as

provide an integrated multi-omics model for immune response

during infection, post-infection and without infection.
Methods and materials

Patient cohort, sampling
and data collection

Sample collection
The samples were collected at a tertiary care center (Dr. D. Y.

Patil Medical College, Hospital and Research Institute,

Kolhapur, Maharashtra, India) from the healthy volunteers,
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patients with confirmed COVID-19 positive status and

patients recovered from COVID-19 (within 4 weeks) based on

qRT-PCR results under the ethics oversight of the institution.

The samples were matched with respect to age and gender, and

the infecting SARS-CoV-2 variant was identified using Oxford

Nanopore sequencing. In the COVID-19 positive group, 13 out

of 16 individuals were infected with 20B, and the rest three with

20A variant. In the recovered group, 11 out of 13 were infected

with 20B and rest two with 20A. The COVID-19 positive and

recovered individuals were matched with respect to the disease

severity. The blood samples were collected in the BD

Vacutainer® CPT™ Cell Preparation Tube with sodium

citrate. Peripheral blood mononuclear cells (PBMC) were

isolated from whole blood using the manufacturer ’s

recommendation (ref no 362761). The PBMCs were

cryopreserved in a cryopreservation media (FBS and DMSO at

9:1 ratio) till further use.

Sample processing and
library preparation

The PBMCs were revived and processed using BD Rhapsody

single cell analysis system as per Domenico et al. (13). Briefly, 0.2

million cells per sample were taken and labelled using BD™

Single-Cell Multiplexing Kit-Human and 40 BD™ AbSeq Ab-

Oligos as per manufacturer’s guide (Doc ID: 214419 Rev. 2.0).

An average of 30000 pooled cells were loaded in each cartridge

on the BD Rhapsody express single cell analysis system for single

cell capture followed by the cDNA synthesis as per

manufacturer’s guideline (Doc ID: 210967 Rev. 1.0). mRNA

Whole Transcriptome Analysis (WTA), Ab-Seq, and Sample

Tag library were prepared using BD Rhapsody™ WTA

Amplification kit as per manufacturer’s guideline (Doc ID: 23-

21752-00). The libraries were sequenced using NovaSeq 6000 S2

reagent kit at 30000 reads/cell for WTA, 20000 reads/cell for

AbSeq, and 120 reads/cell/Sample Tag for sample tag library,

with 101 x 2 cycles.
scRNA-seq data processing, clustering
and cell-type annotation

The raw sequencing data was demultiplexed and converted

to FASTQ format using the bcl2fastq tool. The data was analyzed

using BD Rhapsody WTA analysis pipeline as per

manufacturer’s guideline (Doc ID: 47383 Rev. 9.0). The count

matrix with recursive substitution error correction was imported

to Seurat R package for downstream analysis and visualization

(14). The WTA and Ab-Seq count matrices for all the healthy,

active COVID-19 and recovered patients (a total of 163197 cells)

were merged for integrated multimodal analysis. Quality

parameters were optimized and cells containing >2500 UMI

and <20UMI were discarded. Batch effects were normalized and
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data was normalized using Seurat SCTransform V2 (15, 16).

Finally, cells were clustered using unsupervised clustering at a

resolution of 0.4 and visualized with UMAP algorithm (17).

Cluster specific genes were identified using FindAllMarker

function (Wilcoxon rank sum test, Log2 Fold Change cut-off

1.5). Clusters were comprehensively annotated manually using a

combination of CellMarker DB, PanglaoDB, and Azimuth, as

well as automatically using scpred, an SVM-based single cell

annotation tool. The same pipeline was also applied for a

pairwise visualization of the data (healthy vs COVID-19,

COVID-19 vs recovered, and healthy vs recovered).
Differential gene expression and gene set
enrichment analysis

Differential gene expression analysis was performed on

clustered pairwise data (healthy/COVID-19, COVID-19/

recovered and healthy/recovered) using Seurat FindMarker

function (Wilcoxon rank sum test, Log2FC cut-off 1.5, q value

cut-off 0.05). For cluster-wise pseudo-bulk differential gene

expression analysis, average gene expression was taken at the

sample-level, followed by differential gene expression analysis

using DESeq2 r package across the three groups (18). Wald test

was applied for the analysis, followed by the visualization using

pheatmap R package. Gene set enrichment analysis (GSEA) was

performed at the single cell resolution, keeping the cluster and

group identity, using the escape R package. Gene set collections

were used from built-in Molecular Signature Database to

perform the enrichment. The relative enrichment scores for

each pathway were represented in the form of a heatmap

using dittoSeq R package (19).
Signaling networks
interaction inference

The Signaling network analysis was performed using

CellDesigner to infer the protein and pathways interaction

networks for significantly differentially expressed gene sets.

The P values were corrected using the Bonferroni Method.
Single cell pseudotime
trajectory analysis

At first, the T cell subtypes were extracted from the Seurat

object containing all the 17 cell types. The data was preprocessed

as documented by Packer et al. (20). A principal trajectory graph

was built within each partition using the learn_graph function in

Monocle3 (21). The cells were ordered along with the
Frontiers in Immunology 04
pseudotime trajectory which follows the shortest path. Naive

CD4+/CD8+ T cell was defined as the root node while

constructing the trajectory. To find the modules of co-

expressed genes, we used the differentially expressed genes

across the healthy, COVID-19 positive and recovered

individuals (pseudobulk differential expression analysis). We

extracted the genes falling in each module and performed GO

enrichment using Enrichr (22). GO molecular functions with

statistically significant enrichment score (p value < 0.05) were

selected and visualized using the ggplot2 r package.
Multi-omics analysis

Multi- omics analysis was performed on the transcriptome,

surface marker expression and clinical information. In order to

avoid possible bias induced by the unequal number of cells in

each sample, three samples from each group i.e., COVID-19

positive, healthy and recovered were sampled to select an equal

number of cells from each sample. This stratified sampling

approach resulted in 24633 cells from nine patients. Similarity

network fusion was used to fuse the multi-omic data into a single

matrix of size, 24633 by 24633. tSNE was performed upon the

fused data to visualize seven clusters selected by the elbow

method using k-means clustering. The clusters were identified

manually as described earlier in the “scRNA-seq Data

Processing, Clustering and Cell-Type Annotation” section.
Clinical features and an integrated
Bayesian network model

The data from stratified random samples of single cell RNA

expression, surface marker and SNF cluster membership were

integrated with high-resolution CT (HRCT) scores of the

COVID-19 patients. The healthy and recovered individuals

were assigned an HRCT score of zero, indicating absence of

active pneumonia. The integrative modeling analysis was carried

out using the wiseR (23) package for end-to-end Bayesian

network learning, inference and dashboard deployment. All

continuous variables in the integrated data were discretized

using the k-means algorithm with k=3 for biological

interpretability as low, medium and high. A discrete Bayesian

network was learnt from the data using hill climbing

optimization for finding the directed acyclic graph encoding

the structural dependencies between the variables. Eleven

Bayesian network structures were ensembled and averaged to

derive the consensus structure. The consensus structure was

then parametrized with marginal and conditional probability

distributions using Monte Carlo Markov Chain (MCMC)

approximate inference method.
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Results

Spectrum of cellular heterogeneity
in healthy, COVID-19 and
recovered patients

To understand the spectrum of immune response and cellular

heterogeneity before, during and after the SARS-CoV-2 infection,

we performed simultaneous single-cell transcriptome and targeted

proteome (40 surface markers) sequencing of the PBMCs

collected from 33 individuals (healthy = 4, COVID-19 = 16, and

recovered = 13) using a microwell-based scRNA-seq platform (BD

Rhapsody Express). We sequenced a total of 163197 cells for both

the surface proteins and RNA (Figure 1A). The details of the

oligo-attached antibodies (list and oligo sequences) are available in

the Supplementary File 1; Table S1. Post QC of the data quality

(Supplementary File 1; Figure S1A), a total of 124726 cells were

retained after removing the low-quality cells. We performed batch

effect correction and normalization using Seurat SCTransform v2

(24), followed by dimension reduction and unsupervised

clustering using the Louvain algorithm (resolution = 0.4). The

cluster specific genes were identified using Seurat FindMarker

functions and the clusters were annotated manually using

CellMarker, PanglaoDB and Azimuth, as well as using a

Support Vector Machine (SVM)-based annotation tool scPred

(the ROC, sensitivity and specificity are available at

Supplementary File 1; Table S2) (14, 16, 25–27). A total of 17

annotated clusters were identified across the three groups

(Figure 1B). Figure 1C represents the frequency of the cell types

between the three groups (normalized to the total number of cells

in the group).
Decreased professional antigen
presenting cells in the
COVID-19 patients

Antigens undergo a proteolytic cleavage, followed by

presentation to the CD8+ T cells and CD4+ T cells by MHC

class I or class II molecule, respectively. B cells, macrophages and

the dendritic Cells (DC) are the professional antigen presenting

cells (APCs) involved in the T cell mediated immune response.

We found that the B cell population was significantly decreased

(P-value < 0.00001) in the COVID-19 patients compared to the

healthy individuals. Interestingly, recovered patients had a

higher number of these cells, although not similar to the

healthy. However, the DC population increased in the positive

patients which increased further in the recovered individuals. On

the other hand, we observed a decrease in the CD8+ T cells and

increase in the CD4+ T cell population in the COVID-19

patients. We also observed an increased abundance of

activated CD4+ T cells compared to the Naïve CD4+/CD8+ T
Frontiers in Immunology 05
cells in the COVID-19 patients. Together, these indicate a

suboptimal MHC Class I mediated but increased MHC Class

II mediated antigen presentation in the COVID-19 patients. On

the other hand, the increased abundance of the APCs and the

CD8+ T cells in the recovered, possibly indicate recovery of the

loss of MHC Class I mediated antigen presentation function.
Increased cytotoxicity in response
to COVID-19

The monocytes and NK cells confer the ‘killing function’ and

cytotoxicity. We observed an increased killer cell population

(Natural killer or NK and NK T cells) in the infected patients,

which subsequently decreased in the recovered. The proliferating

NK cells were the highest in recovered individuals, correlating

with the half-life of the mature NK cells as well as the infection

duration (28). The higher abundance of the proliferating NK cells

in the recovered indicates the decrease in IFN-g production post-

infection (29). The classical monocyte population also followed a

pattern like the NK cells, while the CD14+/CD16+ Intermediate

monocyte, highly abundant in the healthy individuals, decreased

significantly in the COVID-19 patients followed by an increase in

the recovered individuals. This suggests higher activation of

monocytes in the COVID-19 patients, followed by a partial

restoration in the recovered individuals. Together, the increased

‘killer cell’ population and monocyte suggest an increased

cytotoxicity in the COVID-19 patients. The statistical

significance of the frequency of the cell types across three

groups as well as pairwise comparison groups are available as

Supplementary File 1; Table S3.
Reduced immune response and
increased inflammatory response by
naïve CD4+/CD8+ T cells in the
recovered individuals

The cell type specific expression of the surface markers and

intracellular markers are presented in the Figures 1D, E.

Figure 1F shows the expression of the cell type specific

markers used for the cell type annotation across groups. We

also looked at the cellular heterogeneity in a pairwise

comparison (healthy vs COVID-19 positive, COVID-19

positive vs recovered, and healthy vs recovered) (Figure 1G; H,

Supplementary File 1, Figures S1B-1E). Surprisingly, we found

an unidentified cluster to be present explicitly in the healthy and

was absent in the recovered (Figure 1G, H; Supplementary File 1;

Figure S1F). Upon annotation using scpred, it was found to be

the Naïve CD4+ T Cell population, with reduced expression of

MALAT1, BACH2 and several ribosomal protein coding genes

when compared to the existing Naive CD4+/CD8+ T cells of the
frontiersin.org
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FIGURE 1

Cellular Heterogeneity across Healthy, Infected and Recovered COVID-19 Individuals. (A) Sample distribution and schematic workflow for the
scRNA-seq, followed by analysis for the cellular heterogeneity and differential expression. (B) UMAP visualization of the 124726 cells across the
healthy, active COVID-19 and the recovered individuals. (C) Frequency of cell types across the three groups, normalized to the total number of
cells. (D, E) Cell type specific expression of (D) Surface markers, and (E) RNA level. Color scale denotes the relative expression whereas circle
size denotes the percent of cells expressing the marker. (F) Expression of cell type specific markers across the three groups. (G) UMAP
visualization of healthy vs recovered comparison group showing no batch effect between the two groups, the box highlights the cluster absent
in the recovered individuals. (H) UMAP visualization of healthy vs recovered comparison group with cell type annotation, the box highlights the
unidentified cluster. (I) UMAP visualization of the unidentified cluster after machine learning-based cell type annotation. (J) GSEA of differentially
expressed genes between novel subset of the Naive CD4+ T cell and existing Naive CD4+/CD8+ T cells.
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healthy/recovered individuals (Figure 1I; Supplementary File 2).

Reduced expression of these genes confers increased immune

response, reduced cytokine production and inflammatory

response (Figure 1J) (30–32). Thus, loss of this Naïve CD4+ T

cell population suggests a reduced immune response and

increased inflammatory response by the Naïve CD4+/CD8+ T

cells in the recovered individuals.
Loss of B cell maturation process in the
recovered individuals

To understand the cross-talk across cell types and

subsequent regulation of immunological functions, we

performed cell-cell communication analysis using the CellChat

R package (33). The cell-cell communication analysis revealed a

CD22-CD45 signaling between the Class-switched memory B

cell and the Activated CD4+ T cells, in healthy but not in the

COVID-19 positive or recovered (Supplementary File 1; Figures

S1G-1I). It is important to note that the CD45, negatively

regulates the CD22 level, which is crucial for B cell maturation

and antibody production (34). Absence of CD22-CD45

interaction, thus indicates dysregulated B cell maturation in

the COVID-19 patients. On the other side, CD99 signaling in the

NK cells and CADM1 signaling in the CD8+ TCM were

observed in the COVID-19 patients but not in healthy or

recovered individuals. CD99 signaling in NK cells are known

to upregulate the IL-6 and TNF-a (35), whereas the CADM1

signaling is known to increase the cytotoxicity and IFN-g
secretion (36). Together, these suggests a NK and CD8+ T

cell-mediated elevated immune and inflammatory response in

the COVID-19 patients.
Compromised adaptive immunity in
COVID-19 patients is mediated by
CD40-CD40LG, enriched in the
monocyte and T cells

The immune and inflammatory response in the COVID-19

patients, as revealed by the cell-cell communication analysis, is

modulated not only by CD22-CD45 interaction, but also CD40

and CD40LG interaction. However, the CD40-CD40LG

interaction was not observed in our cell-cell communication

analysis. The CD40-CD40 ligand expression and interaction are

important not only for the activation of adaptive immune

response, but also infection induced inflammation and CD8+

T cell apoptosis (37). Therefore, we looked at the CD40-

CD40LG expression between the groups. Figure 2A shows the

surface level expression of CD40-CD40LG, wherein we observed

a decreased expression of CD40-CD40LG in the COVID-19

patients, with the further decreased expression in the recovered

individuals, especially in the professional antigen presenting cells
Frontiers in Immunology 07
(APC) (Figures 2B, C). This indicates a decreased adaptive

immune response during COVID-19, increased infection

induced inflammation and CD8+ T cell apoptosis.

Subsequently, we looked at the expression of the FAS

receptor, a death receptor expressed during apoptosis. We

observed an increased expression in all the CD4+ and CD8+ T

cell populations. Surprisingly, we also observed a higher

expression of FAS in the B cell population (Naïve B cell, Class-

switched Memory B cells), indicating an abnormal antigen

presentation and antibody response in the COVID-19 patients

(Figure 2D). Further, chemokine and cytokine receptors

(CXCR3, CXCR4, CXCR5, CCR4, CCR5, and CCR7) expression

was increased in active COVID-19 and recovered patients

(Figures 2E, F). Alongside, we observed a high expression of

cytokines (CCL3, CCL4, CCL5, CCL7, CCL18 and CCL20) in the

CD4+ TCM, Classical monocytes and NK cells in the COVID-19

patients (Figure 2G). A higher expression of chemokines

(CXCL1, CXCL2, CXCL3, CXCL8 and CXCL16) were also

found in the CD4+ TCM and Classical Monocytes in the

COVID-19 patients (Figure 2H). This indicates a CD4+ TCM

and monocyte driven increased cytokines and chemokines in the

active COVID-19 patients. Also, the interleukins (IL1B, IL15,

IL16, and IL32) were found to be upregulated in the active

COVID-19 patients, indicating a T cell and monocyte-mediated

proinflammatory response during active COVID-19 (Figure 2I).

We observed increased expression of TNFRSF1B, also

known as TNF receptor 2 (TNFR2) in the Classical monocytes

and NK cells during active COVID-19 (Figure 2J). TNFR2 is

involved in the regulation of inflammation in the macrophage

and CD8+ T cells. TNFRSF13C, a pro-survival receptor for B

cells, was found to have increased expressed in the Class-

switched memory B cells during active COVID-19 (38).

Deficiency of TNFRSF13C is characterized by low circulating B

cells, serum IgG and IgM but high levels of IgA (39). Thus, the

very low expression of TNFRSF13C in the Class-switched

memory B cells in the recovered individuals lends support to

our earlier finding of decreased Class-switched memory B cells

in the recovered individuals. It also indicates increased IgA

antibody, and not IgG or IgM antibody in the recovered. The

increased expression of TNFRSF14 and TNFRSF17 in the

recovered individuals indicate an increased inflammatory

response (Figure 2J). Together, the dysregulation of the CD40-

CD40LG caused an increased monocyte and T cell mediated

inflammatory response during active COVID-19. The overall

differential expression of genes in activated CD4+ T cell, CD8+

TEM, Classical monocytes, NK cells, CD4+ TCM and CD8+

TCM are represented in the Supplementary File 1, 2; Figures

S2A-2F. The protein-protein interaction-level network obtained

from the differentially expressed genes revealed elevated TNF-a
signaling in the Activated CD4+ T cells, IL-6 signaling in the

CD8+ TEM cells, which are indicative of elevated inflammatory

response during active COVID-19 (Figures 2K, L;

Supplementary File 1, Figure S2G).
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FIGURE 2

CD40-CD40LG mediated Inflammatory response in the COVID-19 patients. (A) CD40-CD40LG expression at surface level across the three
groups of COVID-19 active infection, healthy and the recovered individuals. Color scale denotes the relative expression whereas circle size
denotes the percentage of cells expressing the marker. (B, C) Cell- type specific surface expression of CD40-CD40LG across the 3 groups. (D)
Surface level expression of FAS in the B and T cells. (E, F) Chemokine and Chemokine receptor expression at the surface level across the three
groups. (G–J) RNA level expression of (G) Cytokines, (H) Chemokines, (I) Interleukins and (J) TNF Receptor Superfamily across all the cell types.
(K–M) PPI level interaction network at (K) Activated CD4+ T cells, (L) CD8+ TCM, and (M) monocytes. [NS represents non-significant,
*represents p-value < 0.05, **represents p-value < 0.01, **** represents p-value < 0.0001].
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Surprisingly, we observed increased TGF-b signaling in the

monocytes and NK cells (Figure 2M; Supplementary File 1; Figure

S2H), indicating a pro-viral role of these cells (40). Besides, we also

observed a decreased immune response and T cell activation in the

CD4+ TCM and CD8+ TCM respectively, indicating an abnormal

immune response and T cell activation (Supplementary File 1;

Figures S2I, J). Besides, these also indicate the dysregulation of

antigen presentation in the COVID-19 patients. Together, the

results indicate a CD40-CD40 ligand interaction mediated

increase of the cytokine response and abnormal T cell activation

in the COVID-19 positive individuals.
Frontiers in Immunology 09
Immune, stress and antiviral responses
are mediated by the T cells, monocytes
and NK cells

To understand the cell type specific immune and stress

response dynamics, we performed GSEA at single cell

resolution using Escape R/Bioconductor package by using

molecular signature database (MSigDB-H) (Figure 3A) (41).

We found immune response related pathways (TGF-b, IL2-
STAT5, IL6-JAK-STAT3, and TNFa signaling, Complement

system activation, and Inflammatory response pathway) to be
A

B

D E F

C

FIGURE 3

Immune, stress and antiviral Response during the SARS-CoV-2 infection. (A) G SEA at the single cell resolution across the three groups
(COVID-19 patients, healthy and recovered), the row dendrograms distinguish the immune and stress response pathways. The cell types and the
groups were highlighted using different color bars. Data is expressed as a relative enrichment score for each pathway. (B, C) Expression of (B)
ADAM, and (C) APOBEC3 genes. (D) Expression of antiviral genes in the COVID-19 patients and correlation with HRCT score. (E) Expression of
IFN family genes across all the cell types across the three groups. Cell types and groups were highlighted using different color bars. (F)
Cumulative expression of type I and type II IFN receptors between the Classical monocyte and CD4+ TCM across the three groups.
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upregulated in the classical monocyte, NK cells, activated CD4+

T cells and CD4+ central memory T cells in active COVID-19

patients. TGF-b and IL2 STAT5 signaling, as well as

Complement system activation pathways were also

upregulated in the Class-switched memory B cells during

active COVID-19. On the other hand, the stress response

related pathways (ROS pathway, Interferon alpha and gamma

response, PI3K–AKT-mTOR signaling, UPR and p53 pathways)

were also particularly enriched in the Classical monocyte, NK

cells, activated CD4+ T cells, Class-switched memory B cells and

CD4+ central memory T cells of the COVID-19 positive

patients. Besides, the reactive oxygen species (ROS) and

unfolded protein response (UPR) pathway, two major stress

response pathways, were also enriched in the plasmablast in the

recovered individuals. Together, these indicates T Cells,

monocytes and NK cells mediated upregulation of the immune

and stress response during active COVID-19.

To understand the dynamics of the antiviral response, we

looked at the expression of ADAM, APOBEC3 and IFN family

members. We found a high expression of APOBEC3A,

APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F,

APOBEC3G and APOBEC3H in the classical, intermediate

monocytes and NK cells of the COVID-19 patients compared

to the healthy or recovered individuals (Figure 3B). On the other

hand, ADAM family members were upregulated in the T cells

(Activated CD4+ T cells, CD4+ TCM, CD8+ TCM, CD8+ TEM)

in active COVID-19 compared to the healthy and recovered

(Figure 3C). This highlights a T cell, monocyte and NK cell

mediated upregulation of antiviral response during the SARS-

CoV-2 infection. Within our data, we also checked for the

possible association of the increased antiviral response with

the disease severity within the COVID-19 positive patients.

We found that the expression of the antiviral genes negatively

correlated (except ADAM7, ADAM11, ADAM12, ADAM18,

ADAM20, and ADAM29) with the HRCT score of the

COVID-19 patients suggesting association of increased

antiviral response with decreased disease severity (Figure 3D).

Finally, we found IFNAR1 and IFNAR2, a receptor for type I

interferon (IFNa) to be upregulated in the CD4+ TCM and

classical monocytes of the COVID-19 patients, compared to the

others. Receptors for type II interferon, IFNGR1 and IFNGR2 were

also upregulated in the CD4+ TCM and classical monocyte

(Figure 3E). However, the expression of type II IFN receptors

was higher in COVID-19 patients in both the cell types, whereas

type I IFN receptors were upregulated in the CD4+ central

memory T cells of the recovered individuals (Figure 3F). In

summary, inferences from our data suggests that the antiviral

response is mediated by the central memory T cells, monocytes and

NK cells during the SARS-CoV-2 infection and transcription of

proinflammatory cytokines are increased as a result of type II IFN

receptor mediated signaling during the SARS-CoV-2 infection.
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Aberrant activation of T cells in COVID-
19 positive individuals

To understand the T cell dynamics across the three groups,

we looked for the expression of the T cell activation and

exhaustion markers. We observed higher expression of CD38,

CD69 and CD40LG during active COVID-19 infection,

indicating an activated phase of T cell population, compared

to the healthy and the recovered, where the T cells are at resting

phase in comparison to the active infection (Figure 4A). We also

observed higher expression of T cell exhaustion markers, i.e.,

TIM-3, LAG3, CD152 or CTLA4 and CD279 or PD-1 in the

recovered individuals compared to the active COVID-19 and

healthy individuals (Figure 4B). This indicates that a larger

population of the T cells are exhausted post recovery from the

COVID-19.

We then looked at the expression of a specific T cell receptor

type. Generally, around 95% of the T cell receptor carry ab
chain, and T cells carrying ab receptor chain respond to the

pathogen in an antigen specific manner to induce cytokine

productions followed by B cell maturation and antibody

secretion. However, a small fraction of T cells carrying gd
receptor chains are essential in the initial immune and

inflammatory responses (42). Surprisingly, we observed a

gradual shift of TCR from ab to gd type across healthy, active

COVID-19 and recovered, with highest expression of TCR gd in
the recovered (Figure 4C). Thus, the T cell exhaustion and the

abundance of TCR gd in the recovered individuals indicate an

abnormal T cell response during the active COVID-19.

To understand the difference of T cell subtypes across the

three groups, we constructed cell trajectory with respect to

pseudotime using Monocle 3 (Figures 4D, E) (43). The cells

for each cell type were plotted against the pseudotime for all

the three groups and a significant difference of median

pseudotime was observed (Figures 4F–H; Supplementary

File 1; Figure S3). Importantly, we observed a lower

pseudotime in the COVID-19 patients (except for the CD8+

TEM and CD4+ TCM), possibly indicating a faster transition

from one cell type and/state to another. Finally, to understand

the co-expression of genes with respect to pseudotime, we

clustered the genes that were differentially expressed across

healthy, COVID-19 positive and recovered, in each T cell

subtypes, and identified four modules of co-expressed genes.

While module 1, 2 and 4 showed significant GO enrichment

(p-value <0.05) for the housekeeping cellular functions

required for cell growth and development, module 3 showed

significant enrichment for the immune and inflammatory

response associated molecular functions (Figures 4I–L;

Supplementary File 4). This indicates the possible impact of

COVID-19 on normal cell functions beyond the conventional

immune/inflammatory response.
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FIGURE 4

T Cell specific surface marker expression and Pseudotime analysis across the healthy, COVID-19 positive and recovered individuals. (A) Expression
of the T cell activation markers at the surface marker level. (B) Expression of T cell exhaustion markers at the surface marker level. (C) Expression of
TCR ab and gd chain at the surface marker level. Color scale denotes the relative expression whereas circle size denotes the percentage of cells
expressing the marker. (D) UMAP visualization of T cell subtypes. (E) UMAP visualization of T cell subtypes with respect to pseudotime. (F–H)
Distribution of cells against pseudotime for T cell subtypes across (F) healthy, (G) COVID-19 positive, and (H) recovered individuals. (I–L) GO
enrichment of genes from (I) Module 1, (J) Module 2, (K) Module 3, and (L) Module 4.
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Distinct immune response signatures as
revealed by similarity network fusion and
machine learning model

To understand the multiple modalities of the data and their

association with the COVID-19 disease, we integrated gene

expression, surface marker expression and clinical details of

the individuals to perform a similarity network fusion

(SNF)-based clustering (Figure 5A). The Dendritic cell

population was found to be decreased in the COVID-19

patients and increased in the recovered individuals, reiterating

our initial results towards a dysregulated antigen presentation in
Frontiers in Immunology 12
the infected individuals, followed by recovery of the function,

post-infection (Figure 5B). We also observed a decrease in the

NK T cells and monocyte populations post-infection,

highlighting a reduced cytotoxicity in the recovered

individuals. Besides, the upregulation of S100A8, TXNIP and

MT2A genes in the monocytes indicate an inflammatory

response upregulation in the infected individuals. We also

observed an increased CD69+ memory T cell population in

the recovered individuals. High expression of CD69 in the

memory T cell population indicates higher tissue residence of

the memory T cell population in the recovered individuals.

Together, these results highlight a dysregulated antigen
A B

D
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C

FIGURE 5

Similarity Network Fusion and Bayesian Network Model for Biomarker discovery. (A) SNF clustering of cells based on the gene expression,
surface marker expression and clinical details of the individuals. (B) Distribution of the identified cell types across the healthy, COVID-19 positive
and recovered individuals. (C) Bayesian Network Model built on the SNF clusters, gene expression, surface marker expression, and clinical data
including the HRCT score of the individuals. (D–F) Specific highlights from the Bayesian Network Model showing the association of HRCT score
with (D) FOS, CST3, PSAP, (E) CD74, and (F) CD45.
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presentation and increased cytotoxicity in the infected

individuals, and their reversal post-infection.

Towards the quest for the biomarkers associated with

COVID-19 in our study cohort, we build a Bayesian Network

model (Figure 5C). The complete network is available at Zenodo

(https://doi.org/10.5281/zenodo.6583269). Importantly, we

observed a strong connection between the HRCT score, FOS

and CXCL8 genes (Figure 5D). FOS is known to regulate cell

death, apoptosis and inflammatory response, (44) which is one

of the most significantly differentially expressed genes in the

MERS and SARS-CoV-2 infection. The CXCL8 is a neutrophil

chemoattractant which recruits the neutrophil at the site of

infection and initiates a proinflammatory response mediated by

the IL-8 and other cytokines (45). We also observed a direct

association of IL1b with the CXCL8. Elevated IL1b and IL6

activity is a feature of COVID-19 disease and dysregulation of

the same is associated with disease severity (46). Thus, the

association of FOS, CXCL8 and IL1b with HRCT score make

them a strong predictor of COVID-19 disease. Besides, we

identified a strong association of HRCT score with CST3, a

marker gene for monocytes. Monocytes, as we have shown

earlier, are involved in the inflammatory responses in COVID-

19 patients. Besides, the association of CST3 with S100A9 also

indicates a correlation between monocyte-mediated

inflammatory response and HRCT score, which supports our

previous findings. We also found a strong association between

HRCT score and PSAP, a gene involved in antigen presentation

and male fertility, both are perturbed in severe COVID-19

patients (47, 48).

We observed a strong association of HRCT score with CD74,

also known as MHC Class-II invariant chain (Figure 5E). CD74

is involved in MHC Class-II mediated antigen presentation, a

process upregulated in the COVID-19 patients. Besides, CD74 is

known to have increased expressed in the severe COVID-19

patients (49). CD74 also has immune-suppressant role, often

observed in severe COVID-19 patients (50). Finally, we observed

a strong association of CD45 with HRCT score though PDE11A

(Figure 5F). PDE11A is known to be involved in inflammatory

response and is abundantly expressed in the severe COVID-19

patients (51). Just like CD74, CD45 is also an immune-

suppressant, and therefore enhanced expression in the severe

COVID-19 patients. Therefore, the association of CD74 and

CD45 with the HRCT score suggests the possible role of CD74

and CD45 in the COVID-19 disease and can possibly be used as

a biomarker for the disease.
Discussion

Although several studies have revealed the dysregulation of

the immune system during COVID-19 disease (52, 53), there are

still a few critical missing links in our understanding of the

mechanisms behind the immune response dysfunction. Using
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single-cell resolution transcriptomics and targeted proteomics of

33 individuals (healthy, active COVID-19, and recovered), this

study highlights major shifts in immune regulation occurring in

the COVID-19 disease. While the decrease in B cell and CD8+ T

cell population suggest a decreased MHC Class I mediated

antigen presentation, the slight increase of DC and CD4+ T

cell populations indicate an elevated MHC Class II mediated

antigen presentation in the COVID-19 positive individuals.

However, the decreased immune response by the CD4+ T cells

of the infected individuals, as revealed by the PPI network,

highlights suboptimal MHC Class II mediated antigen

presentation. The high expression of FAS on the surface of B

cells highlights B cell senescence in active COVID-19 cases,

further strengthening our finding of diminished MHC Class I

mediated antigen presentation. Increase in the B cell and CD8+

T cell population in the recovered group highlights the

restoration of the MHC Class I mediated antigen presentation

function. While the NK cell and classical monocyte population,

the master regulator of the cytokine and chemokine response,

were increased in the infected individuals followed by a decrease

in the abundance in the recovered individuals, it was interesting

to observe the increased abundance of proliferating NK cells in

the recovered individuals (Figure 6).

Although not a well-studied cell population, the high

abundance of proliferating NK cells in the recovered

individuals can be explained with the 7-10 days half-life of the

mature/activated NK cells, which then requires proliferation to

maintain the desired level (28). NK cell activation is a distinct

feature of COVID-19 and the average duration of the infection

coincides with the half-life of activated NK cells (54),

highlighting the process of restoration of the NK cell pool,

post-infection. Besides, proliferating NK cells mediated

reversal of the IFN-g production (55), which increases during

active infection, highlights the significance of this particular cell

type. The Naïve T cell subset in the healthy individuals have

higher immune response and decreased inflammatory response

potential compared to the Naïve CD4+/CD8+ T cell population.

Loss of this Naïve T cell subtype in the recovered individuals,

thus highlights higher inflammatory response potential

compared to the healthy. Cell-cell communication analysis

reveals intra- and inter-cellular communication based on

ligand-receptor interaction.

Our analysis revealed a shift in the intra- and inter- cellular

communication between healthy to infected and to recovered

individuals. While the CD22-CD45 signaling in the healthy

group, involved in the B cell maturation process was absent in

the infected and recovered group, the CD99 and CADM1

signaling observed in the infected group were absent post-

infection. Thus, although the NK cell and CD8+ T cell

mediated cytotoxicity were reversed in the recovered

individuals, the B cell maturation process was still impaired in

the recovered individuals, despite the increased abundance of B

cells in the recovered individuals.
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The CD40 and CD40 ligand interaction is known to regulate

a wide range of immunological events, including infection-

induced inflammatory response, CD8 T cell senescence and

increased viral replication (56). The gradual decrease in the

expression of CD40 and CD40LG in the COVID-19 positive and

recovered groups suggest an enhanced infection-induced

inflammation and apoptosis of CD8+ T cells during COVID-

19 infection. Indeed, we observed high expression of FAS on

CD8+ T cells and decreased abundance of CD8+ T cells in the

infected patients. Interestingly, earlier studies also report the T

cell depletion caused by the high levels of FAS molecules in the

severe COVID-19 disease (57). Disrupted antigen presentation

and antibody response were also observed during COVID-19

from an increased expression of FAS receptors (pro-apoptotic

molecules) in CD4+ T and CD8+ T cell populations as well as B

cell populations (Naïve B cell, class-switched memory B

cell) (58).

On the other hand, the chemokines, cytokines, and

interleukins were upregulated in the infected individuals,

wherein the upregulation was mediated by the CD4+ T cells,

CD8+ T cells, NK cells and monocytes. Interestingly, these

inflammatory markers were found to be downregulated in the

recovered individuals, highlighting the importance of

understanding the post infection phase. The cell type specific

PPI network revealed elevated TGF-b signaling in the monocyte

and NK cells. The TGF-b signaling acts as a double edge sword,

wherein on one hand it activates CD8+ T cells, and on other side,

it facilitates viral replication, thus revealing another aspect of

monocyte and NK cell mediated modulation of COVID-19.

Further, this also reiterates the decreased CD40-CD40 ligand
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interaction-mediated increase of viral replication in the

infected patients.

We found several immune responses associated signaling

pathways such as IL6-JAK-STAT3, IL2-STAT5, TGF-b, TNFa,
Inflammatory response pathway, and Complement system

activation, upregulated in the classical monocyte, NK cells,

activated CD4+ T cells, and CD4+ central memory T cells

during active COVID-19. Other pathways involved in the

stress response such as ROS pathway, Interferon alpha and

gamma response, PI3K AKT mTOR signaling, UPR pathway

and p53 pathways were also elevated in classical monocyte, NK

cells, activated CD4+ T cells, Class-switched memory B cells and

CD4+ central memory T cells in the active COVID-19 patients.

These findings suggest the upregulation of immune pathways

and stress pathways mediated via T cells, monocytes, and NK

cells and fall in concurrence with the previous studies where

multiple immune response pathways activate in the COVID-19

patients (59, 60).

The antiviral response during active COVID-19 disease was

confirmed with a high expression of APOBEC3 and ADAM

family members in the classical monocytes, NK cells, and T cells,

respectively. Both APOBEC3 and ADAM family members are

known to confer innate immunity (61, 62) and therefore can

possibly be responsible for enhancing the antiviral response in

active COVID-19 through T cell, NK cell, and monocytes. The

upregulated expression of type II interferon receptors (IFNAR1

and IFNAR2) in CD4+ TCM and classical monocytes were more

pronounced in active COVID-19 groups compared to recovered,

where type I interferon receptor (IFNGR1 and IFNGR2)

expression dominated, thereby suggesting a surge of
FIGURE 6

Summary of the key findings from the study. It highlights the observed T-cell dynamics within the COVID-19 patients, recovered individuals and
healthy, as well as key immune findings harnessing strength of machine learning.
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proinflammatory cytokines mediated via type II IFN receptor

signaling during the active COVID-19 disease.

Previous studies have reported the dysregulation of T cells

during COVID-19 disease (63, 64) which was observed in this

study as well. This is particularly important, since lymphopenia

is a key feature of COVID-19 disease, and an altered

lymphopenia is also observed in convalescent COVID-19

patients (65–67). A sharp decrease in the CD4+ and CD8+ T

cell and a delayed T cell response were associated with higher

COVID-19severity, and similar to our findings, a restoration of

the same in the recovered individuals has been highlighted by

limited yet important study (65). Several studies have also

highlighted abnormal abundance of helper T cells (Th1/Th2/

Th17) and its association with decreased viral clearance and

higher disease severity during COVID-19 (68, 69). The

lymphopenia observed in the COVID-19 patients is also

characterized by the abnormal activation and exhaustion of

the T cell. We found a significant increase in the expression of

CD38 and CD69 in the active COVID-19 patients compared to

the healthy and recovered, suggesting an activated T cell

response. A high level of exhaustion markers has been

reported in the severe COVID-19 patients (70, 71), however,

we observed elevated expression of the T cell exhaustion markers

like LAG3, CTLA4, and PD-1 in the recovered individuals.

Together, this reveals an active phase of T cells during

COVID-19 disease where after recovery the exhausted

population of T cells becomes dominant. We further

investigated the T cell receptor (TCR) type, where a gradual

shift of TCR from ab to gd type was observed, with maximum

expression in the recovered individuals. As the gd TCR is

responsible for inducing initial immune and inflammatory

responses against specific antigens (72), their presence in the

recovered individuals reflects aberrant and divergent T cell

dynamics during the COVID-19 disease. Through our

pseudotime analysis, different cell trajectories for T cell subsets

revealed a reduced pseudotime amongst the COVID-19 patients,

thereby suggesting a rapid transition between T cell subtypes

that might be responsible for inducing aberrant T cell activation.

We also observed differences among the constructed modules of

co-expressed genes across the healthy, COVID-19 positive, and

recovered groups in the T cell subsets where out of 4 modules, 3

of them exhibited significant housekeeping cellular functions

that possibly indicate varied consequences of COVID-19 disease.

Finally, our similarity network fusion-based clustering

reiterates our findings of dysregulated antigen presentation in

the COVID-19 patients, whereas reduced cytotoxicity and

higher tissue residence of the memory T cells in the recovered

individuals. Our Bayesian network model reveals FOS, CXCL8

and IL1b as important predictors for HRCT scores. While the

FOS gene is known to be associated with apoptosis (73), CXCL8-

mediated recruitment and activation of neutrophils is

responsible for causing pathogenesis of lower respiratory tract

infection and if overproduced, leads to cystic fibrosis (74). It is
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also suspected of playing a role in endothelial dysfunction.

SARS-CoV-2 has been known to induce the apoptosis

pathway, which has been shown to be intricately connected

with inflammation and fibrosis, leading to medical

complications (75). Thus, the association of increased levels of

FOS, CXCL8 and IL1b in patients with higher HRCT scores in

our study using the integrative model provides support to this

finding. Furthermore, we also found a strong correlation

between CST3 and S100A9 and simultaneously with HRCT

score. The monocyte markers CST3 and S100A9 exhibit

monocyte-mediated pro-inflammatory responses (76).

Together their association with HRCT score suggests the

involvement of monocytes in inflammatory response during

the COVID-19 disease. HRCT score was also strongly

associated with CD74 and CD45. Both CD74 and CD45 are

immune-suppressants and are known to be elevated in the severe

COVID-19 patients. Therefore, their correlation with HRCT

score possibly signifies their role in the COVID-19 disease

progression and severity.
Conclusion

Our Single cell based COVID-19 study, highlights a

dysregulated antigen presentation, CD40-CD40LG deficiency-

mediated heightened immune/inflammatory/stress and antiviral

response in the COVID-19 positive and recovered individuals,

faster cellular transition in the COVID-19 patients, and COVID-

19 disease biomarkers such as FOS, CD45, and CD74. These

findings may further assist in understanding the complexity of

immune response heterogeneity that possibly can serve to

delineate treatment strategies for SARS-CoV-2 infection.

Besides, our study also highlights the importance of

understanding the COVID-19 aftereffects in recovered

individuals which may be relevant for the re-infection/s.

Further, a follow-up study with longitudinal COVID-19

recovered individuals, potentially with differential disease

severity, would further the understanding of immune response

dynamics in the recovered individuals.
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