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prognosis and immune
landscape of uveal melanoma
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and Yin Zhao1*

1Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China, 2Department of Neurosurgery, Renmin Hospital of Wuhan
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Introduction: Uveal melanoma (UM) is the most common primary intraocular

malignant tumor in adults, and the main treatment for UM is currently surgery

and plaque brachytherapy. UM is highly susceptible to metastasis, which

eventually occurs in nearly half of all patients; once metastasis occurs,

patients have a poor prognosis and the condition is difficult to treat.

Therefore, the identification of new and effective UM biomarkers is vital for

the application of therapeutic strategies. Immunogenic cell death (ICD) is a type

of regulatory cell death that activates adaptive immune responses and

generates long-term immunological memory. ICD can promote antitumor

immunity, which may be a potential immunotherapeutic strategy for UM.

Methods: The data of UM from the Cancer Genome Atlas (TCGA) was used as a

training set and the data from Gene Expression Omnibus (GEO) was used as a

validation set. To determine the expression pattern of ICD-related genes in UM,

survival analysis and difference analysis was conducted. The ICD-related risk

signature was constructed by employing the least absolute shrinkage and

selection operator (LASSO) Cox regression. Subsequently, immune profile and

somatic mutation analysis were performed. In addition, cell experiments were

performed to verify the role of immunogenic cell death-related genes in UM.

Results: In this study, we analyzed the relationship between ICD-related gene

expression and UM patient prognosis, somatic mutations, and the tumor

immune microenvironment. Importantly, we constructed a 5-gene ICD-

related risk signature and confirmed it as a novel prognostic biomarker in UM

patients. We found that the high-risk group had more immune cell infiltration

and a worse prognosis than the low-risk group. In cellular experiments, we

confirmed the high expression of FOXP3 inMUM2B andOCM-1A cell lines and

that knockdown of FOXP3markedly inhibited the proliferation of UM tumor cells.
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Discussion: ICD-related genes play a critical role in the tumor immune

microenvironment. Our results may contribute to the development of

effective immunotherapies.
KEYWORDS

immunogenic cell death, uveal melanoma, prognosis, immune landscape,
immunotherapy
Introduction

Uveal melanoma (UM) is the most frequent primary

intraocular malignancy in adults, although it is a rare disease

(1). More than 90% of UM originates from uveal melanocytes that

are located in the choroid, only 6% originates in the ciliary body,

and 4% originates in the iris (1). At present, the available primary

treatment for UM is radiation therapy and surgery (2). Plaque

brachytherapy, the dominant globe salvaging method to control

primary intraocular tumors (3, 4) also comes with some inevitable

complications, including severe radiation retinopathy and visual

loss (2). Despite good local therapy and control of the tumor, the

mortality rate for UM remains high. A previous study showed that

the 5-year and 15-year disease-related mortality rates for uveal

melanoma patients were 31% and 40%, respectively (5). In

addition, approximately half of the patients develop metastases,

resulting in a poor prognosis, regardless of treatment for the

primary tumor (1, 5, 6). Metastatic UM exhibits a poor response

to chemotherapy or targeted therapy, and median survival in

metastatic UM is about one year (1, 7). This mortality is partly due

to a lack of understanding of the exact etiology and pathogenesis

of UM. Therefore, the identification of new and effective UM

biomarkers is vital for the application of therapeutic strategies.

Immunogenic cell death (ICD), a type of regulatory cell death

(RCD), activates adaptive immune responses and generates long-

term immunological memory (8, 9). ICD can be induced by a set

of stimuli and antitumor therapies, including viral infection,

chemotherapy, epigenetic modifiers, targeted anticancer agents,

radiation therapy, and photodynamic therapy (9–11). IICD is

typically accompanied by the release of numerous damage-

associated molecular patterns (DAMPs), which can promote the

recruitment and maturation of antigen-presenting cells and are

associated with the initiation of adaptive immunity (9). Indeed,

accumulating clinical evidence suggests that DAMPs have

predictive value for immunotherapy response in cancer patients

(12). Furthermore, previous studies have shown that ICD can

evoke anticancer immune responses (13, 14). Notably, recent

studies have demonstrated that lurbinectedin and belantamab

mafodotin, two antitumor drugs with FDA approval for use in
02
humans, are particularly efficient ICD inducers in cancer (15, 16).

Therefore, it is important for cancer therapy to be able to induce

ICD clinically. However, there is still a lack of sufficient evidence

regarding the clinical application of ICD, particularly in the

identification of ICD-related biomarkers.

Immunotherapy is developing rapidly and has emerged as a

new treatment strategy for various cancers (17, 18). Immune

checkpoint inhibitors (ICIs) have become one of the most

promising modalities for fighting cancer (19). Programmed

death 1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors

have made breakthroughs in the treatment of melanoma (20),

and their role in UM is under study. Specifically, a recent study

demonstrated that ICD can evoke systemic antitumor immunity

to inhibit metastasis in UM (21). ICD may be a potential

immunotherapeutic strategy for UM. Consequently, it is of

great importance to explore ICD-related biomarkers in UM

and evaluate the possibilities of ICD, which may be practical

for understanding the underlying pathogenesis of UM.

Here, we identified biomarkers associated with ICD,

constructed an ICD-related prognostic signature, and confirmed

its prognostic value for UM patients. Next, we evaluated

the relationship between the immune microenvironment and

the ICD-related signature, and predicted the response to

immunotherapy in UMs.
Methods and materials

Datasets

The whole-genome RNA-seq expression data and related

clinical data of 80 uveal melanoma patients were acquired from

The Cancer Genome Atlas (TCGA) database, which was used as

training sets. The RNA-seq transcriptome information of 57

patients, used as validation cohort, was downloaded from the

Gene Expression Omnibus (GEO) database, accession number:

GSE44299. In the study, the cases with no survival data were

eliminated. For the normal set, 175 normal retinal pigmented

epithelium (RPE)-choroid complex samples were retrieved from
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the GEO database, accession number: GSE29801. We used the

“normalizeBetweenArrays” function in the R package “limma”

to remove multiple batch effects in merging the RNA_seq data of

TCGA and GEO. In addition, the experimental flow chart was

drawn and displayed in the Supplementary Figure 1.
Identification of ICD-related differentially
expressed genes between uveal
melanoma and normal tissues

We analyzed DEGs from ICD-Related genes from TCGA-

LGG and GEO databases via the Wilcoxon test. P values less

than 0.05 were considered significant. The co-expression

network of these significant genes was constructed by

GeneMANIA (http://www.genemania.org/).
Consensus clustering

Consensus clustering was conducted by the R package

“ConcensusClusterPlus” to identify molecular subtypes related

to ICD. The ideal cluster numbers, between k = 2–10, were

assessed 1,000 times. We used the “pheatmap” package in R to

create a cluster map. In addition, the overall survival (OS) in two

clusters were compared through Kaplan-Meier (KM) analysis

with the “survminer” and “survival” packages in R software.
Identification of DEGs in ICD-related
clusters and functional enrichment
analyses

The R package “limma” was utilized to assess the DEGs in

two clusters. To rectify false-positive TCGA data, we set the filter

condition that adjusted P values less than 0.05 and abs of logFC

larger than 2.5. Followed, The R package ‘‘clusterProfiler’’ was

employed to conduct Gene Ontology (GO) functional

enrichment analyses and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways enrichment analyses. The q-value

and p-value thresholds were less than 0.05 in the analysis. The

Gene Set Enrichment Analysis (GSEA) was accomplished by

using the R package ‘‘clusterProfiler’’.
Somatic mutation analysis

The somatic mutation data of UM was downloaded from

TCGA database. The “maftools” package of R software was used

to calculate the Tumor mutational burden (TMB) of each sample

and draw the waterfall plots.
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Depicting the relationship between
molecular clusters and tumor
microenvironment immune
characteristics

To assess the stromal score, estimate score, immune score,

and tumor purity of each UM sample, we employed the

“estimate” package in R software. According to RNA profiles

of UM samples from the TCGA database, we analyzed the

expression levels of human leukocyte antigen (HLA) genes and

Immune checkpoints (ICPs) with the “ggplot2” package.

Wilcoxon test was performed to compare the difference in

expression levels between the two groups, and a P value less

than 0.05 was considered significant.
Construction and validation of the ICD-
related risk signature

Univariate Cox regression analysis was used to evaluate the

prognostic value of ICD-Related genes in UM. Subsequently, to

formulate a risk signature, the least absolute shrinkage and

selection operator (LASSO) cox regression analysis was

performed by using the genes with statistically significant,

which can compute the regression coefficients of each gene.

The calculation of risk scores was according to the following

formula:

Risk   Score   =o
n

1
kn*An

where An denoted the expression value of ICD-related genes,

kn denoted the regression coefficient of prognosis-related genes,

and n is the number of ICD-Related genes. Patients with risk

scores below the median were classified as the low-risk group,

while those with risk scores above the median were classified as

the high-risk group.
Prognostic analysis and
clinicopathological relevance of ICD-
related risk signature

We conducted the KM analysis to assess the differences in

the overall survival (OS) between the low- and high-risk groups

through the R packages “survminer” and “survival”. The

nomogram model, containing clinically relevant and prognostic

factors, was constructed by the packages “rms,” “foreign,”

and “survival” in R software. The Univariate Cox regression

analysis was employed to identify Potential prognostic

indicators and the multivariate Cox analysis was employed to

confirm the independent prognostic factors in UM. Then, to

assess prediction accuracy, we plotted the 1-, 3-, and 5-year
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receiver operating characteristic (ROC) curves and calculated the

area under the ROC curves (AUCs), which can judge the accuracy

of a diagnostic approach: low accuracy: 0.5< AUC-ROC ≤ 0.7,

moderate accuracy: 0.7< AUC-ROC ≤ 0.9, and high accuracy: 0.9

< AUC-ROC ≤ 1 (22). In addition, we analyzed the relevance

between the risk score and clinicopathological characteristics,

including gender and grade, by Chi-square test. P values< 0.05

was considered significant.
Gene set variation analysis and single-
sample gene sets enrichment analysis

The Gene set variation analysis (GSVA) of KEGG pathway

was performed among low- and high-risk groups in the training

sets. Single-sample GSEA (ssGSEA) was utilized to calculate

immune function scores. According to the ssGSEA scores, we

assessed the activities and abundances of immune-related

pathways and functions.
Prediction of response to
immunotherapy

We performed tumor immune dysfunction and exclusion

(TIDE) analysis in order to evaluate immunotherapy response.

TIDE (http://tide.dfci.harvard.edu/), as an analytic technique,

could predict the immunotherapy response by using two major

tumor immune evasion mechanisms: T cell dysfunction and T

cell infiltration inhibited in tumors with low CTL levels. Next,

the “ggplot2” package in R software was performed to make

a graph.
Forecasting of drug sensitivity

We compared drug sensitivity between ICD-high and

ICD-low risk groups through the Genomics of Drug

Sensitivity in Cancer (GDSC) database and analyzed the

drug sensitivity of ENTPD1, CASP8, LY96, FOXP3, and IL6

via Gene Set Cancer Analysis (GSCA) (http://bioinfo.life.

hust.edu.cn/GSCA/) and CellMiner (http://discover.nci.nih.

gov/cellminer/) database.
Antibodies and reagents

Anti-FOXP3 (A4953, ABclonal); Anti-b-Actin (AC004,

ABclonal). Liposomal Transfection Reagent (40802ES02,

Yeasen); a CCK-8 cell counting kit (40210ES10, Yeasen);

Hoechst (40730ES03, Yeasen); RIPA buffer (Applygen
Frontiers in Immunology 04
Technologies, Beijing China); protease and phosphatase

inhibitors (Boster Biologic Technology).
Cell culture and transfection

ARPE-19 cells were a gift from Zhongshan Ophthalmic

Center, Sun Yat-Sen University. MUM2B and OCM-1A cells

cells were purchased from iCell Bioscience Inc. MUM2B cells

were maintained in RPMI 1640 culture medium (Boster Biologic

Technology) supplemented with 10% FBS (Gibco, CA, USA) at

37°C with 5% CO2. The other cell lines were maintained in

DMEM (Boster Biologic Technology) containing 10% FBS at 37°

C with 5% CO2. MUM2B and OCM-1A cells were transfected

with siFOXP3 by using Liposomal Transfection Reagent

according to the transfection protocol. Cells were harvested at

48 hours of transfection for further analysis. Negative control

siRNA (sc-37007) and FOXP3 siRNA (sc-43569) were

purchased from Santa Cruz Biotechnology Inc. Sequence (5′ to
3′) of siFOXP3: #1 5’-AAGCAGCGGACACTCAATGAG-3’; #2
5’-AATGAGATCTACCACTGGTTC-3’.
Cell viability assay

To detect the cell viability activity, a CCK-8 cell counting kit

(CCK-8) was utilized. According to the manufacturer’s

instructions, MUM2B and OCM-1A cells were inoculated in

96-well plates with 5000 cells in each well and cultured in a 37°C

containing 5% CO2. Cells were transfected 12 hours after

inoculation, and 48 hours after transfection, CCK-8 reagent

was added and incubated for 1 hour. A microplate reader was

used to measure the OD value at 450 nm. The experiments were

conducted in triplicate at least.
EdU-DNA synthesis assay

A Cell-Light EdU Apollo567 In Vitro Kit (C10310–1, RiboBio,

Guangzhou, China) was utilized to conduct the experiment of

proliferating cells. Cells were transfected 12 hours after inoculation

onto the crawl sheets, and then cultured for 48 hours after

transfection for harvesting. Following the manufacturer’s

instructions, cells were incubated with 50 mM EDU medium for

2 h, and then were fixed with 4% paraformaldehyde for 30 min.

Followed the decolorization and membrane rupture, Hoechst and

1X Apollo staining reaction solution were added and incubated for

30 min. A fluorescence microscope (Olympus BX51, Japan) was

used to capture the fluorescence of Hoechst and EdU. To count the

cells, ImageJ software was used and 10 non-overlapping fields were

selected to calculate the proportion of EdU-positive cells, which

represented the percentage of Edu-stained positive cells to Hoechst-

positive cells.
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Protein extraction and immunoblot
analysis

The RIPA buffer supplemented with protease and

phosphatase inhibitors was used to lysed cells. After lysis, the

protein concentration was detected by the BCA method, and the

lysis was mixed with loading buffer (Beyotime) and heated on a

95°C thermostat for 5 min. The equivalent amounts of samples

were resolved by SDS-PAGE and transferred to polyvinylidene

difluoride (PVDF) membranes (MilliporeSigma). Membranes

were blocked with 5% non-fat dry milk in TBST and treated with

primary antibody overnight at 4°C, and then incubated with the

secondary antibody (Proteintech, Wuhan, China) for 2 hours.
RNA isolation and real-time quantitative
PCR

RNA was extracted from the cells by the Trizol method, and

then the concentration of RNA was detected. The reverse-

transcription (RT) reaction was performed with PrimeScript™RT

reagent Kit (RR047A; Takara Biomedical Technology). The real-

time quantitative PCR reaction was performed with TB

GreenPremix Ex Taq (RR420A; Takara Biomedical Technology).

All samples were repeated at least three times with blank controls.

Using the 2−DDCTmethod to calculate the relative gene expression

with normalization against Gapdh levels.

Gapdh: forward 5′-GGAGTCCACTGGCGTCTTCA-3′,
reverse 5′- GTCATGAGTCCTTCCACGATACC-3′,
Foxp3: forward 5’-GAGAAGCTGAGTGCCATGCA-3’

reverse 5’-AGAGCCCTTGTCGGATGAT-3’.
Statistical analysis

Unless specifically stated the experiments were repeated at

least three times. The results were presented as mean ± S.D., and

statistical analyses were performed in GraphPad Prism 7. One-

way analysis of variance (ANOVA) was used to assess statistical

significance among the experimental groups. P values less than

0.05 were considered significant.
Results

Expression profiles and clusters of
ICD-related genes in UM

A summary of 34 ICD-related genes was reported by Abhishek

et al. based on a large-scale meta-analysis (23). First, we investigated

the expression profiles of ICD-related genes in normal and UM

samples. We found that half of the ICD-related genes were highly
Frontiers in Immunology 05
expressed in UM, including FOXP3, CD4, CXCR3, NT5E, ATG5,

LY96, IL17RA, PDIA3, PRF1, P2RX7, HMGB1, BAX, CALR, and

MYD88, whereas the CD8A, IL6, PIK3CA, EIF2AK3, NLRP3, TLR4,

ENTPD1, IFNGR1, CASP1, TNF, IFNG, IL1R1, IFNB1, and CASP8

genes were underexpressed (Figures 1A, B). Subsequently, the

coexpression network confirmed a strong coexpression

correlation among these genes (Figure 1C).

To further explore the role of ICD-related genes in UM, we

performed a recognition of ICD-related clusters in UM through

consensus clustering (Figures 1D, E). As shown in Figure 1D, the

TCGA cohort was grouped into two clusters, C1 and C2, and the

heatmap revealed the differential expression of ICD-related genes

in these two clusters (Figure 1F). Therefore, Cluster C1, showing

high expressions of ICD-related genes, was defined as an ICD-

high subtype. Conversely, Cluster C2, displaying low expression

levels, was defined as an ICD-low subtype. Furthermore, survival

analysis illustrated a better prognostic potential in the ICD-low

subtype than in the ICD-high subtype (Figure 1G).
Analyses of differentially expressed genes
and functional enrichment in different
ICD clusters

To understand the molecular mechanisms affecting

prognosis, we analyzed the DEGs of ICD-high and ICD-low

subtypes. We obtained a total of 1085 DEGs, which were utilized

for functional enrichment analysis (Figures 2A, B). GO

enrichment analysis showed that DEGs were enriched in

activities associated with immunity, including leukocyte-

mediated immunity, lymphocyte–mediated immunity,

activation of immune response, and B-cell-mediated immunity

(Figures 2C, D). Consistently, DEGs were significantly

associated with Th17-cell differentiation, Th1 and Th2 cell

differentiation, antigen processing and presentation, and

natural killer cell-mediated cytotoxicity in KEGG enrichment

analysis (Figure 2E). In addition, we performed GSEA between

the ICD-high and ICD-low subtypes (Figures 2F, G). The results

revealed that genes were principally enriched in the cytokine‒

cytokine receptor interaction pathway in the ICD-high group.

The above results suggested a strong correlation between DEGs

and immunity in ICD-high and ICD-low subtypes.
Somatic mutations and characterization
of the immune landscape in different ICD
clusters

To better understand the genomic characteristics of ICD-

high and ICD-low subtypes, we performed an analysis of

somatic mutations. As shown in the waterfall plots, GNA11,
frontiersin.org
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FIGURE 1

The expression profiles and the cluster of ICD-related genes in uveal melanoma. (A, B) The heatmap (A) and box plot (B) show that the
expression patterns of 28 of the 34 ICD-related genes differed significantly between normal and UM samples in TCGA and GEO databases,
***P< 0.001. (C) Analysis of differentially expressed genes and their co-expressed genes by GeneMANIA. (D) Heatmap of consensus clustering
solution (k = 2) for ICD-related genes in 80 UM samples. (E) The cumulative distribution function (CDF) curve of consensus clustering for k = 2
to 10. (F) Heatmap of ICD-related gene expressions in different subtypes. Green represents the high expression group and red represents the
low expression group. (G) Kaplan–Meier curves of OS in the high and low ICD expression groups.
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FIGURE 2

Analysis of the DEGs and functional enrichment analysis in different ICD clusters. (A) Volcano plot displays the DEGs between the high and low
ICD expression groups in the TCGA cohort. (B) Heatmap of the DEGs expression between the high and low ICD expression groups. (C, D) The
dots (C) and circle plots (D) of GO signaling pathway enrichment analysis. (E) The dots plot of KEGG signaling pathway enrichment analysis. The
size of the dot represents gene count, and the color of the dot represents the q value. (F, G) GSEA analysis shows the underlying signal pathway
between the low (F) and high (G) ICD expression groups. The top 5 signaling pathways were shown on the graph.
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BAP1,MYOF, andMACF1 were the most frequent mutations in

the ICD-high group, whereas the ICD-low group had a higher

frequency of mutations in the GNAQ, EIF1AX, and SF3B1

genes (Figure 3).

There is growing evidence that ICD can cause anticancer

immune responses (13, 14). Therefore, we explored the

characterization of the immune landscape between ICD-high

and ICD-low subtypes. We found that the ICD-high group had

higher ESTIMATE scores, stromal scores, and immune scores,

than those in the ICD-low group but had lower tumor purity

(Figures 4A–D), which indicates that the levels of immune

infiltration were higher. In addition, the roles of immune

checkpoints (ICPs) and human leukocyte antigen (HLA) are

essential in antitumor immune responses (24). We next probed

their expression levels in different ICD clusters. It is obvious that

ICPs and HLA expressions were significantly upregulated in the

ICD-high group, including vital ICPs, such as CD274, PDCD1,

and CTLA4 (Figures 4E, F). In summary, these indicated that

there is a strong link between the ICD-high subtype and an

immune-hot phenotype, and the ICD-low subtype was

associated with an immune-cold phenotype.
Construction and verification of the ICD-
related risk signature

To perform the LASSO regression analysis, we identified a

total of 15 prognosis-related genes (p< 0.05) from ICD-related

genes through univariate Cox analysis (Figure 5A). Following, 5

genes were selected for the optimal model in the LASSO

regression analysis after validation (Figure 5B), which were

sorted out in Supplementary Table 1. Furthermore, the KM

analysis indicated that the high-risk score was linked to a poor

prognosis in the TCGA cohort, GEO database further

corroborated it (Figures 5C, D), which was consistent with the
Frontiers in Immunology 08
results of the progression-free survival (PFS) analysis

(Supplementary Figure 2). Moreover, the distributions of

survival status, risk score, and risk gene expression were

plotted in TCGA and GEO databases, respectively

(Figures 5E–J). The results above suggested that the risk score

based on ICD-related risk signature might be a fine indicator for

predicting the prognosis of patients with UM.
The risk score could be an independent
prognostic factor for predicting
prognosis in UM patients

Through employing the univariate and multivariate COX

analyses, we found that the risk score might be an

independent factor for predicting the OS in UM patients

(Figures 6A, B) and the area under the AUC-ROC curve for

the risk score is larger than all other prognosis-related clinical

factors, including gender and stage, in predicting 3 -, or 5-

year survival (Figures 6C–E). Through exploring the

relationship among risk scores and other clinical factors, we

discovered that the risk score was associated with stage

statistically, especially stage 2 and stage 4 (Figures 6F, G).

To optimize the clinical application of the risk score model

which is based on ICD-related genes, a nomogram

comprising gender, grade, and risk score was constructed to

predict 1-, 3-, and 5-year OS of UM patients (Figures 7A, B).

ROC analyses showed that the nomogram has a higher

sensitivity in predicting 1-, and 3-year OS of UM patients,

while in predicting 5-year OS, the risk score has a better value

(Figures 7C–E). Moreover, univariate and multivariate COX

analyses showed that nomogram is also an independent

prognostic factor in UM patients (Figures 7F, G). These

results indicated that we could better predict the OS of UM

patients by combining the nomogram and risk score.
FIGURE 3

Comparison of somatic mutations in the high and low ICD expression groups. The top 20 most frequently mutated genes between the two
groups were visualized in waterfall plots.
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FIGURE 4

The characterization of immune landscape in different ICD clusters. (A-D) Violin plots of the stromal score, immune score, ESTIMATE score, and
tumor purity between the high and low ICD expression groups. (E, F) Box plots of differential expressed immune checkpoints (F) and HLA genes
(E) in two groups. **P< 0.01, ***P< 0.001.
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FIGURE 5

Construction and validation of the ICD-related risk signature. (A) The picture shows the overall survival (OS) forest plot obtained by univariate
Cox analysis, which allows the assessment of the prognostic value of the ICD-related genes. (B) Lasso Cox analysis identified 5 ICD-related
genes most associated with OS in the TCGA dataset. (C, D) Kaplan–Meier analysis of the prognostic significance of the risk model in TCGA and
GEO databases. (E, F) The survival status of each patient in TCGA and GEO databases. (G, H) The distribution of risk scores in TCGA and GEO
databases. (I, J) The heatmaps of prognostic 5 genes signature in the TCGA database and GEO databases.
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Analysis of DEGs, functional enrichment,
and somatic mutations in different
risk groups

Next, we conducted genetic differences analysis between

ICD-high risk and ICD-low risk groups and obtained 450

upregulated and 166 down-regulated genes (Figures 8A, B).

GO functional enrichment analysis showed that these genes

are mainly involved in mononuclear cell differentiation,

lymphocyte differentiation, regulation of leukocyte cell-cell

adhesion, regulation of T cell activation, T cell receptor

complex, immunological synapse, antigen binding, and MHC
Frontiers in Immunology 11
protein binding (Figures 8C, D). KEGG analysis showed that

these gene enriched in T cell receptor signaling pathway, PD-L1

expression and PD-1 checkpoint pathway in cancer, Th1 and

Th2 cell differentiation, Natural killer cell mediated cytotoxicity,

Primary immunodeficiency and NF-kappa B signaling pathway

(Figure 8E). We also performed GSEA in ICD-high risk group

and the results were showed in Figure 8F. In addition, the

analysis of somatic mutation in different risk groups was

conducted and indicated that GNA11 and BAP1 were more

likely to be mutated in high-risk group while GNAQ, SF3B1,

EIF1AX were the most frequent mutations in low-risk

group (Figure 9).
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FIGURE 6

The prognostic value of the risk score and the association between risk score and clinicopathological factors. (A) Forest plot of the univariate
Cox test to assess the correlation of risk scores and clinical factors with patient OS. (B) The forest plot of the multivariate Cox analysis identified
independent prognostic factors associated with the OS of patients. (C-E) The ROC curve of risk score and clinical factors for predicting 1-, 3-,
and 5-year OS in UM patients. (F, G) Distribution of ICD-related risk scores among UM patients stratified by gender and stage in TCGA database.
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Association between risk score and
immune landscape

To explore the role of the risk score in immune infiltration, we

investigated the ESTIMATE score between the ICD-high risk and

ICD-low risk groups and found that the ICD-high risk group has a
Frontiers in Immunology 12
higher score in the stromal score, immune score, and ESTIMATE

score, while has a lower tumor purity (Figures 10A–D). The

results of immune-related functions showed that all functions

including APC co-inhibition, APC co-stimulation, checkpoint,

HLA, T cell co-inhibition, T cell co-stimulation, etc. are activated

in the ICD-high risk group (Figure 10E). GSVA enrichment
frontiersin.org
G

A B

C D

F

E

FIGURE 7

The prognostic value of risk score combined with clinicopathological features for OS of patients from the TCGA database. (A) The nomogram
shows the OS of the UM patients from the TCGA database. (B) The nomogram’s calibration plots. The y-axis represents actual survival, whereas
the x-axis represents nomogram-predicted survival. (C-E) ROC curve of risk scores and clinicopathological factors for predicting 1- (C), 3-
(D), and 5-years (E) OS in UM patients. (F, G) The nomogram’s univariate and multivariate Cox regression analyses.
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FIGURE 8

Analysis of the DEGs and functional enrichment analysis in different ICD risk scores. (A) Volcano plot displays the DEGs between the high and
low ICD risk groups in the TCGA cohort. (B) Heatmap of the DEGs expression between the high and low ICD risk groups. (C-E) The GO
(C, D) and KEGG (E) signaling pathway enrichment analysis. (F) GSEA analysis shows the underlying signal pathway between the high ICD risk
group.
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analysis showed that the ICD-high risk group has higher activity

in immune-related pathways, such as natural killer cell-mediated

cytotoxicity, antigen processing and presentation, leukocyte trans-

endothelial migration, toll-like receptor signaling pathway, Notch

signaling pathway, and other pathways (Figure 10F).

Furthermore, we explored the expression of ICP genes and HLA

genes in the different risk groups. Our results showed that all HLA

genes have higher expression levels in the ICD-high risk group

(Figure 11A). And most ICPs genes are highly expressed in the

ICD-high group (Figure 11B and Supplementary Figures 3A–C).

Consequently, the high-risk group had a strong correlation with

immunization in our ICD-related risk profile model.

There are six types of immune subtypes, among which C3

represents inflammation and c4 represents lymphocyte

depletion. As the picture shows that the risk score could

dist inguish between C3 and C4 immune subtypes

(Figure 11C). Then, tumor immune dysfunction and exclusion

(TIDE) was used to evaluate the predictive value of the ICD risk

score in immunotherapy. In our results, ICD risk scores could

distinguish between immunotherapy responders and non-

responders, and the immunotherapy response group have a

higher score, which indicated that patients with high ICD risk

scores might benefit more from immunotherapy (Figure 11D).
Identification of prognostic value of
ICD-related risk gene and prediction
of drug sensitivity

The prognostic value of 5 ICD-related genes involved in the

risk model was explored. Our survival analysis results showed

that patients with low expression of ENTPD1 have a poor

prognosis, while patients with low expression IL6, FOXP3, and

LY96 have a better prognosis both in TCGA and CGGA

databases (Figures 12A, B). In addition, patients with CASP8

high expression have a poor prognosis in the TCGA database,
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but there was no significant difference in the GEO database. In

addition, patients with CASP8 high expression have a poor

prognosis in the TCGA database, but there was no significant

difference in the GEO database.

Following this, we predicted the drug sensitivity by the

GDSC database in different risk groups. we showed the top 12

drugs and found that most drugs were more sensitive to the

high-risk group of patients (Supplementary Figure 4). In

addition, utilizing the 5 ICD-related genes, we explored the

drug sensitivity in pan-cancer in CellMiner and GSCA database

(Supplementary Figure 5 and Supplementary Figure 6).
Experimental validation analysis

The expression of FOXP3 has been reported to be associated

with poor prognosis in some tumors (25–28), and FOXP3 can

promote tumor growth in non-small cell lung cancer (25).

However, the function of FOXP3 in UM has not been

investigated. Thus, we selected FOXP3 to further explore

potential cellular functions. First, we examined the mRNA

expression levels of Foxp3 in ARPE-19 cells and uveal

melanoma cells, including MUM2B and OCM-1A cells. The

results showed that the mRNA level of Foxp3 was higher in uveal

melanoma cells than that of ARPE-19 cells (Figure 13A).

Consistently, the protein levels of FOXP3 were significantly

increased in uveal melanoma cells (Figure 13B). Next, FOXP3

knockdown was performed by transfecting cells with siRNA

(Figure 13C). CCK-8 assays showed that a significant decrease in

cell proliferation was observed in both MUM2B and OCM-1A

cells after FOXP3 knockdown (Figures 13D, E). In addition, we

conducted EdU-DNA synthesis assays in these two cell lines

(Figures 13F, G). The number of positive cells in the knockdown

groups was distinctly reduced compared with that in the control

group (Figures 13H, I). These results imply that FOXP3 is

involved in tumor growth in UM.
FIGURE 9

Comparison of somatic mutations in the high and low ICD risk groups. The top 20 most frequently mutated genes between the high and low
ICD risk groups were visualized in waterfall plots.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1037128
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2022.1037128
Discussion

In conclusion, we clarified the expression patterns of ICD-

related genes in normal and uveal melanoma tissues and

analyzed the relationship between ICD-related gene expression

and UM patient prognosis, somatic mutations, and the tumor
Frontiers in Immunology 15
immune microenvironment. Importantly, we constructed a 5-

gene ICD-related risk signature and demonstrated that it is a

novel prognostic biomarker in UM patients. Based on the risk

score, compared with the low-risk group, the high-risk group

had a worse prognosis, more immune cell infiltration, and higher

expressions of ICPs and HLA genes. In addition, we explored the
A B C D

F

E

FIGURE 10

The immune landscape in the high and low ICD risk groups. (A-D) Violin plots of the stromal score, immune score, ESTIMATE score, and tumor
purity between the high and low ICD risk groups. (E) Box plots show the differences in immune-related functions between the high and low ICD
risk groups. (F) The heatmap of GSVA enrichment in two groups. ***P< 0.001.
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relationship between risk scores and drug sensitivity. In cellular

experiments, we confirmed the high expression of FOXP3 in

MUM2B and OCM-1A cell lines and that knockdown of FOXP3

markedly inhibited the proliferation of UM tumor cells.
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ICD can release danger signals or DAMPs to trigger adaptive

immunological responses (8, 9). Several studies have revealed

that chemotherapeutic agents and radiotherapy can induce ICD

in tumor cells and produce a durable antitumor immune
A

B

C D

FIGURE 11

Differential expression of immune checkpoints and HLA genes. (A, B) Box plots of differential expressed immune checkpoints (B) and HLA genes
(A) between the high and low ICD risk groups. (C) Box plots presents the association of ICD risk score with Immunotyping. (D) Box plot presents
the links of ICD risk score with immunotherapy response. *P< 0.05, **P< 0.01, ***P< 0.001.
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A

B

FIGURE 12

Confirmation of prognostic value of 5 ICD-related genes in TCGA and GEO databases. (A) Kaplan–Meier analysis of 5 ICD-related risk genes for
patients in TCGA. (B) Kaplan–Meier analysis of 5 ICD-related risk genes for patients in GEO databases.
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FIGURE 13

Experimental validation of the effect of FOXP3 on uveal melanoma growth. (A) The mRNA levels of Foxp3 in ARPE-19, MUM2B, and OCM-1A cells.
(B) The protein levels of FOXP3 in ARPE-19, MUM2B, and OCM-1A cells. (C) Immunoblotting shows the knockdown efficiency of siRNA in MUM2B
and OCM-1A cells. (D, E) CCK-8 assays were used to measure the viability of MUM2B (D) and OCM-1A (E) cells after the knockdown of FOXP3.
(F, G) The assessment of cell proliferation by using the EdU-DNA synthesis assays following the knockdown of FOXP3. (H) The percentage of Edu-
positive cells in (F) was displayed. (I) The percentage of Edu positive cells in (G) was displayed. **P< 0.01, ***P< 0.001, ****P< 0.0001.
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response (9, 29, 30). In the treatment of malignant tumors,

immunogenic therapy combined with novel immunotherapy

regimens holds great promise (31–33). However, ICD research

in UM is still limited. In our study, we determined the

differential expression patterns of ICD-related genes in normal

and tumor tissues, and we divided tumor patients into ICD-high

expression and ICD-low expression groups by consensus

clustering based on the expression of these genes. It was

reported that ICD can stimulate transformation of a “cold”

immune environment into a “hot” immune environment and

thus improve the response rate of patients to treatment (31).

Here, we explored the tumor immune microenvironment in the

two subtypes. The results showed that the high ICD expression

group was correlated with the immune “hot” phenotype, and the

low ICD expression group was associated with the immune

“cold” phenotype.

Focal radiation therapy, including proton-beam radiation

therapy, is a commonly used treatment modality to rescue the

eye and can achieve high tumor control rates in over 90% of

patients (2). Whereas primary UM can get local control, 50% of

UM will eventually metastasize (6). Both uveal melanoma and

cutaneous melanoma originate from melanocytes, but there are

significant differences in their pathological features and treatment

outcomes (1, 34). Immunotherapy has benefited most patients

with cutaneous melanoma but has failed to achieve satisfactory

results in the treatment of UM (35). A recent study found that

ICD improved T-cell responses to different tumors, further

enhancing the antitumor immunity of immune checkpoint

inhibitors (36). Kim S et al. reported that combined treatment

with ICD inducers and rock inhibitors enhanced the therapeutic

effect of PD-1 blockers in mice with highly aggressive cold B16F10

tumors, targeting the primary tumor and inducing systemic

antitumor immunity to inhibit metastasis (21). Epigenetic

therapies can increase the immunogenicity of cancer cells (37),

and the results of a phase II clinical trial by Ny L et al. indicated

that the combination of epigenetic and immunotherapy resulted

in tumor regression in a small percentage of patients with

metastatic UM (38). Therefore, the identification of ICD-related

biomarkers may allow patients to benefit from immunotherapy.

Here, we constructed and validated a risk signature based on 5

ICD-related genes. We found that the risk signature had better

prognostic power as an independent prognostic factor than

other clinical factors. Consistently, the risk scores increased

significantly with increasing tumor stage, suggesting that the

risk score can distinguish tumor malignancy and correlate with

tumor progression.

The genetic analysis of tumor samples in UM can help

predict metastatic risk and manage patients. Monosomy 3 (M3)

and BAP1 gene inactivation are strongly associated with poor

prognosis (39), and patients with BAP1 inactivation are at high

risk of metastasis (40, 41). Among the four subtypes identified by
Frontiers in Immunology 19
Robert son AG et al., EIF1AX or SF3B1 alterations were

associated with a lower risk of metastasis and a better

prognosis (41). Although there is no conclusive evidence that

alterations in the GNAQ and GNA11 genes are relevant to UM

prognosis and metastasis (39), a recent study reported a poorer

prognosis for those with GNA11 mutations (42). In our results,

the frequencies of GNA11 and BAP1 gene alterations were

highest in the ICD high expression and high-risk groups,

indicating a poor prognosis. Consistently, GNAQ, EIF1AX,

and SF3B1 mutations were more common in the ICD low

expression and low-risk groups and were associated with a

better prognosis.

The eye is an immune-privileged organ giving a growth

advantage to primary UM, and immune privilege may be

responsible for immune evasion and systemic metastasis (2, 6).

Given the immunosuppressive microenvironment of UM (6), it

is important to understand the link between risk scores and

immunological characteristics of UM samples. Our study

identified a clear difference in immune cell infiltration among

high- and low-risk groups. Immune cell infiltration in UM may

be positively associated with poorer prognosis and metastatic

death (43, 44). Our analysis revealed higher ESTIMATE scores

and immune scores but lower tumor purity in the high-risk

group, suggesting a poorer prognosis in the high-risk group.

Subsequently, we demonstrated high expression of ICPs and

HLA genes in the high-risk group and found a significant

association between risk score and immunotherapy response.

The expressions of ICPs and HLA genes are a potential factor for

tumor immune escape (24). The potential association of the

ICD-related risk signature with the tumor immune landscape

established in this study may provide a prospective research

direction for solid cancer immunotherapy.

In summary, ICD-related genes play a critical role in the

tumor immune microenvironment. In our study, the construction

of the ICD-related gene risk model predicted overall survival and

response to immunotherapy in UM patients. Our results may

contribute to the development of effective immunotherapies.
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