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to predict neoadjuvant
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prognosis in breast cancer

Jin Wu1†, Yuan Tian2†, Wei Liu1†, Hong Zheng3, Yuanyin Xi1,
Yuzhao Yan1, Ying Hu1, Bin Liao4*, Minghao Wang1*

and Peng Tang1*

1Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University,
Chongqing, China, 2Department of General surgery, Linyi People’s Hospital, Linyi, China,
3Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China,
4Department of Neurosurgery, Chongqing General Hospital, Chongqing, China
Background: Accurate evaluation of the response to neoadjuvant

chemotherapy (NAC) provides important information about systemic

therapies for breast cancer, which implies pharmacological response,

prognosis, and guide further therapy. Gene profiles overcome the

shortcomings of the relatively limited detection indicators of the classical

pathological evaluation criteria and the subjectivity of observation, but are

complicated and expensive. Therefore, it is essential to develop a more

accurate, repeatable, and economical evaluation approach for neoadjuvant

chemotherapy responses.

Methods: We analyzed the transcriptional profiles of chemo-resistant breast

cancer cell lines and tumors of chemo-resistant breast cancer patients in the

GSE25066 dataset. We preliminarily screened out common significantly

differentially expressed genes and constructed a NAC response risk model

using LASSO regression and univariate and multivariate analyses. The

differences in bioinformatic features of tumor cells, immune characteristics,

and prognosis were compared between high and low-risk group. The potential

drugs that could reverse chemotherapy resistance in breast cancer were

screened by the CMap database.

Results: Thirty-six genes were commonly up/down-regulated in both NAC

chemo-resistant tumors and cells compared to the sensitive tumors and wild-

type cells. Through LASSO regression, we obtained a risk model composed of

12 genes. The risk model divided patients into high and low-risk groups.

Univariate and multivariate Cox regression analyses suggested that the risk

score is an independent prognostic factor for evaluating NAC response in

breast cancer. Tumors in risk groups exhibited significant differences in

molecular biological characteristics, tumor-infiltrating lymphocytes, and

immunosuppressive molecule expression. Our results suggested that the risk
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score was also a good prognostic factor for breast cancer. Finally, we

screened potential drugs that could reverse chemotherapy resistance in

breast cancer.

Conclusion: A novel 12 gene-signature could be used to predict NAC

response and predict prognosis in breast cancer.
KEYWORDS

breast cancer, tumor microenvironment, immunosuppressive, prognosis,
neoadjuvant chemotherapy
Introduction

Currently, breast cancer has the highest incidence rate

among all cancers worldwide (1). Neoadjuvant chemotherapy

(NAC) refers to systemic cytotoxic drug treatment before

surgery or radiotherapy and is considered the standard

treatment regimen for patients with locally advanced or

inoperable breast cancer (2, 3). Accurate evaluation of tumor

response to NAC provides important information about tumor

biology and prognosis and guides further therapies (4–6). In

addition to clinical and pathological evaluation criteria, gene

expression signatures have been developed to predict response to

NAC (7, 8). Different multi-gene expression signatures, such as

genomic grade index (GGI), MammaPrint, and Oncotype DX,

have been shown to outperform classic histopathological

variables and represent an important step towards

personalized breast cancer treatment (9–11). In particular,

gene profiles overcome the drawbacks of the relatively limited

detection indicators of the classical pathological evaluation

criteria and the subjectivity of observation (12).

GGI is a gene expression signature developed to ameliorate

histologic grade assessment and to predict the response to

chemotherapy (7). Using residual cancer burden index, which

is a more accurate pathological evaluation method used as a

control, researchers studied 229 postoperative tumor samples

from patients who had received NAC (paclitaxel, fluorouracil,
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doxorubicin, and cyclophosphamide). The higher the GGI

values, the better the tumor response to chemotherapy (10, 13,

14). It is noteworthy that, unlike pathological evaluation, GGI

assessment is more reproducible. However, it involves a large

number of genes (97 genes), resulting in high detection costs and

difficulty in clinical application.

In this study, we analyzed the transcriptional patterns of breast

cancer cell lines and tumors of NAC-resistant patients predict by

GGI and screened candidate genes associated with chemoresistance.

Furthermore, we constructed a NAC response risk model and

examined the evaluation accuracy of the risk score for NAC

response. We analyzed the gene expression characteristics, tumor-

infiltrating lymphocytes, and immunosuppressive molecule

expression of NAC-resistant cancer cells and explored potential

drugs to reverse breast cancer chemotherapy resistance. Finally, we

examined the risk score for predicting the prognosis of overall and

the different molecular subtypes of breast cancer. The flow chart of

this research is shown in Figure 1.
Materials and methods

Cell cultures and chemo-resistant cell
line induction

Human breast cancer cell lines MCF-7 (luminal subtype),

SKBR3 (HER2+ subtype), and MDA-MB-231 (triple-negative

subtype) were purchased from Fu Heng Biology. MCF-7 cells

were cultured in DMEM (Gibco, USA) with 10% fetal bovine

serum (FBS; Gibco, USA), penicillin (100 U/mL; Gibco,

USA), and streptomycin (100 mg/mL; Gibco, USA). SKBR3

cells were cultured in McCoy’s 5A medium (Gibco, USA) with

10% FBS, penicillin, and streptomycin. MDA-MB-231 cells

were cultured in Leibovitz’s L-15 medium with 10% FBS,

penicillin, and streptomycin. Cells were incubated in 5% CO2

at 37.5°C.

Epirubicin (EPI; s1223, Selleck, CHN)-resistant variants of

the human breast cancer cell lines were established by pulse
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selection. Cells were exposed to the respective maximal

inhibitory concentration (IC90) values of EPI for 4 h, once a

week for 10 weeks, to obtain resistant variants T47D/EPI,

SKBR3/EPI, and MDA-MB-231/EPI (15, 16). The EPI-

resistant breast cancer cells were washed with PBS, fully lysed

with TRIzol reagent (15596026, Invitrogen, USA) and preserved

at -80°C until use.
Cytotoxicity assay and TUNEL assay

MCF-7, SKBR3, and MDA-MB-231 cells were seeded in 96-

well plates at 5,000 cells/well. After the cells adhered completely,

gradient concentrations of EPI and docetaxel (DOC) were

added. After 72 h, cel ls were stained with steri le

methylthiazolyldiphenyl-tetrazolium bromide (MTT; C0009,

Beyotime, CHN) in culture media (1:10) for 2 h at 37.5°C. The

absorbance of MTT was detected at 570 nm (17, 18).

MCF-7/EPI, SKBR3/EPI and MDA-MB-231/EPI cells were

seeded in a 96-well plate at 5,000 cells/well. After the cells

adhered completely, EPI (0.04 mM), DOC (0.01 mM),

bambuterol (HY-17501A, MCE; 0.04 mM), pravastatin (HY-

B0165A, MCE; 0.37 mM), isocarboxazid (HY-13929, MCE; 10

mM), Imexon (HY-15385, MCE; 0.125mM), temozolomide

(HY-17364, MCE; 0.12 mM), axitinib (HY-10065, MCE; 1.11

mM), semaxanib (s2845, Selleck), and crizotinib (HY-50878,
Frontiers in Immunology 03
MCE; 0.37 mM) were added for 72 h, and cells were stained

with sterile MTT in culture media (1:10) for 2 h at 37.5°C. The

absorbance of MTT was detected at 570 nm. The drug

concentration was the same as that used for the connectivity

map (CMap) (19).

TUNEL assay was performed using TUNEL apoptosis assay

kit (C1086, Beyotime, CHN). Cells were seeded in 48-well plate

and treated with drugs (the same with cytotoxicity assay) for

72 h were fixed with 4% paraformaldehyde, and then

permeabilized with 0.3% Triton X-100. TUNEL detection

solution was added to the cells. After incubation at 37°C for

1h in the dark, cells washed several times with PBS. After sealing

with anti-fluorescence quenching liquid, cells were observed

under a fluorescence microscope (200×).
RNA preparation and RNA-seq

Total RNA from MCF-7, SKBR3, MDA-MB-231, MCF-7/

EPI, SKBR3/EPI, and MDA-MB-231/EPI was extracted using

TRIzol reagent. Genomic DNA contamination of samples was

eliminated by RNase-free DNase I. Thereafter, RNA was

assessed using a Nano Photometer® spectrophotometer

(IMPLEN, CA, USA) and a Qubit® 2.0 Fluorometer

(Invitrogen, USA). The RNA samples were subsequently

submitted to Sangon Biotech Co., Ltd. (Shanghai, China).
FIGURE 1

Detailed flow chart of this research.
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Sequencing libraries were generated using the VAHTSTM

mRNA-seq V2 Library Prep Kit (Illumina®, USA). Paired-end

sequencing of the library was performed using NovaSeq

sequencers (Illumina, USA). Gene expression values of the

transcripts were computed using the String Tie software

(version 1.3.3b).
Differential gene expression and
enrichment analysis

Breast cancer transcriptome and clinical data GSE25066

(n=509) were downloaded from the Gene Expression Omnibus

(GEO) database (20). The differential gene expression profiles of

NAC-resistant and -sensitive patients were analyzed using the R

language package (limma 3.20.9). Gene ontology (GO) and the

Kyoto encyclopedia of genes and genomes (KEGG) pathway

analysis were applied to annotate the biological functions of

differentially expressed genes (DEGs) by the R language package

(GO plot, KEGG plot function R). The hallmarks of breast

cancer chemo-resistant cells were investigated using gene set

enrichment analysis (GSEA) (21, 22).
Diagnostic model construction
and validation

After excluding the patient samples with missing data, a total

of 492 samples remained in the dataset and were randomly

divided into the training (n=246) and validation sets (n=246).

Using the “glmnet” R package, we performed the least absolute

shrinkage and selection operator (LASSO) regression analysis

(23). The Youden index criterion was defined as the boundary-

value or decision threshold corresponding to the maximum

Youden index, which is the best classification boundary value

(24). This was also applied to select the optimal cutoff. We

performed Cox regression analysis using the “survival” R

package. The “predict” R package was used to obtain the

risk score.
Bioinformatics analysis

To identify the protein-protein interactions between the

positive genes of risk score, we employed the search tool for

the retrieval of interacting genes/proteins (STRING) (25). The

chord diagram was drawn using the Power BI software. The R

package “survival” was used for univariate and multivariate

analyses of the age, stage, ER, PR, HER2, the signature-based

risk factor score, and grade to assess the correlation of NAC

resistance with prognosis (26). The expression of twelve genes in

tumor, normal tissues and tumor-adjacent tissues were obtained

from integrated center for oncology which based on the cancer
Frontiers in Immunology 04
genome atlas dateset (TCGA) (27). The survival curves of twelve

genes of risk score were obtained from the Kaplan–Meier plot

(28, 29). Patients with chemotherapy were eligible in this study.

The CMap database was used to identify compounds that were

negatively correlated with the input differential gene profile after

testing on MCF-7 cells (30, 31).
Immune cell infiltration analysis

We used CIBERSORT and QUANTISEQ analyses to assess

immune cell infiltration within the tumor microenvironment

using the GSE25066 database in the different risk groups (4). The

online analysis tool hiplot (https://hiplot.com.cn/) was used to

analyze the correlation between immunosuppressive molecules

and risk scores.
Construction and assessment of
the nomogram

The nomogram was established by the R package “rms”. We

evaluated the performance of the nomogram by generating a

calibration chart.
Statistical analysis

Using GraphPad Prism 8.0, data of three independent

experiments were presented as mean ± SD for statistical

analysis. Student’s t-tests or Mann–Whitney U-tests were

performed for comparison between two groups. The chi-

square test was used to analyze the categorical variables

between two groups. The correlation between the two groups

was analyzed using Spearman’s test. P < 0.05 was considered

significantly different.
Results

Screening of hub genes related to NAC
resistance in breast cancer

To explore the chemoresistance promoting mechanism in

breast cancer, we generated EPI-resistant cell lines of different

breast cancer subtypes, including MCF-7/EPI, SKBR3/EPI, and

MDA-MB-231/EPI. The IC50 of EPI in resistant cells was seven

times higher than that of parental wild-type (WT) cells

(Figure 2A and Table 1). Furthermore, consistent with clinical

experience, tumor chemoresistance showed characteristics of

multidrug resistance in our experiment. Drug-resistant breast

cancer cells induced by EPI were also resistant to DOC.We then

compared the expression profiles of EPI-resistant cells with
frontiersin.org

https://hiplot.com.cn/
https://doi.org/10.3389/fimmu.2022.1035667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.1035667
those of WT cells. Three hundred and two genes were

commonly upregulated or downregulated at least two-fold in

MCF-7/EPI, SKBR3/EPI, and MDA-MB-231/EPI compared

with those in parental MCF-7, SKBR3, and MDA-MB-231

cells (Figures 2B, C). In addition, we analyzed the top 30 GO

with the highest enrichment in cellular component (CC),

biological process (BP), and molecular function (MF).

Upregulated DEGs were widely distributed in the intracellular

parts, intracellular organelle, and nucleus of the breast cancer

resistant cells, and were enriched in “negative regulation of

biological process”, “negative regulation of cellular process”,

and “regulation of cellular metabolic process”. The molecular

functions of the upregulated DEGs were the “protein and

transcription regulatory region DNA” and “RNA polymerase

II proximal promoter sequence-specific DNA binding.” In

contrast to upregulated DEGs, downregulated DEGs were

enriched in the extracellular space of the breast cancer

resistant cells in “cell adhesion” and “regulation of cell

motility” (Supplementary Figure S1A–F). The results showed

that slowing down the cell cycle and decreasing biological

processes and metabolic abnormalities are important

mechanisms for the survival of chemo-resistant cells. In the

KEGG enrichment analysis, upregulated chemoresistance cell

feature genes were enriched in the “HIF-1 signaling pathway”,

“Pentose phosphate pathway”, “p53 signaling pathway, and

“DNA replication”. Downregulated chemoresistance cell

feature genes were enriched in “Metabolic pathways” and

“Neurotrophin signaling pathways” (Supplementary Figures

S1G, H). The enrichment of these functions suggested that

breast cancer chemo-resistant cells may resist chemotherapy by

slowing down the cell cycle and strengthening DNA repair and

synthesis. To characterize more comprehensively the biological

characteristics of breast cancer drug resistance, we analyzed the

hallmarks of breast cancer chemo-resistant cells and tumor

tissues of breast cancer chemo-resistant patients by GSEA. E2F

and MYC targets, mTORC1 signaling, P53 pathway, and KRAS

signal gene sets were significantly upregulated in resistant breast

cancer cells (Supplementary Figure S2), suggesting that

chemoresistance of breast cancer cells might be closely related

to the regulation of the cell cycle and apoptosis.

We also introduced clinical data and transcriptome profiles

of breast cancer patients undergoing NAC using the GSE25066

database. According to the GGI evaluation method, GSE25066

samples were divided into two groups: GGI-low (NAC

resistance, n=157) and GGI-high (NAC sensitivity, n=335)

(Figure 2D). The results of the principal component analysis

indicated that the gene expression differences between the GGI-

high and -low groups were significant (Figure 2E). There were

347 DEGs between the two groups. Thirty-six genes were

commonly up/down-regulated in both the NAC chemo-

resistant cells and tumors compared in contrast to the WT

cells and sensitive tumors (Figures 2F, G).
Frontiers in Immunology 05
Risk model with NAC response was
constructed based on GGI level

In order to construct a more simplified diagnostic model of

NAC response, we established a LASSO regression model based

on the expression and prognosis data of 246 breast cancer

patients who received NAC from the GSE25066 training set

(Figures 3A, B). We obtained two gene sets: 1se and min

containing 12 and 18 genes, respectively. The ROC analysis

presented that the 1se (AUC=0.96) and min (AUC=0.97) of

characteristic genes both have good diagnostic values for

evaluating the resistance of breast cancer to NAC (Figure 3C).

Considering the cost of detection for the patients, we selected the

1se set: HJURP, IFI27, RAD51AP1, EZH2, DNMT3B, SLC7A5,

DBF4, USP18, ELOVL5, PTGER3, KIAA1324, and CYBRD1. We

termed up-regulated genes (HJURP, IFI27, RAD51AP1, EZH2,

DNMT3B, SLC7A5, DBF4 and USP18) in NAC chemoresistant

cells as positive genes and down-regulated genes (ELOVL5,

PTGER3, KIAA1324, and CYBRD1) as negative genes. The

validation set indicated that the results were similar to those of

the training set (Supplementary Figure S3). The complete names

and main function of the 12 genes are listed in Table 2. It is well

known that there are big different in response to chemotherapy

in different molecular subtypes of breast cancer. Therefore, we

performed risk cutoff fitting analysis for overall and different

molecular subtypes of breast cancer in GSE25066. The results

showed that the cutoff of overall BC was 0.51. The cutoff of

luminal BC and TNBC were 0.38 and 0.39, respectively

(Figure 3D). Due to the small sample size, cutoff in HER2+

BC was not obtained. The results of multivariate and univariate

analyses on the whole of GSE25066 (n=492) suggested that the

risk factor score was an indicator for NAC response

(Figures 3E, F, p<0.001).
Characteristics of tumor cells and tumor
microenvironment in high-risk patients

To explore why 12 genes could be used to predict NAC

response, we analyzed pharmacological characteristics and

tumor microenvironment of NAC-resistant cancer cells.

According to the GSE25066 gene expression profile, a negative

correlation was found between the expression of positive genes

(HJURP, IFI27, RAD51AP1, EZH2, DNMT3B, SLC7A5, DBF4

and USP18) and the expression of negative genes (ELOVL5,

PTGER3, KIAA1324, and CYBRD1) in the risk score model

(Figure 4A). Utilizing the Hit Predict database, we searched for

proteins that interact with those encoded by the above twelve

genes. By analyzing their protein interaction network, it was

observed that the proteins encoded by these 12 genes and their

related proteins have many-to-many complex interactions

(Figure 4B). The results of GO enrichment analyses suggested
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FIGURE 2

Visualization of genes differentially expressed in chemo-resistant breast cancer cells. (A) Drug toxicity of EPI and DOC to resistant cells. (B)
Heatmaps of DEGs in EPI-resistant cells. (C) Overlapping DEGs that were up/down-regulated over 2-fold among EPI-resistant cells lines. (D)
Heat map of DEGs that were up/down-regulated over 1-fold among chemotherapy-resistant (n = 157) and -sensitive patients with breast cancer
(n = 335). (E) Principal component comparison of gene expression in chemotherapy-resistant and -sensitive patients with breast cancer. (F)
Overlapping DEGs among EPI-resistant cells lines and tumors of chemotherapy-resistant patients. (G) Heatmaps of commonly up/down-
regulated DEGs in both the NAC chemo-resistant cells and tumors compared in contrast to the WT cells and sensitive tumors. Data are
presented as mean ± SD (P < 0.001).
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TABLE 1 EPI IC50 values in breast cancer cell lines and their chemoresistant variants (n = 3).

IC50 values (ng/mL) WT EPI resistance Fold

MCF-7 25.37 ± 1.93 235.93 ± 6.27 9.30

SKBR3 15.66 ± 0.86 120.27 ± 3.24 7.68

MDA-MB-231 12.53 ± 0.42 171.26 ± 3.73 13.67
Frontiers in Immunology
 07
 frontiers
Results are expressed as Mean ± S.D. and represent the average of three independent experiments. Fold resistance of each variant is shown in bold and represents the IC50 value of the
variants divided by the IC50 value of the WT cells for each particular drug tested.
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FIGURE 3

Risk model with neoadjuvant chemotherapy response based on the GGI level between the two clusters. (A, B) LASSO regression prognostic
model of patients with breast cancer treated with NAC (n=246). (C) ROC analysis of the risk score in patients with breast cancer treated with
neoadjuvant chemotherapy. (D) Cutoff of the risk score in patients with breast cancer treated with NAC. (E, F) Univariate and multivariate
analysis of the twelve-gene NAC response risk model. *P < 0.05; and ***P < 0.001.
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that 12 genes promote breast cancer resistance to NAC by

upregulating DNA repair and metabolism-related pathways

and downregulating membrane receptor signaling mechanisms

(Figure 4 and Supplementary Table 1). KEGG pathway

enrichment analysis showed that “transition metal ion

transport” and the “G protein-coupled receptor signaling

pathway” were enriched (Supplementary Table 1). The chord

plot showed that 12 genes had complex interactions with the

enriched GO pathway (Figure 4D). For example, EZH2 and

DNMT3B were involved in transferase activity (GO0016740)

and negative regulation of gene expression (GO0045892 and

GO0045814). DNMT3B, DBF4, and CYBRD1 jointly regulate

metal ion binding (GO0046872). The above results suggest that

these 12 genes promote drug resistance by increasing DNA

repair, reducing cell macromolecule synthesis, and cell

metabolism among dormant cells. The risk score was

positively related to some known molecules (MDR1, Twist,

HIF, MRE11, FR1) associated with chemotherapy resistance in

breast cancer (Xiwei 32). Those molecules were involved in the

pathways of cell cycle regulation, DNA repair, transport, and

efflux (Figure 4E).

Tumor-infiltrating lymphocytes (TILs) are critical

components of the tumor microenvironment and are important

external factors of chemotherapy resistance (33–35). Therefore,

we assessed the level of immune cell infiltration within the tumor

microenvironment of patients in the different risk groups of the

GSE25066 database by CIBERSORT, and quanTIseq algorithms.

In luminal BC and TNBC, the high-risk group recruited more

CD4+ T cell, CD8+ T cell, and macrophage than did the low-risk

group (Figures 5A, C, D, F). In HER2+ BC, the high-risk group
Frontiers in Immunology 08
recruited more CD4+ T cell and NK cell than did the low-risk

group (Figures 5B and E). We further explored the correlation

between the risk score and immunosuppressive molecules in the

GSE25066 dataset. Many immunosuppressive molecules, such as

CTLA4, LAG3, ICOS, IDO1, and ADORA2A, were positively

correlated with the risk score (Figure 5G). All results indicate that

a large amount of tumor-infiltrating cells were depleted in the

high-risk group, leading to the failure of NAC for breast cancer

and the lower survival rate of patients.
Evaluation of the risk score on prognosis
of breast cancer

Chemoresistance play an important role in tumor

relapse, often resulting in metastatic disease and cancer-

associated mortality (36).To confirm whether the risk score for

evaluating NAC resistance was a good prognostic predictor of

clinical outcomes, we conducted the following study. According

to TCGA-BRCA data, the expression of the positive genes of risk

score (HJURP, IFI27, RAD51AP1, EZH2, DNMT3B, SLC7A5,

DBF4 and USP18) in tumors was higher than that in normal and

tumor-adjacent tissues. The expression of the negative genes

(ELOVL5, PTGER3, KIAA1324, and CYBRD1) in tumors was

lower than that in normal and tumor-adjacent tissues

(Supplementary Figure S4). We also found association of high

expression of all positive genes and low expression of all negative

genes with poor prognosis of breast cancer (Supplementary

Figure S5). The above results illustrate that the risk score
TABLE 2 The function of the twelve genes.

Gene Full name Function summary

HJURP Holliday junction recognition protein a Protein Coding gene related to Cell Cycle, Mitotic and Chromatin Regulation/Acetylation

IFI27 interferon alpha inducible protein 27
like 2

a Protein Coding gene related to RNA polymerase II activating transcription factor binding and lamin binding.

RAD51AP1 RAD51 associated protein 1 a Protein Coding gene related to RNA binding and single-stranded DNA binding

EZH2 enhancer of zeste 2 polycomb repressive
complex 2 subunit

The protein encoded by this gene is a member of the Polycomb-group (PcG) family

DNMT3B DNA methyltransferase 3 beta The protein encoded by this gene is a DNA methyltransferase which is thought to function in de novo
methylation, rather than maintenance methylation.

SLC7A5 solute carrier family 7 member 5 a protein Coding gene related to t peptide antigen binding and antiporter activity

DBF4 DBF4 zinc finger a Protein Coding gene related to nucleic acid binding and enzyme activator activity

USP18 ubiquitin specific peptidase 18 The protein encoded by this gene belongs to the ubiquitin-specific proteases (UBP) family of enzymes that
cleave ubiquitin from ubiquitinated protein substrates.

ELOVL5 ELOVL Fatty Acid Elongase 5 This gene belongs to the ELO family and involved in the elongation of long-chain polyunsaturated fatty acids

PTGER3 Prostaglandin E Receptor 3 The protein encoded by this gene is a member of the G-protein coupled receptor family

KIAA1324 estrogen-induced gene 121 estrogen-induced gene

CYBRD1 Cytochrome B Reductase 1 a member of the cytochrome b(561) family that encodes an iron-regulated protein
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FIGURE 4

Characteristics of tumor cells in high-risk patients. (A) Correlation analysis of the expression of 12 genes. (B) Protein network interaction map for
the 12 genes. (C) GO enrichment analysis of the 12 genes (P < 0.01). (D) Chord plot of interaction between the 12 genes and GO enrichment
terms. (E) The correlation analysis of risk score and gene expression in breast cancer resistance-related pathways.
Frontiers in Immunology frontiersin.org09

https://doi.org/10.3389/fimmu.2022.1035667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.1035667
composed of these 12 genes may also serve as a prognostic factor

for breast cancer.

As a composite score consisting of 12 genes, can the risk score

be used as an evaluation index for prognosis? We analyzed the

relationship between risk score and prognosis of breast cancer

patients in the GSE25066 dataset. The results suggest that high

risk score predicts poor prognosis in overall breast cancer

(Figure 6A, p<0.0001) and various subtypes (Figure 6B,

lumina l BC, p=0 .03 ; F igure 6C, TNBC, p=0 .01) .

Due to the small sample size, statistical test in HER2+ BC was

not obtained. Based on the GSE25066 database, we also

constructed a nomogram to facilitate clinical application. Using

the nomogram, the patient survival probability could be predicted

by the weighing age, ER, PR, HER2, grade, stage and signature-

based risk score (Figure 6D). The calibration curves indicated that

the nomogram-predicted probability matched the actual 1-, 3-

and 5-years survival (Figure 6E). Above results suggest that the

novel signature of the 12 genes can not only predict NAC response

but also predict prognosis in breast cancer.
Compound screening for reversing
breast cancer resistance

To explore the use of candidate drugs to overcome NAC

resistance in breast cancer, we analyzed the DEGs of two risk

groups. We have screened 169 upregulated DEGs and 92

downregulated DEGs in the high-risk group of GSE25066 (|

Fold Change | >1). To screen out the top 30 candidate drugs to

overcome NAC resistance in breast cancer, we imported DEGs

into the CMap database (Figure 7A). The top three compounds

were bambuterol (bronchodilator) (37), pravastatin (lipid-

lowering agent) (38), and isocarboxazid (antidepressant, a

non-selective and irreversible inhibitor of monoamine

oxidase) (39). It is noteworthy that there were five anticancer

drugs among the candidate compounds, namely, imexon

(alkylating agent) (40), temozolomide (alkylating agent) (41),

axitinib (inhibitor of tumor growth and phosphorylation of

VEGFR-2) (42), semaxanib (VEGFR (Flk-1/KDR) inhibitor)

(43) and crizotinib (ATP competitive protein kinase inhibitor

met/ALK/ROS) (44). Furthermore, we used the previously

established chemoresistant cell line to verify the function of

the selected candidate drugs to reverse chemoresistance. Here,

we selected the top three compounds and the five antitumor

drugs as candidates for verification. Pravastatin, isocarboxazid,

imexon, axitinib, and crizotinib had significant cytotoxic effects

on MCF7/EPI cells (Figure 7B). Bambuterol, isocarboxazid,

imexon, axitinib and crizotinib had significant cytotoxic effects

on SKBR3/EPI cells (Figure 7C). Bambuterol, isocarboxazid,

imexon, temozolomide, axitinib, semaxanib and crizotinib had

significant cytotoxic effects on SKBR3/EPI cells (Figure 7D).
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The sensitivity of different breast cancer subtypes to these

drugs varies widely, but we note that isocarboxazid, imexon,

axitinib and crizotinib showed preferable cell killing effects in

all three types of breast cancer drug-resistant cells. We also

observed the morphology of cells in each group after 72 h of

drug treatment. Cells treated with isocarboxazid, imexon,

axitinib and crizotinib were swollen, had many protrusions,

and tended to die (Supplementary Figure S6). Finally, we

detected the apoptosis level of cells in each group using a

TUNEL apoptosis detection kit. The obtained data were

consistent with the previous results showing that groups

treated with isocarboxazid, imexon, axitinib, and crizotinib

displayed numerous dead cells (Figure 7E and Supplementary

Figure S6). Our results suggest that isocarboxazid, imexon and

crizotinib could inhibit or kill chemoresistant cells. This result

awaits further val idat ion by more in vivo and in

vitro experiments.
Discussion

In this study, we constructed a NAC response risk model

based on GGI and obtained a novel signature of 12 genes to

predict NAC response and predict prognosis in breast cancer.

Through pharmacological features analysis, we found that

NAC-resistant breast cancer cells have powerful survival

strategies, such as cell cycle regulation, DNA repair,

transport, and efflux. TME analysis showed that there were

many exhausted tumor-infiltrating lymphocytes (TILs) in the

tumor tissues of patients in the high-risk group. Another

important result of this study is that we screened out

potential drugs targeting the gene expression characteristics

of patients in the high-risk group through CMap. The cytotoxic

effects of these drug candidates were further verified in the self-

induced chemo-resistant breast cancer cell line MCF7/EPI.

According to the cytotoxicity assays, isocarboxazid, imexon,

axitinib, and crizotinib might be potential drugs to inhibit or

kill chemo-resistant cells.

Bioinformatics analysis suggested that these 12 genes

promote breast cancer resistance to NAC by upregulating

DNA repair- and metabolism-related pathways and

downregulating membrane receptor signaling mechanisms

(Figures 4C, E). Based on these characteristics, we found that

the NAC-resistant cells in breast cancer might be in a dormant

state. Accumulating evidence reveals that non-genetic processes

drive drug tolerance, regarded as a novel mechanism of failure in

cancer therapy (9, 45). The most recent studies found that as key

players in the field of non-genetic heterogeneity of tumors, drug-

tolerant persister (DTP) cells were confirmed to be associated

with resistance to chemotherapy and targeted agents in a wide

range of tumors (46–49). Therefore, DTPs might be a
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FIGURE 5

Characteristics of tumor microenvironment in high-risk patients. TIL levels of the high- and low-risk groups in luminal BC (A), HER2+ BC (B),
TNBC (C). Proportion of immune cells of the high- and low-risk groups in luminal BC (D), HER2+ BC (E), TNBC (F). (G) Heat map of the
correlation between risk score and the expression of multiple immunosuppressive regulatory molecules based on the whole GSE25066.
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therapeutic opportunity before the patients develop irreversible

genetic mutation-driven drug resistance. Here, the 12 genes

serve as a potential target for reversing drug resistance of

tumor cells by breaking the “cold state” of drug-resistant cells.

In follow-up studies, we will investigate whether interfering the

expression of these genes could reverse chemotherapy resistance

in breast cancer.

The tumor microenvironment plays a crucial role in

tumor drug resistance (33–35). Among them, TILs are

widely recognized as one of the most promising targets for

reversing tumour drug resistance. Our results showed that
Frontiers in Immunology 12
there were many TILs, such as CD8+ T cells, CD4+, and NK

cells, in the high-risk group which were exhausted (Figure 5).

This also explains why a poor prognosis is observed in the

high-risk group although the patients have abundant immune

cell infiltration. Such patients may benefit from adoptive

cellular immunotherapy. A clinical trial reported a patient

with breast cancer who still had extensive metastases after

surgery, chemotherapy, and targeted therapy. After 22

months of treatment with TILs, the tumor completely

disappeared, and the patient survived (50). Our results also

showed that immunosuppressive molecules, such as CTLA4,
B

C D

E

A

FIGURE 6

Evaluation of the Risk Score on Prognosis of Breast Cancer. (A) Kaplan–Meier survival analysis of the different patient risk groups of overall
breast cancer (high-risk, n=333; low-risk, n=159, P < 0.0001). (B) Kaplan–Meier survival analysis of the different patient risk groups of luminal BC
(high-risk, n=139; low-risk, n=135, P=0.03). (C) Kaplan–Meier survival analysis of the different patient risk groups of TNBC (high-risk, n=150;
low-risk, n=19, P=0.01). (D) A nomogram for clinical diagnosis was constructed based on clinical characteristics and risk scores. (E) The
calibration plots for predicting recurrence at 1, 3, and 5 years. The X-axis represents the predicted recurrence probability from the nomogram,
and the y-axis represents the actual recurrence probability.
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LAG3, ICOS, IDO1, and ADORA2A, were highly expressed

in the high-risk group. Thus, we conjectured that CTLA4

immunosuppressants might contribute to further treatment

of these patients.

The results of the cytotoxicity assays showed that the CMap-

based selected candidate drugs, pravastatin, isocarboxazid, imexon,

axitinib, and crizotinib, have significant cytotoxic effects on MCF7/
Frontiers in Immunology 13
EPI. Although imexons, axitinib, and crizotinib are known

antitumor drugs, their effect on chemoresistant tumors has not

yet been reported. Pravastatin and isocarboxazid were originally

used to treat hyperlipidemia and depression, but their significant

toxic effect on drug-resistant cells suggests that these two drugs may

have other mechanisms of action to inhibit tumors. The antitumor

activity of these drugs requires further validation.
B

C D

E

A

FIGURE 7

Screening potential drugs for the treatment of high-risk patients. (A) The potential drugs for the treatment of high-risk patients. The three best
drug candidates are in the green font, and the known anticancer drugs in the TOP30 are in the red font. Cytotoxic effects of preferred drug
candidates on MCF-7/EPI (B), SKBR3/EPI (C) and MDA-MB-231/EPI (D) after 72 h of drug treatment. (E) The apoptosis level of cells in each
group after 72 h of drug treatment. Data are presented as mean ± SD. *P < 0.05; **P < 0.01; and ***P < 0.001. ns, no significant
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Conclusion

Our results suggest that a novel signature of 12 genes can be

used to predict NAC response and predict prognosis in

breast cancer.
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