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The endothelium is a single layer of epithelium covering the surface of the
vascular system, and it represents a physical barrier between the blood and
vessel wall that plays an important role in maintaining intravascular
homeostasis. However, endothelial dysfunction or endothelial cell death can
cause vascular barrier disruption, vasoconstriction and diastolic dysfunction,
vascular smooth muscle cell proliferation and migration, inflammatory
responses, and thrombosis, which are closely associated with the
progression of several diseases, such as atherosclerosis, hypertension,
coronary atherosclerotic heart disease, ischemic stroke, acute lung injury,
acute kidney injury, diabetic retinopathy, and Alzheimer's disease. Oxidative
stress caused by the overproduction of reactive oxygen species (ROS) is an
important mechanism underlying endothelial cell death. Growing evidence
suggests that ROS can trigger endothelial cell death in various ways, including
pyroptosis, parthanatos, and ferroptosis. Therefore, this review will
systematically illustrate the source of ROS in endothelial cells (ECs); reveal
the molecular mechanism by which ROS trigger pyroptosis, parthanatos, and
ferroptosis in ECs; and provide new ideas for the research and treatment of
endothelial dysfunction-related diseases.
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1 Introduction

Endothelium is the highly active monolayer of epithelium
that covers the surface of blood vessels. Endothelium plays an
important role in maintaining vasomotor, coagulation and
anticoagulation systems, immune regulation, vascular smooth
muscle proliferation and migration (1-3). Reactive oxygen
species (ROS) in endothelial cells (EC) are mainly derived
from mitochondria, NADPH oxidase (NOXs), eNOS
uncoupling and xanthine oxidase (XO) (4, 5). Under
physiological conditions, ROS are essential for physiological
cellular functions such as host defense, post-translational
processing of proteins, cell signaling, regulation of gene
expression, and cell differentiation (6). However, ROS
overproduction may cause endothelial dysfunction (ED) and
endothelial cell death. The impairment of NO synthesis marks
the onset of ED, which is mainly mediated by the eNOS
uncoupling mechanism (7). In the process of ROS-mediated
ED, the expression of various pro-inflammatory cytokines, i.e.,
interleukin-1f (interleukin-1p), interleukin-18 (interluekin-18,
IL-18), and cell adhesion molecules, i.e., intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule-1
(VCAM-1), and E-selectin may be promoted in endothelial
cells. These molecules are closely related to the occurrence of
inflammatory responses (8, 9). In addition, ROS can mediate a
variety of programmed cell death (PCD) in endothelial cells,
such as pyroptosis, parthanatos and ferroptosisis. It is worth
noting that endothelial dysfunction or endothelial cell death is
closely related to the occurrence and development of various
diseases, such as atherosclerosis (10), coronary heart disease
(11), hypertension (12), ischemic stroke (13), acute lung injury
(14), acute kidney injury (15), diabetic retinopathy (16) and
Alzheimer’s disease (17) (Figure 1). This review systematically
elucidates the sources of ROS in EC; covers the molecular
mechanisms of ROS-induced pyroptosis, parthanatos and
ferroptosis in EC cells; and provide new insights for the
research and treatment of endothelial cell death-related diseases.

2 Sources of ROS in ECs

Intracellular ROS are mainly composed of superoxide anions
(057), hydrogen peroxide (H,0,), and hydroxyl radicals (OH")
(18). O, forms O3~ by capturing an electron, which leads to the
generation of other ROS. O3 is unstable in aqueous solutions
due to its short half-life; therefore, intracellular O3 is quickly
scavenged or converted to other forms of ROS. O3~ is cleared or
converted mainly via three pathways:1) O3 generates H,0,
through the action of superoxide dismutase (SOD); 2) low
concentrations (picomolar range) of O3 interact with nitric
oxide (NO) to generate peroxynitrite anion (ONOO®), which
occurs even faster than disproportionation to generate H,Op;
and 3) high concentrations of O3~ generate OH" through the
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Fenton reaction with H,O, (18). In addition, OH" reacts with
fatty acids to generate lipid free radicals (L*). ROS in ECs are
mainly derived from mitochondria, NADPH oxidase (NOX),
endothelial NOS (eNOS) uncoupling, and xanthine oxidase
(XO) (4, 5) (Figure 2).

2.1 Mitochondria

Mitochondria are the source of cellular power and produce
ATP through oxidative phosphorylation (OXPHO), which
accounts for approximately 80% of the energy requirements,
with glycolysis accounting for the remaining 20%.
Mitochondrial ROS production results from oxidative
phosphorylation associated with aerobic respiration within the
mitochondrial electron transport chain (ETC). Mitochondrial
complexes I and III are the major sites for the generation of O3~
(19-21). Electron leakage from the ETC results in the reduction
of O, to O3~ rather than to H,O. SOD further disproportionates
mitochondrial O3~ to form H,0,. Approximately 1-2% of O,
entering the ETC is estimated to be converted into ROS (22)
(Figure 2). Moreover, mitochondrial ROS overproduction is one
of the causes of EC dysfunction. For example, Rao et al. showed
that nicotinamide nucleotide transhydrogenase (NNT)
knockout resulted in a significant increase in mitochondrial
ROS production and glutathione peroxidase activity and a
decline in glutathione reductase activity (23).

2.2 NAPDH oxidase

2.2.1 Structure

NAPDH oxidase (NOX) is an important source of ROS in
cells. The NOX family includes NOX1, NOX2, NOX3, NOX4,
NOX5, and dual oxidases (DUOX1 and DUOX2) (22). NOXs
are multi-transmembrane proteins whose C-termini are exposed
in the cytoplasm, and they share common domains, including
six conserved transmembrane domains, four conserved heme-
binding histidines, flavin adenine dinucleotide (FAD)-binding
domains, and NADPH-binding domains (24). NOX in turn
transfers electrons from NADPH to FAD, the heme group, and
then to O, resulting in O3~ and/or H,0, production (25).

2.2.2 NOXs activation in ED

The main subtypes of NOX in ECs include NOX1, NOX2,
NOX4, and NOX5 (25, 26). The catalytic product of NOXI,
NOX2, and NOX5 is 037, while the catalytic product of NOX4 is
H,0, (Figure 3). NOX complexes consist of catalytic subunits
(NOX) and regulatory subunits, with the exception of NOXS5,
which consists of only one catalytic subunit (22). NOX2 is the
first NOX isoform identified in ECs and represents the most
widely and deeply studied isoform; therefore, we first discuss its
activation mechanism. Under resting conditions, NOX2 and
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FIGURE 1

Endothelial dysfunction and Disease. Endothelial dysfunction is involved in the pathophysiological process of various diseases (10-17), such as
atherosclerosis, hypertension, coronary atherosclerotic heart disease, ischemic stroke, acute lung injury, acute kidney injury, diabetic

retinopathy, and Alzheimer's disease.

p22phox are located on the membrane as inactive complexes
while p40phox, p67phox, and p47phox subunits are located in
the cytoplasm (22). Activation of NOX2 also requires the small
GTPase Racl. Activation of Racl initiates NOX2, and Racl is
recruited to the membrane and then recruits other cytosolic
components (27). p47phox is then phosphorylated by protein
kinase C (PKC) and transferred to the membrane together with
p67phox and p40phox (28). Next, the phosphorylation of
p47phox can combine with p22phox to realize the assembly
and activation of the NOX2 complex (29). The basal activity of
NOX2 in ECs is low, although it is rapidly activated by
pathological causative factors, such as hyperlipidemia,
hypertension, and hyperglycemia (30). EC injury in the early
stages of vascular disease has been reported to be mediated by
excess NOX2-derived superoxide (31). Similar to NOX2, NOX1
activation requires the assembly of multiple subunits. During
NOXI1 activation, the activation function of p67phox is
performed by NOXA1 and the organizer function of p47phox
is performed by NOXOL1 (32, 33). Compared with p47phox,

Frontiers in Immunology

03

NOXO1 does not contain an auto-inhibitor domain; therefore,
the NOX1-NOXO1-NOXA1 complex has high basal activity
(29). Reports have indicated that endothelin-1 (ET-1)
overexpression in ECs promotes atherosclerosis progression
through NOXI1 in type 1 diabetes, perivascular oxidative stress,
and inflammation (34). Furthermore, NOXI is involved in
eNOS uncoupling in ECs. For example, Youn et al. found that
NOX1 activation in streptozotocin-induced diabetic mice is
dependent on p47phox and NOXOI1 and mediates eNOS
uncoupling. NOX1 knockout mice are protected from ED
(35). NOX4 is the most highly expressed NOX homolog in
ECs. Compared to NOX1 and NOX2, activation of NOX4
requires only p22phox and polymerase delta-interacting
protein 2 (Poldip2) (30, 36). Several studies have suggested
that NOX4 plays an important role in ED. For example, Jiang
et al. found that NOX4 knockdown attenuated pulmonary ROS
production in septic mice, attenuated redox-sensitive activation
of the CaMKII/ERK1/2/MLCK pathway, and restored the
expression of the tight junction proteins ZO-1 and occludin to
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FIGURE 2

Sources of ROS in ECs. ROS in ECs are mainly derived from mitochondria, NOXs, eNOS uncoupling, and XO. ETC electron transport chain,
eNOS endothelial nitric oxide synthase, FAD flavin adenine dinuc-leotide, Fe-S iron-sulfur center, Mo-co molybdenum cofactor, MOMP mi-
tochondrial outer membrane permeabilization, NOX NADPH oxidase, SOD superoxide dismutase, GPX glutathione peroxidase, PRX peroxired-
oxin, CAT catalase, O5 superoxide, ONOQO® peroxynitrite anion, H,O, hydrogen peroxide, OH" peroxyl radical, L lipid, L" lipid free radical, LOO*
lipid peroxy radical, LOOH lipid peroxide, UA uric acid, X xanthine, XO xanthine oxidase.

NADPH NADP+ NADPH NADP+

NADPH NADP+ NADPH NADP+

FIGURE 3

The structure of NOXs. The main subtypes of NOX in ECs include NOX1, NOX2, NOX4, and NOX5. The catalytic product of NOX1, NOX2, and
NOX5 is O57, while the catalytic product of NOX4 is H,O,.
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maintain the integrity of the EC barrier (37). Zhao et al. showed
that tert-butyl hydroperoxide (t-BHP) induces EC apoptosis
through NOX4 (38). However, there are also reports that
NOX4 protects ECs during oxidative stress. This may be
related to the generation of H,O, by NOX4. H,0, is
considered an important signaling intermediate because of its
ability to selectively and reversibly oxidize reactive cysteine
residues, thereby altering the function of protein targets
including phosphatases, kinases, ion channels, and
transcription factors (39). In EC, these effects ultimately lead
to increased expression and activity of important
angioprotective enzymes, including eNOS (40). Furthermore,
unlike superoxide, H,O, does not react appreciably with NO,
and thus does not reduce NO bioavailability (39). Unlike NOXI,
NOX2, and NOX4, the activation of NOX5 does not depend
on other subunits. NOX5 contains an N-terminal calmodulin-
like domain with four Ca2+ binding sites (EF hands) (39).
Therefore, NOX5 activity can be directly regulated by
changes in the intracellular [Ca2+]. Evidence suggests that
NOX5 plays an important role in ED. Silva et al. found
that lysophosphatidylcholine drives NOX5-dependent ROS
production in ECs via calcium influx, leading to ED (40).
Elbatreek et al. found that NOX5 overexpression in mice
caused eNOS uncoupling, thus leading to ED (41). Therefore,
ROS derived from NOXs play an important role in
mediating ED.

2.3 eNOS uncoupling

Nitric oxide (NO) plays an important role in maintaining
vascular homeostasis owing to its vasodilatory effects. Nitric
oxide synthase (NOS) is synthesized from l-arginine and O, and
represents a key enzyme involved in nitric oxide (NO) synthesis.
There are three subtypes of NOS: neuronal NOS (nNOS),
inducible NOS (iNOS), and endothelial NOS (eNOS) (42).
NOS functions as a homodimer during NO biosynthesis. Each
monomer has an oxygenase domain at the N-terminus and a
reductase domain at the C-terminus. The oxygenase domain
consists of binding sites for FAD, FMN, and NADPH and is
linked to the reductase domain through a calmodulin
recognition site. The reductase domain contains binding sites
for heme, tetrahydrobiopterin (BH4), and l-arginine. The
formation of NO requires electron flow, which starts at the
flavin level in the reductase domain and ends at the heme level in
the oxygenase domain (7). Specifically, NADPH releases
electrons in the reductase domain and transfers them to heme
via FAD and FMN. In the presence of l-arginine and cofactor
BH4, electrons can reduce O, to form NO and l-citrulline (43,
44). The presence of BH4 is critical for NO formation because it
is involved in l-arginine binding and electron transfer. During
ED, BH4 depletion is considered the main mechanism by which
eNOS uncoupling generates ROS (45, 46). In fact, in the absence
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of BH4, l-arginine cannot bind to its site and the terminal
electron acceptor becomes O,, thus forming O3~ instead of
NO, a process defined as eNOS uncoupling (47, 48). Notably,
ROS derived from the NOX system are closely related to the
depletion of BH4 (30). Furthermore, O3 reacts with NO to form
ONOO?’, which can lead to the oxidation of iron-sulfur centers
and eNOS core ZnS4 (4, 49). Taken together, these results
suggest that eNOS decoupling is closely associated with
ED (Figure 2).

2.4 Xanthine oxidase

Xanthine oxidoreductase (XOR) exists in two different
forms, xanthine dehydrogenase (XDH) and XO, and they
represent the rate-limiting enzymes in purine metabolism (50).
Normally, XOR exists in the cells in the form of XDH. XDH is a
homodimer of approximately 300 kDa, with four redox centers
in each subunit: a molybdenum cofactor (Mo-co), two iron-
sulfur (Fe-S) centers, and a flavin adenine dinucleotide (FAD)
domain (51). XDH catalyzes the oxidation of hypoxanthine to
xanthine and xanthine to uric acid at the Mo-co site, and
electrons shuttle through two Fe-S centers to the FAD binding
site, where NAD+ is reduced to NADH (51). Under
physiological conditions, XOR is mainly present in ECs in the
form of XDH (52). XDH can break down hypoxanthine into uric
acid (53) and reduce nitrite to produce NO, which helps regulate
vasodilation and blood pressure (53). However, under oxidative
stress conditions, ROS can oxidize cystine thiols on XDH,
resulting in the conversion of XDH to XO (30, 54). The main
difference between XO and XDH is their oxidative substrate
affinity, where XO has a reduced affinity for NAD+ and more
than 11-fold increased affinity for O, (54). While promoting the
decomposition of hypoxanthine into uric acid, XO generates O3~
through one-electron reduction, and H,O, through two-electron
reduction (55). Reports have indicated that XO-induced ED is
closely related to its by-products, including ROS and uric acid
(56, 57). Intracellular uric acid can exacerbate oxidative stress in
ECs, thereby causing ED (52). Therefore, XO is an important
source of ROS in ECs and closely related to ED (Figure 2).

3 Pyroptosis

Pyroptosis is a type of programmed cell death caused by
various stimuli. The molecular features of pyroptosis include
inflammasome assembly and activation, membrane pore
formation, and pro-inflammatory cytokine maturation and
release. Depending on whether pyroptosis requires caspase-1
activation, it can be divided into the classical and non-classical
inflammasome pathways.
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3.1 Inflammasome

The inflammasome is composed of the intracellular
recognition receptor, adaptor protein apoptosis-associated
speck-like protein (ASC), and effector protein caspase-1 (57).
The intracellular recognition receptors that constitute the
inflammasome include the NOD-like receptor (NLR) protein
family of AIM2-like receptors (ALRs) and pyrin, which can
directly or indirectly activate ASC to activate caspase-1 (58, 59).
Structurally, these intracellular recognition receptors contain a
CARD or PYD domain at their N-terminus. ASC contains a PYD
structure and a CARD domain, and caspase-1 contains a CARD
domain (60). The intracellular recognition receptors NLRP1,
NLRP3, NLRP6, AIM2, and pyrin all contain PYD at their N-
termini, whereas NLRP1 and NLRC4 contain CARD (57,
61) (Figure 4).

3.2 Gasdermin D: A mechanism of cell
swelling in pyroptosis

Gasdermin D (GSDMD), a family of pore-forming effector
proteins, is thought to be the executor of pyroptosis. GSDMD is
a member of the gasdermin protein family, which includes
GSDMA, GSDMB, GSDMC, GSDMD, GSDME (also known
as DFNADS), and PJVK (also known as DFNB59). Most members
of this family have been shown to exhibit pore-punching effects
(62). Among these, the most extensive and in-depth research has
been performed on GSDMD. GSDMD is composed of a pore-
forming domain (PFD), linker, and repressor domain (RD) (62,

10.3389/fimmu.2022.1039241

63) (Figure 4). The PFD (also known as N-GSDMD) is located at
the N-terminus and consists of 242 amino acids. This part is an
important structure for the GSDMD to perform the punching
function. RD (also known as C-GSDMD) is located at the C-
terminus and consists of 199 amino acids, which is an important
structure for inhibiting GSDMD function (63). The linker
between PFD and RD is composed of 43 amino acids, and this
part is the switch for GSDMD activation (63). During
pyroptosis, the linker of GSDMD can be cleaved by activated
caspase-1 or caspase-4/5/11, and C-GSDMD dissociates from
GSDMD, releasing its inhibitory effect on N-GSDMD (64, 65).
Subsequently, N-GSDMD was integrated into the cell
membrane, and approximately 16 PFD monomers were
oligomerized to form membrane pores with a diameter of 10-
15 nm. The formation of membrane pores causes a loss of cell
membrane integrity and breaks the osmotic pressure barrier of
the plasma membrane (62, 66). Under normal circumstances,
intracellular sodium ions are low and potassium ions are high.
However, extracellular fluid is high in sodium ions and low in
potassium ions. The formation of this intracellular and
extracellular ion concentration difference is dependent on the
Na® pump (Na'-K"-ATPase). Na™-K*-ATPase is widely
expressed on the cell membrane surface and acts as a sodium-
potassium antiporter. Each Na*-K*-ATPase can transport three
sodium ions from the intracellular to extracellular space and two
potassium ions into the cell by consuming one molecule of ATP
(67). This asymmetric cation transport mechanism plays an
important role in maintaining differences in the chemical
concentration gradients of sodium and potassium ions inside
and outside the cell. Notably, this asymmetric cation transport
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FIGURE 4

Molecular structures involved in pyroptosis. The inflammasome is composed of the intracellular recognition receptor, adaptor protein ASC, and
effector protein caspase-1. GSDMD, a family of pore-forming effector proteins, is thought to be the executor of pyroptosis. ASC apoptosis-
associated speck-like protein, CARD, caspase-recruitment domain, FIIND function-to-find domain, GSDMD Gasdermin D, LRR leucine-rich
repeat domain, NBD nucleotide-binding domain, PFD pore-forming domain, PYD pyrin domain, RD repressor domain.
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mechanism mediates cell swelling together with N-GSDMD.
Specifically, when N-GSDMD forms pores in the cell membrane,
the force generated by the concentration gradient expelling
potassium ions out of the cell is roughly offset by the electric
field force that pulls potassium ions into the cytoplasm, resulting
in the passage of potassium ions through the membrane pores.
Therefore, the flux is minimized. In contrast, both the sodium
ion concentration gradient and electric field force promote the
entry of sodium ions into cells, resulting in a large influx of
sodium ions (62). The influx of sodium ions is accompanied by
the entry of water molecules, which causes cells to swell or
even rupture.

Physiologically, interleukin-1 (IL-1B) and interleukin-18
(IL-18) exist in inactive precursor forms, namely pro-IL-1f3 and
pro-IL-18 (62). However, during pyroptosis, activated caspase-1
cleaves pro-IL-1B and pro-IL-18 to produce mature IL-1f and
IL-18 (53). Unlike other cytokines, mature IL-1f3 and IL-18 are
not secreted out of cells via the endoplasmic reticulum-Golgi
pathway; rather, this action depends on N-GSDMD (68, 69).
Therefore, N-GSDMD is an important channel for the secretion
of mature IL-1B and IL-18 into the extracellular space
during pyroptosis.

3.3 Pyroptosis pathway

Depending on whether pyroptosis requires caspase-1
activation, it can be divided into the classical and non-classical
inflammasome pathways (Figure 5). The classical inflammasome
pathway mainly includes the assembly and activation of
inflammasomes, formation of porins, and maturation and
secretion of IL-1B and IL-18. Specifically, intracellular and
extracellular PAMPs or DAMPs (e.g., viral dsDNA, bacterial
lipopolysaccharide, extracellular ATP, ox-LDL, and cholesterol
crystals) can promote inflammasome assembly and activation.
Inflammasomes activate pro-caspase-1 via self-cleavage.
Activated caspase-1 cleaves the porin GSDMD to generate
mature N-GSDMD (70) and cleaves pro-IL-1B and pro-IL-18
to generate mature IL-1f3 and IL-18 (70). Compared with the
classical inflammasome pathway, activation of the non-
canonical inflammasome pathway does not require the
assembly and activation of the inflammasome. The bacterial
cell wall component lipopolysaccharide can activate caspase-11
(human) or caspase-4/5 (murine) (71, 72). Activated caspase-4/
5/11 cleaves GSDMD to generate mature N-GSDMD (64, 65).
Subsequently, N-GSDMD is integrated into the cell membrane
to form membrane pores that mediate pyroptosis.

4 ROS trigger pyroptosis in EC

Among the classical inflammasome pathways, NLRP3
inflammasome-mediated pyroptosis is the most extensively
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studied. The NLRP3 inflammasome is composed of the
intracellular sensor protein NLRP3, adaptor protein ASC, and
effector protein pro-caspase-1 (70, 73). NLRP3 inflammasome
activation is thought to include multiple upstream signals, most
of which are not mutually exclusive, including potassium (K+)
efflux (74, 75), calcium flux (76), endoplasmic reticulum stress
(77), mitochondrial dysfunction (78), ROS (79), and lysosomal
disruption (80). Notably, ROS, as upstream signals of NLRP3
inflammasome activation, play an important role in NLRP3
inflammasome activation (81-83). Overall, the mechanism by
which ROS activate the NLRP3 inflammasome involves two
important processes: the initiation phase and the activation
phase. The initiation signal indicates that ROS can upregulate
the expression of NLRP3, pro-caspase-1, and pro-IL-1B (79).
During the activation stage, ROS can promote the assembly and
activation of the NLRP3 inflammasome, and thioredoxin-
interacting protein (TXNIP) plays an important role in this
process. TXNIP has been identified as a reduced thioredoxin
protein (Trx) binding protein. When cells are in a quiescent
state, TXNIP interacts with the redox domain of Trx and is
considered a negative regulator of Trx. However, when
intracellular ROS are increased, Trx is oxidized, thus leading
to the dissociation of TXNIP from Trx, which subsequently
interacts with NLRP3, leading to the assembly and activation of
the NLRP3 inflammasome (84, 85).

Numerous recent studies have shown that NLRP3
inflammasome activation plays an important role in mediating
ED (61). Increasing evidence has shown that certain stimuli,
such as oxidized low-density lipoprotein, hyperglycemia, and
nicotine, can activate the NLRP3 inflammasome in EC, thus
leading to endothelial cell death. For example, Wu et al. found
that ox-LDL induced the upregulation of NLRP3, caspase-1, and
IL-1B in ECs in a dose-dependent manner (86). Hang et al.
found that ox-LDL stimulated NLRP3 inflammasome activation,
increased IL-1f and IL-18 maturation and secretion, increased
intracellular ROS, and increased lactate dehydrogenase (LDH)
release in ECs (87). Chen et al. found that ox-LDL could induce
increases in ROS and upregulate the expression of ICAM-1,
TXNIP, NLRP3, and caspase-1 in ECs (88). Zhuang et al. found
that forkhead box P transcription factor 1 (Foxpl) is a negative
regulator of NLRP3 inflammasome activation in ECs, and they
also revealed found that Foxpl is significantly downregulated in
atherosclerosis-susceptible endothelium and Foxpl knockout in
ApoE-/- mice exacerbates atherosclerosis. Subsequently, NLRP3,
caspase-1, and pro-IL-1f were significantly upregulated and IL-
1P secretion was increased. The team further demonstrated that
Foxpl is a gatekeeper of vascular inflammation and a
transcriptional repressor; moreover, it can inhibit the
expression of NLRP3, caspase-1, and pro-IL-1 from the
transcription initiation level (60). Numerous studies have
shown that NOX4 plays an important role in mediating
endothelial dysfunction in type 2 diabetes (89). For example,
Liao et al. performed in vitro and in vivo experiments and found
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that high glucose levels can promote the generation of ROS in
ECs by upregulating NOX4 (90). Li et al. found that high levels
can upregulate the expression of NOX4, NLRP3, and caspase-1
in ECs and showed that high glucose-induced NLRP3
inflammasome activation was dependent on NOX4 and
mediates EC tight junction barrier disruption (91). Dunn et al.
found that high glucose levels can upregulate TXNIP expression
to induce endothelial dysfunction. In addition, the team found
that knockdown of TXNIP could alleviate high glucose-
mediated endothelial dysfunction (92). Chen et al. found that
silencing NLRP3 could reverse the high glucose-induced
upregulation of NLRP3, caspase-1, IL-1B, IL-18, and ICAM-1,
and they further found that ROS scavengers could reverse the
high glucose-induced upregulation of IL-1B and IL-18 in ECs.
Furthermore, the team found that TXNIP knockdown inhibited
IL-1B and IL-18 maturation (8). Wu et al. found that nicotine
could induce upregulation of NLRP3, caspase-1, ASC, IL-13, and
IL-18 expression in ECs, DNA damage, and LDH release, and
they also found that N-acetylcysteine (NAC) could inhibit
nicotine-induced inflammasome activation and alleviate DNA
damage, indicating that nicotine mediates NLRP3
inflammasome activation in ECs through ROS. The team
further found that the knockdown of NLRP3 or ASC could
inhibit nicotine-induced activation of the NLRP3 inflammasome
in ECs. Similarly, the caspase-1 inhibitor VP-765 also inhibits
nicotine-induced activation of the NLRP3 inflammasome in ECs
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(93). Zhang et al. found that nicotine could activate the NLRP3
inflammasome in EC. The team further found that NLRP3
inflammasome activation can promote the destruction of tight
junction proteins between ECs, resulting in increased vascular
permeability (94). Cau et al. found that Ang-II induces
endothelial dysfunction, vascular remodeling, and
hypertension through NLRP3 inflammasome activation (95).
In conclusion, stimulatory factors, such as ox-LDL,
hyperglycemia, nicotine, and Ang II, can cause an increase in
ROS in ECs. In endothelial cells, ROS acts as a bridge between
pathological stimuli such as ox-LDL, hyperglycemia, Ang II, and
nicotine and the activation of the NLRP3 inflammasome. The
ROS-triggered NLRP3 inflammasome activation process in ECs
involves two key steps: the initiation and activation phases. The
initiation phase refers to the ROS-induced upregulation of
NLRP3, caspase-1, IL-1B3, and IL-18 in EC. The activation
phase refers to ROS promoting the assembly and activation of
the NLRP3 inflammasome through TXNIP. NLRP3
inflammasome activation promotes the maturation of IL-1B
and IL-18 and can mediate the formation of porin N-GSDMD,
thus causing cell swelling and even rupture, which lead to cell
death. In addition, the formation of membrane pores promotes
the release of cellular components, including IL-1f3, IL-18, and
HMGBI, which are involved in inflammatory responses. IL-1f3,
1L-18, and HMGBI1 can bind to the EC surface at IL-1R, IL-18R,
and TLR, respectively, and upregulate the expression of ICAM-1
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and VCAM-1 via the Myd88/IRAK-1/TRAF-6/NF-kB pathway.
In addition, NLRP3 inflammasome activation can disrupt tight
junction proteins between EC, resulting in increased vascular
permeability (Figure 6).

5 ROS trigger parthanatos in ECs

Parthanatos is a type of programmed cell death that is
dependent on poly (ADP-ribosome) polymerase 1 (PARP-1)
(96, 97). PARP-1 is an ADP-ribosyltransferase that transfers
ADP ribose from nicotinamide adenine dinucleotide (NAD+) to
receptor proteins (98, 99). PARP-1 was originally described as a
DNA nick sensor enzyme activated by DNA single- and double-
strand breaks (100). DNA damage-induced activation of PARP-
1 is considered the classical pathway for the activation of this
enzyme. ROS, ionizing radiation, and alkylating agents are
common causes of DNA fragmentation (101-103). PARP-1
activation depends on the degree of DNA damage. However,
when DNA is extensively damaged, the overactivation of PARP-
1 causes the accumulation of poly (ADP-ribose) (PAR), a
process that consumes large amounts of NAD+. NAD+ is a
direct substrate for the synthesis of PAR and a cofactor in many
redox reactions, such as the tricarboxylic acid cycle, glycolysis,
and pentose phosphate pathway (104, 105). Furthermore, the
translocation of PAR from the nucleus to the mitochondria

10.3389/fimmu.2022.1039241

causes the release of apoptosis-inducing factor (AIF) (106, 107).
After AIF leaves the mitochondria, it forms a complex with the
macrophage migration inhibitory factor (MIF) in the cytoplasm.
Subsequently, nuclear translocation of the AIF/MIF complex
causes chromatin condensation and DNA fragmentation,
ultimately leading to cell death (108-110) (Figure 7).

In recent years, many studies have shown that stimuli such
as ROS, Ang II, ox-LDL, and hyperglycemia can trigger the
occurrence of parthanatos in ECs. For example, Mathews et al.
found that H,O, and ONOO could activate PARP-1 in ECs,
leading to EC death. Knockdown of PARP-1 inhibits H,O, or
ONOO?" triggered EC death (111). Liang et al. observed DNA
damage and increased PARP-1 expression and activity in a
model of Ang II-induced EC oxidative stress (112). Zhang
et al. found that ox-LDL can induce coronary EC damage that
is independent of caspase but dependent on the nuclear
translocation of AIF (113). Wang et al. found that PARP1 was
a key factor in the upregulation of arginase IT (Arg IT) induced by
ox-LDL (114). Arg II results in reduced NO synthesis by
competing with eNOS for the same substrate, I-arginine (115-
117). PARP1 deficiency results in suppressed Arg II expression,
enhanced eNOS expression, and improved NO production and
endothelial function (114). Choi et al. found that enhanced
PARP-1 activity is closely related to coronary artery
endothelial dysfunction in mice with type 2 diabetes. The team
further found that inhibition of PARP-1 activity restored eNOS
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phosphorylation and alleviated DNA damage, thereby
improving ED (118). Taken together, ROS can cause extensive
DNA damage that leads to the hyperactivation of PARP-1 and
triggers parthanatos in EC.

6 ROS trigger ferroptosis in ECs

Ferroptosis is an iron-dependent process involving
programmed cell death. Lipid peroxidation, which is the
process by which OH" attacks the carbon-carbon double
bonds of lipids, particularly polyunsaturated fatty acids
(PUFAs) (119), is an important marker for ferroptosis.
Therefore, the production of OH" is a key factor in the lipid
peroxidation process. O3~ reacts with H,O, under the catalysis
of Fe** to form Fe’*, OH", and OH’, which is called the Fenton
reaction. In addition, O3~ reacts with Fe’* to form Fe*" in a
process called the Haber-Weiss cycle. Lipid peroxidation can be
divided into three stages: initiation, propagation, and
termination. In the initial stage, OH" interacts with lipids to
form carbon-centred lipid radicals (L°). L’ reacts with oxygen to
generate a lipid peroxy radical (LOO"), which further generates a
new L° (propagating phase) and lipid hydrogen peroxide
(LOOH) from another molecular lipid. L° and LOOH
produced during the propagation stage can be terminated by
antioxidant molecules of the mevalonate pathway, such as
coenzyme Q10 (CoQ 10) and vitamin E (VitE) (120-122). In
addition, studies have shown that iron chelators, such as
deferoxamine (DFO) and ciclopirox olamine (CPX), can
inhibit the occurrence of ferroptosis by inhibiting lipid
peroxidation (122-125).
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Lipid peroxidation is regulated by the glutathione
antioxidant system, which is composed of glutathione (GSH),
glutathione peroxidase (GPX), and glutaredoxin (GRX), and it
can effectively prevent ROS overgeneration (126, 127).
Glutamate, cystine, and glycine are the raw materials used for
the synthesis of GSH. Cystine enters the cell through the amino
acid antiporter Xc system, which is composed of the light chain
subunit SLC7A11 and the heavy chain subunit SLC3A2. The Xc
system exchanges cystine with glutamate in such a way that
cystine enters the cell and is further reduced to cysteine (128).
Glutamate cysteine ligase (GCL) catalyzes the formation of y-
glutamate-cysteine from glutamate and cysteine, which is the
rate-limiting step in GSH synthesis. Subsequently, y-glutamic
acid cysteine and glycine are catalyzed by GSH synthase (GSS) to
generate GSH (129). GSH effectively maintains Gpx in a reduced
state. Gpx can effectively scavenge intracellular hydrogen
peroxide and peroxide to maintain intracellular redox
homeostasis (130). Eight different Gpxs (Gpx1-8) have been
found in humans, and Gpx1-4 and Gpx6 are selenoproteins
(131). Compared with other members of the Gpx family, Gpx4 is
a lipid peroxidation-repair enzyme, and it can convert lipid
peroxides (LOOH) to their corresponding alcohols (LOH) (122,
132). Therefore, Gpx4 is considered a central inhibitor of
ferroptosis. Numerous studies have shown that inhibiting the
Xc-GSH-Gpx4 antioxidant system can induce ferroptosis in
cells. For example, erastin, sulfasalazine (SAS), and sorafenib
initiate ferroptosis in cells by inhibiting the Xc system (133, 134).
Butionine sulfoxamine (BSO) induces ferroptosis by inhibiting
GCL (134), while RSL3 can initiate ferroptosis in cells by
inhibiting the activity of Gpx4 (135) (Figure 8).

In recent years, studies have shown that ferroptosis is closely
related to endothelial cell death. For example, Qin et al. found
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that zinc oxide nanoparticles (ZnONPs) could induce iron and
lipid peroxidation in ECs in a dose- and time-dependent manner
(136). The team further applied the lipid reactive oxygen species
scavenger ferrostatin-1 and the iron chelator DFO to alleviate
ZnONP-induced ferroptosis in ECs (22). Luo et al. showed that
ferroptosis is related to ED and that the p53-xCT-GSH axis can
regulate the process of EC ferroptosis (137). Sheng et al. showed
that lysophosphatidylcholine (LPC) can induce increased
intracellular iron and lipid peroxide levels and mitochondrial
atrophy in EC. This process can be reversed by astragaloside IV
(AS-IV) (138). Therefore, ferroptosis is an important
mechanism by which ROS trigger programmed cell death in EC.

7 Outlook

In conclusion, hyperlipemia, hyperglycemia, nicotine and
hypertension are common pathogenic factors causing impaired
NO synthesis in EC, up-regulated expressions of pro-
inflammatory cytokines and intercellular adhesion factors in
EC, and EC death. ROS may be the common mechanism for
these pathological activities (8, 9, 86, 91, 93, 95). Under
pathological conditions, ROS in EC mainly originates from
mitochondria, NOXs, eNOS uncoupling, and XO (4, 5). In
addition, these pathways may independently or jointly cause
excessive accumulation of ROS in EC. ROS can cause impaired
NO synthesis through the eNOS uncoupling mechanism,
thereby causing vasomotor dysfunction (7). ROS can up-

10.3389/fimmu.2022.1039241

regulate the expression of pro-inflammatory cytokines and
intercellular adhesion factors in endothelial cells, such as IL-
1B, IL-18, ICAM-1, VCAM-1, and E-selectin, which are
participates the process of monocyte-endothelial cell adhesion,
increased vascular permeability, and monocyte differentiation to
macrophages (8, 9). Therefore, ROS is an important signal that
mediates the involvement of EC in inflammatory responses.
Furthermore, ROS can trigger endothelial cell death through
different molecular mechanisms, including pyroptosis,
parthanatos, and ferroptosis, which have been demonstrated in
some animal models of disease. For example, Zhuang et al. found
that Foxpl expression was significantly downregulated in
atherosclerosis-susceptible endothelium. The team further
demonstrated that knockout of Foxpl in ApoE-/- mice
promoted the up-regulation of NLRP3, caspase-1 and Pro-IL-
1B, increased IL-1[3 secretion, and enhanced monocyte adhesion,
migration and Infiltrates into the vessel wall of the aortic root,
thereby exacerbating the formation of atherosclerotic plaques
(60). Wu et al. found that nicotine can mediate the pyroptosis of
aortic endothelial cells and exacerbate the formation of
atherosclerotic plaques by constructing an ApoE-/- mouse
atherosclerosis model (93). Kong et al. found that targeting the
P2X7/NLRP3 signaling pathway prevents retinal endothelial cell
pyroptosis in diabetic retinopathy (139). Kasson et al. showed
that enhanced NF-«B activity impairs vascular function in male
type 2 diabetic mice through a PARP-1, Sp-1 and COX-2-
dependent mechanism (140). Abdul et al. found that
ferroptosis in brain microvascular endothelial cells of diabetic
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mice is closely related to vascular degeneration and
neurovascular remodeling after stroke, and this process can be
reversed by DFO (141). Therefore, how to effectively scavenge
ROS may be an important target for the treatment of endothelial
cell death-related diseases. For example, N-acetylcysteine (NAC)
is a potent ROS scavenger. Studies have shown that NAC
inhibits pyroptosis, parthanatos, and ferroptosis by scavenging
ROS (93, 142, 143). However, the following question about ROS-
triggered EC death is unresolved and remains to be further
explored: Do pyroptosis, parthanatos, and ferroptosis processes
occur independently or simultaneously in the process of ROS-
triggered EC death?
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ASC
ALR
Ang II
AIF
Arg II
ATP
BSO
CARD
CoQ 10
CPX
DFO
DUOX
EC

ED

ER
ET-1
ETC
FAD
FIIND
Foxpl
GSDMD
Gpx
Grx
GSH
GSS
HMGCoA
HMGBI1
Hsp
ICAM-1
IL-1b
1L-18
IL-1R
IL-18R
IRAK
LDH
LPS
MIF

Mo-co
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apoptosis-associated speck-like protein
AIM2-like receptors
angiotension

apoptosis inducing factor
arginase II

Adenosine triphosphate
Butionine sulfoxamine
caspase-recruitment domain
coenzyme Q10

ciclopirox olamine
deferoxamine

dual oxidases

endothelial cell

endothelial dysfuction
endoplasmic reticulum
endothelin-1

electron transport chain
flavin adenine dinucleotide
function-to-find domain
Forkhead box P transcription factor 1
Gasdermin D

glutathione peroxidase
glutaredoxin

glutathione

GSH synthase

3-hydroxy-3-methyl-glutaryl-coenzyme A

high mobility group box 1

heat shock protein

intercellular adhesion molecule-1
interleukin-1b

interleukin-18

IL-1 receptor

IL-18 receptor

IL-1R-associated kinase

lactate dehydrogenase
lysophosphatidylcholine
macrophage migration inhibitory factor

molybdenum cofactor

16

10.3389/fimmu.2022.1039241

frontiersin.org


https://doi.org/10.3389/fimmu.2022.1039241
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis
	1 Introduction
	2 Sources of ROS in ECs
	2.1 Mitochondria
	2.2 NAPDH oxidase
	2.2.1 Structure
	2.2.2 NOXs activation in ED
	2.3 eNOS uncoupling

	2.4 Xanthine oxidase

	3 Pyroptosis
	3.1 Inflammasome
	3.2 Gasdermin D: A mechanism of cell swelling in pyroptosis
	3.3 Pyroptosis pathway

	4 ROS trigger pyroptosis in EC
	5 ROS trigger parthanatos in ECs
	6 ROS trigger ferroptosis in ECs
	7 Outlook
	Author contributions
	Funding
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


