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Background: Periodontitis (PD), an age-related disease, is characterized by

inflammatory periodontal tissue loss, and with the general aging of the global

population, the burden of PD is becoming a major health concern.

Nevertheless, the mechanism underlying this phenomenon remains

indistinct. We aimed to develop a classification model for PD and explore the

relationship between aging subtypes and the immune microenvironment for

PD based on bioinformatics analysis.

Materials and Methods: The PD-related datasets were acquired from the Gene

Expression Omnibus (GEO) database, and aging-related genes (ARGs) were

obtained from the Human Aging Genomic Resources (HAGR). Four machine

learning algorithms were applied to screen out the hub ARGs. Then, an artificial

neural network (ANN) model was constructed and the accuracy of the model

was validated by receiver operating characteristic (ROC) curve analysis. The

clinical effect of the model was evaluated by decision curve analysis (DCA).

Consensus clustering was employed to determine the aging expression

subtypes. A series of bioinformatics analyses were performed to explore the

PD immune microenvironment and its subtypes. The hub aging-related

modules were defined using weighted correlation network analysis (WGCNA).

Results: Twenty-seven differentially expressed ARGs were dysregulated and a

classifier based on four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB) was

constructed to diagnose PD with excellent accuracy. Subsequently, the

mRNA levels of the hub ARGs were validated by quantitative real-time PCR

(qRT-PCR). Based on differentially expressed ARGs, two aging-related subtypes

were identified. Distinct biological functions and immune characteristics

including infiltrating immunocytes, immunological reaction gene sets, the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042484/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042484/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042484/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042484/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042484/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1042484/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1042484&domain=pdf&date_stamp=2022-11-01
mailto:500133@hospital.cqmu.edu.cn
https://doi.org/10.3389/fimmu.2022.1042484
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1042484
https://www.frontiersin.org/journals/immunology


Peng et al. 10.3389/fimmu.2022.1042484

Frontiers in Immunology
human leukocyte antigen (HLA) gene, and immune checkpoints were revealed

between the subtypes. Additionally, the black module correlated with subtype-

1 was manifested as the hub aging-related module and its latent functions

were identified.

Conclusion: Our findings highlight the critical implications of aging-related

genes in modulating the immune microenvironment. Four hub ARGs (BLM,

FOS, IGFBP3, and PDGFRB) formed a classification model, and accompanied

findings revealed the essential role of aging in the immune microenvironment

for PD, providing fresh inspiration for PD etiopathogenesis and

potential immunotherapy.
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Introduction

Periodontitis (PD) is a considerably prevalent chronic

inflammatory disease, which results in irreversible destruction

of alveolar bone, causing tooth mobility and drifting (1). While

PD is the sixth-most common disease, almost 50% of adults have

PD, and 9.8% (796 million people) suffer from its severe form (2,

3). More importantly, epidemiological studies implicate chronic

systemic inflammation or infection attributed to PD as an

independent risk factor for aging-related diseases such as

diabetes mellitus and hypertension (4, 5).

Aging is defined as a time-dependent functional deterioration

that generates numerous chronic and age-related pathologies (6).

Overwhelming research reported that aging plays vital roles in

various diseases such as cardiovascular disease (7, 8),

neurodegenerative disorders (9, 10), and tumors (11, 12). In

particular, aging affects the maintenance of bone remodeling

and metabolism, and the development of an inflammatory

environment leading to increased bone resorption (13). Besides,

aging influences immune systems including immune-cell function

and effector biomolecules, leading to processes reflecting

immunosenescence, immunoactivation and inflammaging (14,

15). The coincident loss of immune response capacity with

aging, accompanied by chronic low-grade inflammation, can

modify immunocompetence and accelerate the pathogenesis of

diseases (16). Furthermore, elderly individuals show increased

susceptibilities to autoimmune, infectious, and inflammatory

diseases, including PD (17, 18).

Data from epidemiological studies have demonstrated that

the prevalence of PD increases with aging, which is reflected in an

increase of proportion in moderate PD, with only slight changes

in mild and severe PD over the 30-80 year age range (19, 20), and
02
the prevalence of severe PD shows an aging-related increase with

the peak incidence being observed at young adult age (35-40

years) and remains stable at older ages (21). This indicates that the

increased prevalence and severity of PD is not an inevitable

consequence of aging. Rather, it is possible the complicated

result of altered disease susceptibility and host response

associated with aging. Aging alone does not cause severe loss of

periodontal attachment in healthy elderly individuals. Instead, the

effects of aging on periodontium are based on molecular changes

in the periodontal cells, which aggravate the process of PD in

elderly patients. Cytologically speaking, evidence showed that

cellular senescence, stem cell exhaustion, and immunoaging are

hallmarks of biological aging implicated in the breakdown of

periodontal homeostasis and the pathophysiology of PD (22).

Aging-related genes (ARGs) potentially affect periodontal

ligament stem cells (PDLSCs) in a complex way. For instance,

Li et al. found that the proliferation, osteogenic/adipogenic/

chondrogenic differentiation, and immunosuppressive ability of

PDLSCs decreases, whereas apoptosis increases with the aging

process (23). Notably, although bacteria are essential to initiate

the periodontal inflammatory reaction, the host immune reaction

ultimately causes periodontium destruction. Previous studies have

revealed that aging promotes pathogenic microbial colonization

while arousing a pro-inflammatory microenvironment to

exacerbate periodontal inflammation and bone loss (24–26).

Tan et al. found that inflamm-aging-related cytokines IL-17 and

IFN-g were associated with alveolar bone resorption in PD (27). A

non-human primate study revealed that the levels of

inflammatory mediators generally exhibit an age-related

increase (28). Results from human studies identified that older

individuals have a more severe inflammatory response in an

experimental gingivitis model, the gingival lesions from the
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older individuals contain greater composition of B-cells and a

lower density of polymorphonuclear leukocytes (29). However,

in-depth knowledge is required to fully uncover ARGs and to

expound comprehensive correlations between aging and the PD

immune microenvironment, which allows us to develop strategies

to maintain good oral health in the aging population and to

decrease the burden of PD.

Up to now, research about aging is mainly about its influence

in the tumor immune microenvironment (12). Similarly, the PD

immune microenvironment could be defined as the cellular

phenotypes, immune-related pathways, and immune-related

markers that are known to be affected by infiltrated immune

cells in the interstitial space of periodontium and by the

interactions between different cell types (30). Accordingly, it is

reasonable to hypothesize that aging must own substantial effects

on regulating the PD immune microenvironment. In the present

study, a series of bioinformatics approaches were employed to

excavate and screen hub candidate ARGs and to reveal the

relationship between PD immune microenvironment and aging,

followed by a flow chart of the study (Figure 1). Our findings

provide further insight into the role of ARGs in the PD immune

microenvironment. We hope that the classification model based

on the hub ARGs could reveal new molecular mechanisms of

how aging acts on PD, and improve the early diagnosis and

immunotherapy of PD.
Methods and materials

Data Collection and preprocessing

A total of five datasets, namely GSE16134-GPL570 (31),

GSE10334-GPL570 (32), GSE106090-GPL21827 (33),

GSE173078-GPL20301 (34), and GSE23586-GPL21827 (35),

were downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). More details of

the collected datasets were presented in Table S1. Probes were

annotated as the gene symbols. Probes without matching gene

symbols and matching multiple symbols were excluded. The

gene expression value of duplicate gene symbol was calculated as

the median value. The GSE16134 and GSE10334 dataset were

merged using the R package “inSilicoMerging” (36), and then the

batch effects were removed via ComBat method in the R package

“sva” (37) and finally the merging was randomly split at a 7:3

ratio into a training cohort and a testing cohort. The GSE106090,

GSE173078, and GSE23586 datasets were deployed as the

external validation datasets. A total of 307 ARGs were

obtained from Human Aging Genomic Resources (HAGR)

(https://genomics.senescence.info/genes/index.html) (38),

which were listed in Table S2.
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Identification and functional enrichment
analysis of differentially expressed
ARGs (DE-ARGs)

The criteria were formulated as |log2fold-change (FC)|>0.5

and p-value <0.05 to filter out differentially expressed genes

(DEGs) using the R package “limma” (39). Twenty-seven DE-

ARGs were identified under the intersection of 1251 DEGs and

307 ARGs from HAGR. A volcano plot and heatmap were used

to visualize the DE-ARGs using the R package “ggplot2” and

“pheatmap”, respectively. Principal component analysis (PCA)

was performed on the DE-ARGs using the R package

“factoextra” (https://cloud.r-project.org/package=factoextra/) to

show the clustering of samples with the first two components.

Subsequently, a protein-protein interaction (PPI) network was

constructed to assess the gene interactions among the DE-ARGs

using Search Tool for the Retrieval of Interacting Genes

(STRING, version 11.5, https://cn.string-db.org/) database (40)

with a confidence score >0.4 as the cut-off criterion, visualized

with Cytoscape software, V3.8.2 (41). Functional and pathway

enrichment analysis including Gene Ontology (GO) terms and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis were conducted on the DE-ARGs using Metascape

(https://metascape.org/gp/index.html). Based on their

membership similarities, terms with a p-value <0.01, a

minimum count of three, and an enrichment factor >1.5 were

collected and grouped into clusters.
Identification of hub ARGs by integrating
four machine learning algorithms

The Least Absolute Shrinkage and Selection Operator

(LASSO) logistic regression, Support Vector Machine-

Recursive Feature Elimination (SVM-RFE), and Random

Forest (RF) algorithms were employed independently to screen

out the candidate hub ARGs via the R package “glmnet” (42),

“e1071” (43) and “randomForest” (44), respectively. As for

LASSO, 10 cross-validation was performed to screen the

optimal tuning parameter (l). SVM is a monitored machine

learning technology extensively used for categorization and

regressive analysis. An RFE arithmetic was utilized to screen

the optimum genes from the training cohort for avoiding overfit.

Hence SVM-RFE was utilized to identify the gene set with the

greatest discrimination ability. RF analysis is an appropriate

approach with the benefits of no limits on variable conditions

and better accuracy, sensitivity, and specificity. Simultaneously,

univariate logistic regression was also implemented to identify

the hub ARGs. Ultimately, genes that overlapped among the four

machine learning algorithms were defined as the hub ARGs.
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Construction and verification of an
artificial neural network model based on
PD-related hub ARGs

ANN is a main part of deep learning affiliated to artificial

intelligence. The training cohort was used to construct an ANN

model using the R package “neuralnet” (45). The processed

training data were input into the ANN model; four input layers,

five hidden layers, and two output layers were set for the ANN.
Frontiers in Immunology 04
The R package “Caret” (46) was employed to perform 5-fold

cross-validation on the ANN model to reduce overfitting and

optimize the model. Besides, receiver operating characteristic

(ROC) (47) and decision curve analysis (DCA) (48) were utilized

for the robustness and clinical significance of the ANN model.

Subsequently, a hub-ARGs based classification model, which

was also known as “classifier” in this study, was verified in the

test cohort, as well as the external validation datasets by the

same token.
FIGURE 1

The work flowchart of the study (*p < 0.05, **p < 0.01, ***p < 0.001, and ns means not significant).
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Human sample collection and
specimen histology

The specimen of gingival tissue collection was divided into

two groups. The control group included four healthy gingival

tissues from four patients, which were required for crown

lengthening surgery, and signed informed consent to

participate in this experiment. The PD group was four gingival

tissues with PD lesions from four patients, which were diagnosed

as severe PD and required periodontal flap surgery and signed

informed consent to participate in the experiment. All gingival

tissue sizes were about 2 mm3. After excision, the tissues were

immediately placed in an RNA preservative reagent (RNAlater,

Invitrogen), and then stored at 4°C overnight. Subsequently, the

tissues were stored at −80°C until RNA extraction. Table S3

presents the clinical information including gender, age, and

exclusion criteria on the eight patients. As for specimen

histology, gingival tissues obtained from healthy patients and

PD patients were sequentially fixed in 4% buffered formalin for

48 h, dehydrated in graded ethanol, embedded in paraffin, and

cut into 5 mm sections. The sections were stained with

hematoxylin-eosin (HE) for histological analysis.
RNA extraction and quantitative
real-time PCR

The total RNA of 4 pairs of healthy and PD gingival tissues

(control group n = 4; PD group n = 4) from 8 patients was

extracted by RNAiso plus kit (TaKaRa) and reversely

transcripted to cDNA. qRT-PCR was carried out using SYBR

Premix Ex Taq (TaKaRa). The relative mRNA expression was

calculated using the 2△△CT method normalized to the level of

GAPDH. The primers of four hub ARGs and the internal control

gene are listed in Table S4.
Correlation analysis between hub ARGs
and immune characteristics

Evaluation of putative immunocyte proportion of gingival

tissues with 1,000 iterations was calculated by using the Cell-type

Identification By Estimating Relative Subsets Of RNA

Transcripts (CIBERSORT). Samples possessing a CIBERSORT

p-value <0.05 were selected for further analysis (49) to ensure the

reliability of the deconvolution algorithm. Immunological

pathway activities were investigated via single-sample gene set

enrichment analysis (ssGSEA) (50). The preceding study

provided the verified leukocyte gene signature set (LM22) for

CIBERSORT (51). The gene sets of immunological pathways

were acquired from the ImmPort database (http://www.
Frontiers in Immunology 05
immport.org) (52). And the immune checkpoints were

extracted from previous literature (53). The relative abundance

of immunocytes, the enrichment scores of immune reactions,

the status of the HLA gene, and immune checkpoint in PD and

healthy samples were examined by the Wilcoxon test.

Subsequently, the correlation coefficients of the putative

immunocytes proportion, the immunological pathways

enrichment scores, the HLA gene, and immune checkpoint

expression values between hub ARGs were calculated by

Spearman correlation analysis.
Identification and functional enrichment
analysis of aging expression subtypes

Unsupervised clustering analysis was applied to single out

distinctive aging expression subtypes based on 27 DE-ARGs

expression profiles. To control the robustness of the clustering,

1000 iterations were performed, and each iteration contained

80% of the samples. The R package “ConsensuClusterPlus” was

conducted to implement the above process (54). The cumulative

distribution function (CDF) curve of the consensus score was

used to define the optimal cluster number. The gene distribution

of subtypes was evaluated by PCA. The Wilcox test was

performed to examine the expression status of the ARGs

between the two distinct aging-related subtypes. Gene-set

variation analysis (GSVA) algorithm was employed to

investigate HALLMARKS and Reactome pathways of each

subtype (55).
Identification of aging phenotype-related
gene modules

Ranked by the sum of expression values, the top 5000

mRNAs were selected as the genes of interest. Aging

phenotype-related genes that take part in immunity were

screened out by taking the intersection of the immune-related

genes from the ImmPort database and the 5000 genes. Then, the

R package “WGCNA” was employed to detect genes in the

modules associated with aging phenotypes (56, 57). After

determining the power of 9 and a minimum size (Gene group)

of 30 for the genes dendrogram, the R package “ggplot2” was

used to visualize the correlations between module eigengenes

and aging phenotype-related patterns. Afterwards, the module

with the highest correlation coefficients and the most significant

p-value was determined as the key module, and genes in the key

module were defined as aging phenotype-related genes.

Furthermore, functional enrichment analysis was performed

on these genes by the R package “ClusterProfiler” to identify

GO and KEGG pathways.
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Results

Identification of ARGs and
enrichment analysis

The sample distribution of each dataset was observed to be

totally different before removing the batch effect, indicating that

there was a batch effect (Figure 2A). After removing the batch

effect, the data distribution converged (Figure 2B). A total of 27

DE-ARGs were identified including 17 upregulated and 10

downregulated ARGs (Figure 2C; Table S5), and were

illustrated by the heatmap in Figure 2D. Then, the PCA

algorithm was used to analyze the training cohort, showing

that the PD and healthy samples could be well distinguished by

these DE-ARGs (Figure 2E). The PPI network showed the

intricate relevance of ARGs-associated proteins (Figure 2F). A

bar diagram (Figure 2G) and corresponding network

(Figure 2H) were depicted to show the results of Metascape

analysis: spots represented functions or pathways, yet larger and

connected points represented the presence of more similar genes

between the functions or pathways. Enriched functional GO

terms, including biological processes (BP), cellular components

(CC), and molecular functions (MF), as well as KEGG pathway

analysis of DE-ARGs were performed to explore their biological

functions. Terms associated with inflammation and immune

function were the most enriched, such as pathways in cancer,

response to hormone, positive regulation of MAPK cascade, and

PI3K-Akt signaling pathway.
Development and verification of the
hub-ARGs based classifier via multiple
machine learning algorithms and
ANN model

Aimed at constructing a hub-ARGs based classifier that can

accurately distinguish PD from healthy controls, four machine

learning algorithms including the LASSO regression algorithm

(Figure 3A, B), SVM-RFE algorithm (Figure 3C), RF algorithm

(Figure 3D, E), and univariate logistic regression analysis

(Figure 3F) were implemented on the 27 DE-ARGs to select

candidate hub ARGs, respectively. The genes obtained by the

four algorithms were overlapped, and finally, four hub ARGs

(BLM, FOS, IGFBP3, and PDGFRB) were identified (Figure 3G).

Finally, we built an ANN model for classifying gene

expression data between PD and control samples based on the

four hub ARGs (Figure 4A; Table S6). ROC curve proved that

our predictive model, the classifier based on hub ARGs, was very

reliable, with an AUC of 0.957 in the training cohort and an

AUC of 0.894 in the testing cohort (Figure 4B). Furthermore, the

AUC values of the validation datasets-GSE23586, GSE10334,

GSE16134, GSE106090 and GSE173078 were 1.000, 0.897, 0.935,
Frontiers in Immunology 06
0.917 and 0.611, respectively (Figure 4C), which confirmed the

high validity of the classifier. PCA showed that PD and healthy

samples could be well distinguished by the four hub DE-ARGs

with the ANN model (Figure 4D). Furthermore, the DCA curve

was plotted to test the clinical influence of the ANN model in

training (Figure 4E) and testing (Figure 4F) cohort.
Quantitative real-time PCR validation

We found that inflammatory cell infiltration into gingival

tissue is more extensive in the PD group than in healthy controls

(Figure 5A). The expression level of the four hub ARGs was

represented in the form of a violin diagram in the training cohort

(Figure 5B) and test cohort (Figure 5C). Besides, the results of

qRT-PCR for the four hub mRNAs were presented (Figure 5D).

In the healthy and PD comparison, the expression levels of BLM,

FOS, and PDGFRB are higher in the PD group, while IGFBP3 is

lower. The results of qRT-PCR were consistent with the

bioinformatics analyses; thus, the reliability of the ANN model

was confirmed.
The PD immune microenvironment and
aging were correlated

It is worth mentioning that the immune microenvironment

played significant roles in the pathogenesis of PD and was

connected closely with aging. Hence characteristics of the PD

immune microenvironment were described to further

comprehend the underlying mechanisms. CIBERSORT was

employed for the estimated infiltration of immunocytes in

each sample, while more plasma cells were evaluated in PD

samples. Eosinophil was not detected from the CIBERSORT

result (Figure S1A, B). Higher activation of immune reactions,

such as interferon receptor and BCR signaling pathway (Figure

S1C), higher expression level of HLA genes, such as HLA-A,

HLA-B, and HLA-C (Figure S1D) and higher expression level of

immune checkpoints, such as GZMB and CD8A (Figure S1E)

were detected in PD compared to healthy controls. Correlation

analysis found that the most positively correlated immunocyte

aging gene couple is BLM-Plasma cell, whereas BLM-Resting

dendritic cell is the most inversely correlated couple (Figure 6A).

Moreover, we noticed that BLM and PDGFRB have the most

significantly correlated immunological reaction gene sets, with

BLM being positively related to interferon receptor and BCR

signaling pathway, and PDGFRB being positively related to TNF

family members receptors (Figure 6B). This indicated BLM and

PDGFRB played vital roles in the above-mentioned reactions in

PD. Similar trends were observed in HLA genes as well, for

example, BLM-HLA_DOB is the most positively correlated pair,

and PDGFRB-HLA_DMA, as well as PDGFRB-HLA_DMB, are
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https://doi.org/10.3389/fimmu.2022.1042484
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2022.1042484
the two most positively correlated pairs (Figure 6C). Concerning

immune checkpoints, PDGFRB-TBX2 is the most positively

correlated pair, while IGFBP3 is negatively correlated with

CTLA4, LAG3, and PRF1(Figure 6D).
Two aging expression subtypes were
determined based on the 27 DE-ARGs

Through consensus clustering analysis, PD samples were

clustered into two molecular subtypes based on the expression

profiling of the 27 DE-ARGs (Figures 7A–D; Table S7). PCA

algorithm indicated a remarkable difference between the two

subtypes (Figure 7E). Subsequently, the expression status of the

DE-ARGs was compared, and the vast majority of the genes

prominently varied (Figure 7F).
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Different immunological features
were detected in the aging
expression subtypes

Marked differences were noted in the immunological

features between the two aging expression subtypes, indicating

a close relationship between aging and immune regulation.

CIBERSORT was applied for estimated infiltration of

immunocytes in each subtype revealing significant differences.

Eosinophil was not detected from the CIBERSORT result

(Figure 8A). Immunocytes differ between the two subtypes

(Figure 8B): subtype-1 has relatively low infiltrated

immunocytes compared with subtype-2, while more plasma

cells are evaluated in subtype-1. As demonstrated in

Figure 8C, subtype-1 has more active immune reactions than

subtype-2, and interferon receptor is the most active one. Similar
A

B

D

E F

G H

C

FIGURE 2

Expression patterns and biological significance of differentially expressed aging-related genes (DE-ARGs) in PD. (A, B) The density of the merge
of GSE10334 and GSE16134. (C) Volcano plots visualizing the expression patterns of DE-ARGs in PD and healthy samples. (D) Heatmap of the 27
DE-ARGs in PD and healthy samples. (E) Principal component analysis of the training cohort based on dysregulated aging-related genes. (F) PPI
network of proteins encoded by DE-ARGs through the STRING database. (G) Bar graph of enriched terms. The bar was colored by values of p.
The lower the values of p, the deeper the color. (H) The network of enriched terms. The top 20 clusters were selected and rendered as a
network, in which terms with a similarity score > 0.3 are connected by an edge. The thickness of the edge represents the similarity score.
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trends are observed in HLA genes and immune checkpoints

(Figures 8D, E). These results indicated that subtype-1 led to a

distinctly active immune response while subtype-2 mediates a

mild immune response in PD, and proved that aging-related

subtypes played vital roles in shaping different immune

microenvironment characteristics in PD.
Biological characteristics of the aging
expression subtypes

To investigate other distinct biological functions between the

subtypes, the GSVA algorithm was employed to calculate the

enrichment scores of the Reactome and HALLMARKS pathways

of the subtypes (Figure 8F for the HALLMARKS pathway and

Figure 8G for the Reactome pathway). We discovered that

subtype-1 has more enriched pathways, while the famous

inflammation pathways such as IL6-JAK-STAT3, IL2-STAT5,

and PI3K-AKT-MTOR prominently vary. Besides, KEGG

pathways remarkably differ among the two subtypes and

enrich in pathways such as melanin biosynthesis, fcgr

activation, interleukin 2 signaling, and runx3 regulates

immune response and cell migration. Next, to further

comprehend the molecular mechanisms by which genes are

involved in aging-mediated regulations, 301 aging phenotype-

related genes that take part in immunity were screened out
Frontiers in Immunology 08
(Table S8). Furthermore, to identify hub ARGs modules, 12 gene

modules were determined based on a dynamic tree utilizing

WGCNA (Figures 9A–E; Table S9). Based on the module–trait

relationships between 12 modules and the two subtypes, the

most significant correlation was seen between the black module.

The association of the module membership in the black module

with gene significance in subtype-1 was visualized in the scatter

plots (Figure 9F). Subsequently, the GO and KEGG pathways

were investigated to explore the functional mechanisms

indicated by the aging-mediated black gene network module.

Most genes in the black module were found to be enriched in

BPs such as establishment of localization, transport, and

immune system process, CCs such as endomembrane system

and intrinsic component of membrane, and MFs such as enzyme

binding and identical protein binding (Figure 9G). The KEGG

pathway analysis revealed that the black module genes were

mainly enriched in pathways such as protein processing in

endoplasmic reticulum, phagosome, and lysosome (Figure 9H).
Discussion

As evidence accumulates worldwide, PD is a chronic

inflammatory disease that involves complex interactions

between pathogens and immune reactions (1). Unequivocally,

the aging process contributes to the incidence and severity of PD
A B

D E F G

C

FIGURE 3

Four machine learning algorithms were used for hub ARGs. (A) The least absolute shrinkage and selection operator (LASSO) coefficient profiles
of the 27 DE-ARGs. (B) 10-fold cross-validation for optimum tuning parameter (l) selection using LASSO. (C) Estimating 10-fold cross-validation
error using the support vector machine recursive feature elimination (SVM-RFE). (D) The relationship between the number of decision tree and
the model error. (E) Random Forest (RF) algorithm showed the top 20 candidate genes. (F) Univariate logistic regression analysis results.
(G) Venn diagram showed that four hub ARGs are identified via the above four algorithms.
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and has been concerned with altered physiology that leads to

dysregulation of the immune system to the noxious challenge of

the disease-associated oral microbiome (24). Therefore,

potential biomarkers for early diagnosis and therapeutic

targets are in sore need. Accumulating evidence confirmed the

indispensable role of aging in both innate and adaptive immune

reactions (58–60). It is reasonable to suspect that aging must

own substantial effects on regulating the PD immune

microenvironment. In the present study, with the availability

of gene expression information in public databases, multiple

comprehensive bioinformatics analyses were employed to

describe many molecular aspects of aging in the pathogenesis

of PD.

Primarily, twenty-seven DE-ARGs were found in PD. The

DE-ARGs correlated and interacted with each other, revealing a

regulatory network of aging in PD. According to functional and

pathway enrichment analysis, the DE-ARGs were considered to

be prominently abundant in inflammation- and immunity-

related processes such as pathways in cancer, response to

hormone, positive regulation of MAPK cascade, and PI3K-Akt

signaling pathway. Some of the pathways present here were

consistent with previous studies. Many proinflammatory

pathways in PD are linked to carcinogenesis (61). For

example, porphyromonas gingivalis (P. gingivalis) is found to
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be associated directly with the oncogenic pathways through the

activation of the PI3K-Akt signaling pathway (62). Konstantonis

et al. reported that by activating ERK, JNK, and p38 MAPK,

senescent PDLSCs result in cell differentiation when suffer from

cyclic mechanical deformation (63). Regarding the pathway

response to hormone, sex steroids such as estrogens and

androgens are fundamental to bone homeostasis and immune

function. Age-associated reductions in sex steroids cause

obvious temporal increasing susceptibility to PD, particularly

among women with estrogen deficiency during perimenopause

(64). Recent research has investigated that postmenopausal

women treated with estrogen for osteoporosis have a lower

prevalence of severe PD than women in a control group not

receiving such therapy (65). This case reminds us of how a

medical intervention may have secondary benefits on

periodontal conditions and reduce complications with aging.

Sex-specific temporal differences in gene regulation, particularly

in aging, have profound influences on disease susceptibility (66).

In general, women generate more robust and potentially

protective humoral and cell-mediated immune responses,

whereas men frequently elevate a more aggressive and

potentially damaging inflammatory immune response to

microbial stimuli (67, 68), perhaps accounting for an increased

prevalence and severity of PD in men, as multiple epidemiologic
A B

D E F

C

FIGURE 4

Construction of artificial neural network (ANN) model. (A) ANN model has four inputs, five hidden neurons, and two outputs. In this case, the 4
inputs represent the category values of the four hub ARGs. (B) The ROC curve of the ANN model in the training cohort and test cohort. (C) The
ROC curve of the ANN model in validation cohorts including GSE16134, GSE10334, GSE106090, GSE173078, and GSE23586. (D) Principal
component analysis (PCA) of four hub ARGs between healthy and periodontitis, the contribution of each gene is represented by a colorful
arrow. DCA results to evaluate the clinical value of the ANN model via training cohort (E) and test cohort (F).
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studies showed (19, 69, 70). This indicates that sex differences in

the pathway response to hormone associated with aging may

have the potential correlation to the immune microenvironment

for PD. However, sex effects on the prevalence/extent/severity of

PD were not taken into account in the current study, which is a

limitation. The enriched pathways mentioned above may

provide important insight into aging and into the onset,

progression, and therapeutic outcomes of PD.

More interestingly, our study identified four hub ARGs

(BLM, FOS, IGFBP3, and PDGFRB) by integrating four

machine learning algorithms, and revealed a hub-ARG based

classifier that can well distinguish PD from healthy controls by
Frontiers in Immunology 10
ANN model. In other words, the classifier might provide oral

clinicians an experimental strategy to distinguish patients with

high risk of PD from healthy patients beforehand, to intercept

biological aging when still “subclinical” and formulate

interventions for halting or delaying the trajectory toward PD

while patients are still chronologically young. BLM, a kind of

RecQ-like helicases, plays vital roles in maintaining genome

integrity. Defects in BLM are associated with the Blooms

syndrome, an autosomal recessive disorder featured by

chromosome gaps and breaks, elevated sister chromatid

exchange, mitotic hyper-recombination, as well as aberrant

DNA replication events (71). But experimental evidence about
A

B

D

C

FIGURE 5

Validation of hub ARGs. (A) Representative images of HE staining of human periodontal tissues. (B) The expression status of the four hub ARGs
was presented in the form of a violin diagram in the training cohort and (C) test cohort. (D) The qRT-PCR validation of the four hub ARGs
(*p< .05; ***p< .001).
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the relationship between BLM and aging in PD is lacking. The

proto-oncogene FOS (also named C-Fos) is found to be involved

in the transcriptional regulation of collagenase and cell

proliferation genes in periodontal gingival fibroblasts (72).

Besides, FOS acts as an osteoclastogenic marker to participate

in the progress of PD mediated by inflamm-aging-related

cytokines in vitro and in vivo (27). A deep learning-based

autoencoder predicts FOS to be critical immunosuppression

genes and mediate immune suppression in PD (73). IGFBP3,

the sole downregulated hub ARGs in our study, represented the

main binding protein that is widely distributed in the serum,

tissue, and extravascular fluid. Experimentally evidence found an

inverse correlation of serum IGFBP3 levels with clinical

attachment loss and number of missing teeth, predicting

IGFBP3 to be associated with the severity of PD (74).

Moreover, given the facts that the levels of IGFBP3 decrease

throughout lifetime (75) and PDLSCs, cementum, and dentine

may serve as local reservoirs for IGFBP3 (76), we might
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speculate that the degradation of the levels of IGFBP3 with age

could conduce to PD. PDGFRB is a dimeric receptor tyrosine

kinase that plays critical roles in cell growth, survival, and

differentiation (77). Numerous studies investigated the role of

PDGFRB in the development of Alzheimer’s disease (78, 79).

However, there was no report about PDGFRB and PD. The

application of ANN in constructing disease models has proven

to be sophisticated (80). The outstanding novelty of our study

was firstly employed ANN model to construct a classifier based

on the four hub ARGs. The results of ROC and DCA showed

that the classifier for PD achieved excellent accuracy in disease

classification and laid the groundwork for future molecular

mechanisms research.

To explore the PD immune microenvironment, ssGSEA and

CIBERSORT algorithms were employed to calculate the

immunocytes composition and the immune reaction activity;

the expression of the HLA gene and immune checkpoints were

analyzed as well. More plasma cells were evaluated in PD
A

B D

C

FIGURE 6

Signatures associated with immune infiltrations in PD. (A) Correlation coefficients between the immune cell infiltrations, (B) the enrichment scores
of immune reaction, (C) the expression of HLA gene and (D) immune checkpoints and four hub aging-related genes (*p < 0.05, **p < 0.01).
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samples. Results from animal studies have revealed more plasma

cells in gingival tissue samples from older dogs (81). It was

reported that breaching the balance among microbiome

invasion, host defense, and tissue regeneration may cause

plasma cell–induced pathologic bone resorption, leading to an

inadequate horizontal/vertical bone volume that ultimately

results in tooth loss (82). This finding suggested that plasma

cell infiltration played a significant role in host defense against

PD. Higher activation of immune reactions, higher expression

level of the HLA gene and immune checkpoints were observed in

PD. Then the correlation between immune characteristics and

hub ARGs was explored. Among the ARGs pairs, BLM and

PDGFRB showed the strongest positive correlation with

immune characteristics in PD. For instance, BLM, as well as

PDGFRB, were positively and negatively correlated with plasma

cells and dendritic cells resting, respectively. It is reported that

aging appears to functionally impair dendritic cell uptake of

antigens, phagocytosis of apoptotic cells, and migration and

priming of both CD4+ and CD8+ T cells (83). Besides, BLM was

positively correlated with BCR signaling pathway and HLA-

DOB, and PDGFRB was positively correlated with TNF family

members receptors and the immune checkpoint TBX2. BLM is

related to immune system, connecting DNA damage to cellular

innate immune response (84). Kassambara et al. had

experimentally validated a potent role for BLM in regulating

cell survival and proliferation during plasma cell differentiation
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(85). Dendritic cells are the most effective specific antigen-

presenting cells. Li et al. noted that PDGFRB is exclusively

expressed in Lymph node fibroblastic reticular cells (FRCs)

and depleting FRC-ECM (extracellular matrix) laminin a4
causes reduction in Tregs and dendritic cells (86).

Additionally, a recent study suggested that BCR signaling

pathway may be involved in PD with Down syndrome (87).

Predominantly, with the rapid emergence of molecular targeted

therapies, there has been increasingly more attention on

immune checkpoints, the critical regulators of immune

homeostasis. The targeting of the PD-1/PD-L1 immune

checkpoint could be considered an appropriate approach to

improve the treatment of PD (88). However, there is negligible

data available regarding the relationship between PD and

immune checkpoint TBX2 mentioned in our result. Taken

together, these findings may point out the direction of the

aging immune regulation mechanism and offer novel prospects

for further exploration of aging in PD.

To further explore the mechanistic aspects of immune

characteristics of PD, unsupervised clustering of the PD

samples based upon DE-ARG expression profiles was applied

and demonstrated two distinct ARGs subtypes, indicating that

aging played a potent impact on the PD immune

microenvironment. The modification of subtype-1 has more

active immune reactions and higher expression levels of HLA

genes and immune checkpoints than subtype-2. For example,
A B D

E F

C

FIGURE 7

Unsupervised clustering of 27 DE-ARGs. Identifying two distinct ARG-subtypes in PD. (A) Consensus clustering cumulative distribution function
(CDF) for k = 2- 10. (B) Relative change in area under CDF curve for k = 2- 10. (C) Heatmap of k with two subtypes in periodontitis. (D) Heatmap
exhibiting the two subtypes of PD samples with k =2. (E) Principal component analysis for the transcriptome profiles of the two distinct
subtypes, showing a remarkable difference in transcriptome between different subtypes. (F) The expression status of 27 DE-ARGs in the two
subtypes (*p < 0.05, ***p < 0.001, and ns means not significant).
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subtype-1 has more activation in the famous signaling pathway

of IL6-JAK-STAT3, IL2-STAT5, and PI3K-AKT-MTOR. The

mammalian target of rapamycin (mTOR) is considered a pivotal

enzyme at the crossroad of nutrient sensing and cell growth, and

proper activation of mTOR signaling pathways is essential for

healthy aging. Rapamycin, a kind of drug approved by the Food

and Drug Administration, directly targets mTOR, exhibiting the
Frontiers in Immunology 13
capacity to ameliorate age-related phenotypes and prolong life

span (89). Short-term treatment with rapamycin in aged mice

demonstrated its effectiveness in reversing alveolar bone loss

(90), and rapamycin suppressed the elevated RANK/OPG ratio

characteristic of promoted-resorptive aged bone physiology after

eight weeks, possibly providing the basis for oral cavity

rejuvenation strategies. Furthermore, other senolytic agents
A
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C

FIGURE 8

Diversity of immune microenvironment characteristics between two distinct ARG-subtypes in PD. (A) The proportion of cell infiltration in 22
types of immune cells in the two subtypes. (B) Box plots showing the differences in immune cell infiltrations in the two distinct subtypes. (C-E)
The activity differences of each immune reaction gene set, the expression differences of each HLA gene, and the expression differences of each
immune checkpoint in the two distinct subtypes, respectively (*p < 0.05, **p < 0.01, ***p < 0.001, and ns means not significant). (F, G) The
underlying biological function characteristics diversity between the distinct subtypes, and the differences of the HALLMARKS pathway and
Reactome pathway enrichment score between subtype-1 and subtype-2 (F for the HALLMARKS pathway and G for the Reactome pathway).
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such as MCC950 and some natural compounds have been tested

to treat senescence as pharmaceutical interventions (22).

However, clinical trials have only recently started, and their

safety and efficacy remain to be determined. Considering the

varied immune characteristics of each subtype, it confirmed

the reliability of our classification of immune phenotypes for the

DE-ARGs. This classification strategy for immune subtype can

help us understand the underlying mechanism of immune

regulation so that precise therapeutic methods can be applied

and PD can be subtyped from the molecular level or immune

level not only the clinical phenotype level (91). Therefore, aging

expression subtypes of gingival tissues can indeed be regarded as
Frontiers in Immunology 14
an alternative pathobiology-based classification of PD. The

potential relevance of these differences in aging mechanisms

between subtypes may represent the molecular patterns of PD

associated with aging and further exploration in experimental

research is warranted.

WGCNA showed a high correlation of the black module

with subtype-1, which was found to be enriched in pathways

such as protein processing in endoplasmic reticulum,

phagosome, and lysosome. As previously described, the

endoplasmic reticulum (ER) functions in protein biosynthesis

and folding. Increased physiological demand for protein folding

can lead to the accumulation of misfolded or unfolded proteins
A B
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FIGURE 9

Construction and module analysis of weighted gene co-expression network analysis (WGCNA). (A) Sample dendrogram and trait heatmap.
(B, C) The selection of the smallest soft threshold. (D) Gene dendrogram obtained by average linkage hierarchical clustering. The color row
underneath the dendrogram showed the module assignment determined by the Dynamic Tree Cut. (E) Heatmap of the correlation between
module eigengenes and the aging modification patterns. (F) A scatterplot of gene significance (GS) for subtype-1 vs module membership (MM)
in the black module. GS and MM exhibited a very significant correlation, implying that hub genes of the black module also tend to be highly
correlated with subtype-1. (G) Gene Ontology enrichment analysis of aging phenotype-related genes, the outermost ring represented the name
of pathways. The second outer ring represented the number of genes in pathways, and the heights of the columns in the inner ring indicated
the value of GeneRatio. (H) Chord plot depicting the relationship between genes and KEGG signaling pathways.
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in the ER lumen, a state called ER stress (92), which is the cell

response by excitation of the unfolded protein response (UPR)

pathway in diverse conditions such as infection and aging (93).

The prolonged inflammation of PD triggers UPR, causing

decreased osteogenic differentiation of PDLSCs both in vivo

and vitro (94). Others have investigated that the ER stress-

induced alveolar bone resorption in PD was independent of

inflammatory cytokine release (95). Collectively, these data

suggest that multiple pathways of aging may be implicated in

PD with different modules; furthermore, distinct molecular

subtypes may exist in terms of their relative dominance;

eventually, revealing their biological function can conduce to

the illustration of PD pathogenesis from the aging

regulation perspective.

To the best of our knowledge, our study was the first to

construct a hub-ARGs based classifier for discriminating PD from

healthy controls, and systematically investigate the correlation

between aging and the PD immune microenvironment, which

could well enlighten the further immunotherapeutic approaches

to improve PD treatment. PD along with other common chronic

inflammatory diseases share a relatively small set of common

modifiable risk factors, which can lead to increases in systemic

inflammation markers and modify gene regulation via various

biologic mechanisms (96). Intriguingly, such research assumes a

profound impact considering the possibility of behavioral

interventions and pharmaceutical interventions directed at

healthy aging (22), providing a promising management

modality for PD and oral-systemic diseases. However, we must

admit that this study has some shortcomings. Our study mainly

focused on bioinformatics analysis, and most results remain to be

confirmed by experiments in vitro and in vivo; although the four

hub ARGs were verified by qRT-PCR, the human gingival sample

size is relatively insufficient, which could potentially account for

bias, and the larger sample size is required in future studies; the

specific mechanism of these four genes in the PD immune

microenvironment remains unclear, and, as a result, further

experimental studies are necessary for the elucidation of the

potential biological mechanisms; the measurements for immune

cells and pathway activation are based on the GSVA score, which

is calculated by gene expression at the transcriptomic level, which

can barely reflect the changes occurring on the protein level; since

the clinical information such as the severity, stage or grade of PD

was not given in the main datasets GSE16134 and GSE10334, our

bioinformatics analyses did not contain the items of the timing for

lesion formation. Therefore, future studies are needed to address

metadata regarding clinical disease characteristics and their

correlation with aging-based subtypes, to explore the dynamics

of the timing for periodontal lesion formation and detection, and

resolution that could be substantively affected by aging.

Nevertheless, the findings furnish a unique platform for

exploring the interface of aging-related pathogenesis of PD and

offer a new reference for potential immunotherapy targets.
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Conclusion

The present study constructed a “classifier” for PD based on

the four hub ARGs (BLM, FOS, IGFBP3, and PDGFRB).

Furthermore, two distinct aging-related subtypes were

identified, with differences in enriched functional biological

functions and immune microenvironment indicated by

Infiltrating immunocytes, immunological reaction gene sets,

HLA genes, and immune checkpoints. A hub aging-related

module of subtype-1was associated with ER and related

functions. These findings revealed the underlying regulation

mechanisms of aging in the PD immune microenvironment,

inspiring more effective therapeutic methods.
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