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Development of a polyamine
gene expression score for
predicting prognosis and
treatment response in clear cell
renal cell carcinoma

Mei Chen, Zhenyu Nie, Denggao Huang, Yuanhui Gao,
Hui Cao, Linlin Zheng and Shufang Zhang*

Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University,
Haikou, China
Backgrounds: Polyamine metabolism (PM) is closely related to the tumor

microenvironment (TME) and is involved in antitumor immunity. Clear cell

renal cell carcinoma (ccRCC) not only has high immunogenicity but also has

significant metabolic changes. However, the role of PM in the immune

microenvironment of ccRCC remains unclear. This study aimed to reveal the

prognostic value of PM-related genes (PMRGs) expression in ccRCC and their

correlation with the TME.

Methods: The expression levels PMRGs in different cells were characterized

with single-cell sequencing analysis. The PMRG expression pattern of 777

ccRCC patients was evaluated based on PMRGs. Unsupervised clustering

analysis was used in identifying PMRG expression subtypes, and Lasso

regression analysis was used in developing polyamine gene expression score

(PGES), which was validated in external and internal data sets. The predictive

value of PGES for immunotherapy was validated in the IMvigor210 cohort.

Multiple algorithms were used in analyzing the correlation between PGES and

immune cells. The sensitivity of PGES to chemotherapeutic drugs was analyzed

with the “pRRophetic” package. We validated the genes that develop PGES in

tissue samples. Finally, weighted gene co-expression network analysis was

used in identifying the key PMRGs closely related to ccRCC, and cell function

experiments were carried out.

Results: PMRGs were abundantly expressed on tumor cells, and PMRG

expression was active in CD8+ T cells and fibroblasts. We identified three

PMRG expression subtypes. Cancer and immune related pathways were active

in PMRG expression cluster A, which had better prognosis. PGES exhibited

excellent predictive value. The high-PGES group was characterized by high

immune cell infiltration, high expression of T cell depletionmarkers, high tumor

mutation burden and tumor immune dysfunction and exclusion, was

insensitive to immunotherapy but sensitive to sunitinib, temsirolimus, and

rapamycin, and had poor prognosis. Spermidine synthetase (SRM) has been
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identified as a key gene and is highly expressed in ccRCC at RNA and protein

levels. SRM knockdown can inhibit ccRCC cell proliferation, migration, and

invasion.

Conclusions: We revealed the biological characteristics of PMRG expression

subtypes and developed PGES to accurately predict the prognosis of patients

and response to immunotherapy.
KEYWORDS

polyamine metabolism, clear cell renal cell carcinoma, immunotherapy, immune
escape, multi-omics, prognosis
Introduction

Renal carcinoma is a common malignant tumor, 80% of

which is clear cell renal cell carcinoma (ccRCC) (1). Immune

checkpoint and tyrosine kinase inhibitors can be regarded as

systemic therapies for patients with advanced or metastatic

ccRCC (2). However, only 42% of patients respond to

treatment because of tumor heterogeneity, and the median

progression free survival is 11.6 months (3). No effective

biomarker for predicting the response of patients with ccRCC

patients to immunotherapy is available. Therefore, effective

biomarkers or tools are urgently needed to guide precision

therapy. ccRCC is highly immunogenic, and understanding

the heterogeneity of the tumor immune microenvironment

can provide targeted immunotherapy to patients.

Polyamine metabolism (PM) is closely related to the tumor

microenvironment (TME) and is involved in antitumor

immunity (4, 5). Polyamines mainly include spermine,

spermidine, and putrescine (6). The regulation of polyamines

is a rigorous process, including polyamine synthesis, transport,

and catabolism, and is widely involved in cell proliferation,

apoptosis, and gene regulation. ODC1 and AMD1 encode the

rate-limiting enzymes ornithine decarboxylase and S-adenosine

methionine decarboxylase for polyamine synthesis, respectively.

Spermine synthetase (SMS) and spermidine synthetase (SRM)

are involved in the synthesis of spermine and spermidine,

respectively. Spermine oxidase (SMOX) participates in the

decomposition of spermine. Spermine/spermidine N1-

acetyltransferase (SSAT) acetylates the N1 position of spermine

or spermidine, which can be oxidized back to the preceding

polyamine in the biosynthetic pathway by peroxisome

acetylpolyamine oxidase (PAOX). OAZ, as ornithine

decarboxylase (ODC) antizyme, includes OAZ1, OAZ2, and

OAZ3 (7). AZIN, as ODC anti-enzyme inhibitor, includes

AZIN1 and AZIN2 (8). OAZ1 can inhibit polyamine

production and oral cancer cell proliferation (9). ATP13A2
02
plays a transport role in polyamine synthesis, is located in late

endolysosomes, promotes the cellular uptake of polyamines

through endocytosis, and transports them into the cytoplasm

(10). ATP13A3 transports vesicular polyamines, is more active

against putrescine, and localizes to early and circulating

endosomes (11). Polyamine transport in pancreatic cancer is

mediated by ATP13A3 (12). SLC18B1 is responsible for the

storage and release of polyamines, which is a polyamine vesicle

transporter (13, 14). Recently, it has been reported that the

formation of tumor immunosuppression can be caused by the

increase of polyamine level (15, 16). Arginine is the main donor

for polyamine synthesis in T cells, glutamine is a minor donor,

and decrease in polyamine level can inhibit T cell proliferation

(17). Arginine promotes T-cell proliferation and activation

through its metabolism to ornithine via arginase (18). ODC

can induce the polarization of M2 macrophages (19).Polyamines

metabolic enzymes are frequently dysregulated in tumor cells

(20–23). AMD1 and SMOX are highly expressed in cancer,

which is related to poor prognosis of patients and plays a

carcinogenic role (24–27). ARG1 promotes ovarian cancer

progression by suppressing T cell immune responses (28).

ATP13A2 is a prognostic marker and potential therapeutic

target of colon cancer, which can inhibit tumor occurrence by

blocking autophagic flux (29). Deletion of autophagy gene can

regulate circulating arginine and inhibit tumor progression (30).

Targeting PMRGs is a promising target for cancer therapy (31).

The immune modulatory vaccine based on ARG1 can induce

anti-tumor immunity and has synergistic anti-tumor effect with

Anti-PD-1 checkpoint blockade (32). OAZ1 and SAT1 can

increase the sensitivity of non-small cell lung cancer and

bladder cancer cells to cisplatin, respectively (33, 34).

Metformin can reduce the expression of ARG1 and ODC,

reduce the formation of putrescine and inhibit the progression

of colorectal cancer (35). Inhibitors targeting polyamine

metabolic enzymes have become new therapeutic strategies,

such as ARG1 inhibitor CB-1158 (36, 37), ODC multipurpose
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inhibitor (38), SMOX inhibitor (39). Polyamine metabolism-

related genes (PMRGs) play an important role in the immune

microenvironment and can be used as immunotherapy targets

(40–42). A significant change in ccRCC is metabolic change, and

the expression of metabolism-related genes is dysregulated in

ccRCC (43, 44). Studies have shown that polyamine levels are

positively correlated with ccRCC invasiveness and are involved

in the progression of cancer (45). Although targeting PM in

ccRCC is a promising therapeutic strategy, how PM affects the

TME of ccRCC, and its role in immunotherapy is still unclear.

In this study, we evaluated the expression profile of PMRGs

on ccRCC, described the expression of PMRGs on TME from the

single-cell sequencing level. We developed three PMRG

expression subtypes, identified two gene clusters, and established

the polyamine gene expression score (PGES) to predict the

prognoses of ccRCC patients and response to immunotherapy.

We analyzed the correlation between the PGES and immune cells

with different calculation methods. Finally, the effect of SRM, the

key PMRG, on the biological function of ccRCC cells was detected,

and the expression levels of genes used in developing the PGES

were validated in clinical tissues.
Methods

Data source and preprocessing

The expression data (fragments per kilobase million, FPKM)

and clinical data of the ccRCC cohort were downloaded from

The Cancer Genome Atlas (TCGA) database (https://portal.gdc.

cancer.gov/), and the expression data and clinical data of the E-

MTAB-1980 data set were downloaded from the ArrayExpress

database (https://www.ebi.ac.uk/arrayexpress/). The FPKM was

converted into transcripts per kilobase million (TPM). Batch

effects were corrected with the “Combat” algorithm. A total of

777 patients with survival times were included for analysis when

the two datasets were merged. External validation cohort

(GSE22541) and single-cell data set (GSE171306) were

obtained from the GEO (https://www.ncbi.nlm.nih.gov/geo/),

respectively. The “FeaturePlot” and “VlnPlot” functions in the

“seurat” package were used in describing the gene expression

patterns and violin plot in each subgroup, respectively. Relative

data and information of immunotherapy cohort (IMvigor210)

was download from website (http://research-pub.gene.com/

IMvigor210CoreBiologies). Clinical Proteomic Tumor Analysis

Consortium (CPTAC, https://proteomics.cancer.gov/programs/
Frontiers in Immunology 03
cptac) provide proteomic data for analysis. Abbreviations from

this study are summarized in Supplementary Table S1.
Unsupervised cluster analysis of
polyamine metabolism

We collected 16 genes involved in PM from the literature (5)

(Supplementary Table S2). The consistency clustering analysis was

carried out with the “consensusclusterplus” package, and the

clustering effect was considered the best when k = 3. The three

subtypes were analyzed by principal component analysis (PCA)

and visualized by “scatterplot3d” package. Then gene set variation

analysis (GSVA) was used in analyzing the differences of

biological characteristics among the subtypes and performing

with the “gsva” package. “c2.cp.kegg.v7.5.1.symbols.gmt” as

hallmark gene set was downloaded from the MSigDB database

(https://www.gsea-msigdb.org/gsea/msigdb).
Enrichment analysis of differentially
expressed genes (DEGs) and
identification of gene clusters

The “limma” package was used in analyzing DEGs among

PMRG expression subtypes. The enrichment of DEGs is first

analyzed by GO and then by KEGG. The analyses were carried out

by the “clusterProfiler” package. Prognostic DEGs were screened by

univariate Cox regression and performed unsupervised clustering to

produce gene subtypes.
Development and validation of PGES

The “caret” package was used in randomly dividing patients

into training group (n = 317) and testing group (n = 316) in a

ratio of 1:1. PGES was developed by Lasso Cox regression

analysis of DEGs with prognostic value.

PGES =o
n

i=1
Coefi � Expi

Coef in the formula represents risk coefficient, and Exp

represents gene expression. The patients were divided into high-

and low-PGES groups according to the median of the scores of the

training group. The “timeROC” package was used in drawing

receiver operator curves (ROC) curve. External validation was
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carried in E-MTAB-1980 and GSE22541 data sets. The “rms”

package was used in constructing a nomogram for visualizing

the PGES.
Functional differences and immune
infiltration characteristics of high and
low PGES

GSEA was performed with the “clusterprofiler” package. The

ssGSEA algorithm was used in evaluating the degree of tumor

immune infiltration and analyzing the differences in immune

cells and immune functions between high and low PGES (46).

The The proportion of different types of cells was calculated by

the CIBERSORT algorithm (47). Immune and stromal scores

were calculated by the ESTIMATE algorithm (48).
Evaluation of the role of PGES in
immunotherapy and chemotherapy

Mutation data were analyzed and visualized with the “maftools”

package, the tumor mutation burden (TMB) of each patient in the

TCGA cohort was calculated, and the difference in TMB between

high and low PGES was analyzed. The tumor immune dysfunction

and exclusion (TIDE) score of ccRCC was downloaded from the

TIDE database (http://tide.dfci.harvard.edu/), and the TIDE score

between high and low PGES was analyzed. The “pRRophetic”

package was used in predicting the sensitivity of different PGES

groups to therapeutic drugs.
Sample collection

The paired cancer and paracancerous tissues of 12 ccRCC

patients were collected from the hospital. The samples were stored

at −80°C. The study was approved by the ethics committee of

Affiliated Haikou Hospital of Xiangya Medical College, Central

South University. Patients’ informed consent was obtained before

collection. The reagents, procedures, and calculation methods used

in quantitative real-time PCR (qRT-PCR) were consistent with

those in our previous study (49). Amplification reactions were

performed onQuantStudio 5 instrument (Applied Biosystems). The

primer sequences designed for amplification are shown in

Supplementary Table S3.
Identification of key PMRGs

To identify the key PMRGs closely related to ccRCC, a

weighted gene coexpression network analysis (WGCNA) was
Frontiers in Immunology 04
constructed from the TCGA expression profile with the

“WGCNA” package. We screened the key genes by taking the

intersection of genes in the module positively related to tumor

and PMRGs.
Construction of stable knockdown cells

ccRCC cells (786-0 and 769-P) were purchased from the

China Centre for Type Culture Collection (CCTCC, Wuhan,

China). Lentivirus was purchased from Genechem (Shanghai,

China), and the transfection protocol followed the

manufacturer’s instructions. Puromycin was used in screening

stable knockdown cells. Knockdown efficiency was measured by

qRT-PCR.
In vitro cellular functional assays

For CCK-8 assays, 786-0 (1000 cells), and 769-P (2000 cells)

were cultured on 96-well plates. On days 0, 1, 2, 3, and 4,

approximately 10 mL of CCK-8 (Dojindo, Japan) was added to

each well, incubated at 37°C for 1 h, and then detected with 450

nm absorbance. Cells were exposed to different concentrations of

sunitinib and sorafenib. After 48h of treatment, OD values were

detected. Sorafenib and sunitinib were purchased from

MedChemExpress (Monmouth Junction, NJ, United States).

For the colony formation assays, 786-0 (1000 cells) and 769-P

(2000 cells) were cultured on six-well plates for 14 days, fixed

with methanol, and stained with 0.1% crystal violet. For the

Transwell assay, 786-0 (1 × 104) and 769-P (5 × 104) diluted in

serum-free medium was added to the upper chamber. For the

scratch assays, 786-0 (5 × 105 cells) and 769-P (7 × 105 cells)

were cultured on six-well plates. On the second day when cells

were full, lines were drawn in the central area with 200ul gun tip,

washed twice with PBS, and then replaced with serum-free

medium. Cells were observed and pictures were taken at 0, 24,

and 48h under microscope. The detailed experimental protocols

are described in previous reseesrch (50).
Statistical analysis

Statistical analysis was performed in R software (version

4.1.2) and Graphpad Prism (version 8.0.2). The comparison

between the two groups was performed by T test. The Kaplan–

Meier method was performed for prognosis among groups, and

log rank test was used in evaluating statistical difference.

Univariate COx regression analysis was used in screening

prognostic genes. Pearson test was used for correlation

analysis. P< 0.05 was considered statistically significant.
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Results

Multi-omics analysis of the expression
patterns of PMRGs in ccRCC

In the TCGA-ccRCC cohort, ARG1, ATP13A2, ATP13A3,

AZIN2, OAZ1, OAZ2, OAZ3, PAOX, SMOX, and SRM were

highly expressed in cancer tissues, whereas AZIN1, ODC1,

SLC18B1, and SMS had low expression levels in cancer tissues,

compared with corresponding normal tissues (Figure 1A). The

high expression levels of AMD1, AZIN1, ODC1, SLC18B1 are

related to the good prognosis of ccRCC patients (Supplementary

Figure 1). Proteomic data showed that ARG1, ATP13A3, and

SRM were highly expressed in cancer tissues, whereas PAOX

and SMS had low expression (Supplementary Table S4). The

cohort analyzed did not include data for the other polyamine

metabolism-related proteins of interest. We further used single-

cell sequencing data to analyze the expression level of PMRGs in

ccRCC at the single-cell level. In the GSE171306 dataset, we

combined two ccRCC samples for analysis and obtained a total

of 18,462 cells after quality control. The annotated cell clusters
Frontiers in Immunology 05
included B cells, CAF, ccRCC, CD4+T cells, CD8+T cells,

dendritic cells, double cells, endothelial cells, fibroblast,

macrophage cells, monocyte cells, NK cells, plasma/MAST

cells, and TAM (Figure 1B). PMRGs were expressed explicitly

on ccRCC (Figures 1C–F; Supplementary Figure 2). In addition,

we found that PMRGs were expressed on immune cells,

especially CD8+ T cells and fibroblasts, suggesting that these

cells may have relatively active PMRG expression. Among them,

both OAZ1 and SAT1 were highly expressed in all cell types

(Figures 1E, F). These results suggested that PMRGs play an

important role in ccRCC and were closely related to immunity.
Identification of polyamine clusters and
functional analyses

We used an unsupervised clustering method to classify

patients into three PMRG expression clusters: A (n = 288), B

(n = 266), and C (n = 79) according to the expression values of

16 PMRGs. PCA indicated significant differences among the

three subtypes (Figure 2A). PMRG expression cluster A had the
A B

D

E F

C

FIGURE 1

Multi-omics analysis of PMRGs in ccRCC. (A) Expression levels of PMRGs in the TCGA-ccRCC cohort. (B) UMAP plot of single cells in
GSE171306 data set. (C–F) Distribution and expression patterns of AMD1, SRM, OAZ1, and SAT1 in single cells. PMRGs, polyamine metabolism-
related genes; ccRCC, clear cell renal cell carcinoma. **p < 0.01, ***p < 0.001.
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longest survival time (P = 0.002, Figure 2B). The expression of

PMRGs was highest in PMRG expression cluster A

(Supplementary Figure 3). Moreover, PMRG expression cluster

A had the highest number of activation pathways and was

mainly enriched in cancer and immune-related pathways, such

as renal cell carcinoma, ERBB signaling pathway, and

endocytosis. Compared with PMRG expression cluster A and

B, cluster C was mainly enriched in metabolic pathways, such as

linoleic acid metabolism (Figures 2C–E). These results indicated

that PMRG expression is closely related to cancer and immunity.
Development of PMRG expression
gene cluster

To further explore the potential biological functions of

PMRG expression clusters, we identified 692 DEGs among the

three PMRG expression clusters and performed GO and KEGG

enrichment analysis on the DEGs. GO analysis showed that

DEGs were significantly enriched in signal transduction and

proliferation. Biological processes mainly included Ras protein

signal transduction. Cell components mainly included cell–

substrate junction and focal adhesion (Figure 3A). Molecular

functions mainly included transcription coregulator activity and

GTPase regulator activity. KEGG analysis found that DEGs were

enriched in cancer metabolism and immune-related pathways,

such as the PI3K-Akt signaling pathway, PD-1 checkpoint

pathway in cancer (Figure 3B). These results indicated that
Frontiers in Immunology 06
PMRG expression plays a key role in cancer and immune

regulation. Univariate Cox regression analysis was performed

on DEGs, and 651 genes with prognostic significance were

obtained. We performed unsupervised clustering on these

DEGs with prognostic value, and the algorithm was optimal

when the DEGs were divided into two clusters. Gene cluster A

had a better survival time (Figure 3C). PMRGs showed

significant differences, and the expression level of cluster A

was the highest (Figure 3D). Of the 35 differentially expressed

immune checkpoints, 31 were highly expressed in gene cluster A

(Figure 3E). Thirty of the thirty-seven differentially expressed

chemokines were highly expressed in gene cluster A (Figure 3F).
PGES development and validation

LASSO regression analysis was performed on prognostic

DEGs to obtain the key genes used in developing the PGES.

PGES = (−0.136 × expression of EMX2) + (−0.235 × expression

of EDA) + (−0.212 × expression of OPCML) + (−0.323 ×

expression of SEMA3G)+ (−0.217 × expression of ENPP5) +

(0.287 × expression of PCDHGC3). In the training group, the

survival times of patients in the high-PGES group were shorter

than those in the low-PGES group (Figure 4A). ROC curves

showed that AUCs at 1, 3, and 5 years were 0.836, 0.785, and

0783, respectively (Figure 4B).

To verify the applicability of PGES, we conducted internal

and external validation. In the testing and entire groups, the
A B

D E

C

FIGURE 2

Identification and biological characteristics of PMRG expression cluster. (A) Three-dimensional PCA showed the difference of PMRG expression i
clusters A, B and C. (B) Kaplan–Meier curves of survival differences among the three PMRG expression clusters. (C–E) Biological pathways
enriched among different PMRG expression clusters. PMRG, polyamine metabolism-related gene.
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prognoses of low-PGES patients was better, and the PGES had

good predictive power (Figures 4C–F). In the external validation

of the E-MTAB-1980 and GSE22541 datasets, the survival times

of low-PGES patients were longer (Figures 4G, I), and the ROC

curves showed that the AUCs of 1, 3, and 5 years were greater

than 0.7, indicating that the PGES had good predictive

power and applicability (Figures 4H, J). To visualize the

model, we combined risk and clinicopathological variables to

construct a nomogram for predicting the survival of patients at
Frontiers in Immunology 07
1, 3, and 5 years (Supplementary Figure 4A). The ROC curve

suggested that the nomogram had good prediction accuracy

(Supplementary Figure 4B).

Compared with the score constructed by Han (51) and Guo

(52) in ccRCC, our score had higher diagnostic efficacy and

better prediction power (Figures 4K, L). Furthermore, we found

that cluster A had the lowest score in the PMRG expression

cluster and gene cluster (Supplementary Figures 4C, D), which

may explain the better prognosis in cluster A.
A

B

D

E F

C

FIGURE 3

Development of gene cluster. (A, B) GO and KEGG analyses of DEGs. (C) K–M curve of survival difference of gene clusters. (D) Expression levels
of PMRGs among different gene clusters. (E) Differences in immune checkpoint expression among gene clusters. (F) Differences in chemokine
expression among gene clusters. PM, polyamine metabolism; PMRGs, polyamine metabolism-related genes. *p < 0.05, **p < 0.01, ***p < 0.001.
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Functional differences and immune
infiltration characteristics of patients in
high- and low-PGES groups

To analyze the functional differences between high- and low-

PGES groups, we performed GSEA analysis and found that

immune and metabolic pathways were significantly enriched in

the high-PGES groups, such as cytokine cytokine receptor

interactin, primary immunodeficiency, and linoleic acid

metabolism (Figure 5A). Calcium signaling pathway,

neuroactive ligand receptor interaction, and proximal tubule

bicarbonate reclamation were significantly enriched in the low-

PGES groups (Figure 5B).

Then immune cell infiltration in the high- and low-PGES

groups was calculated by ssGSEA, CIBERSORT, and

ESTIMATE algorithms. The results of the ssGSEA algorithm

showed that T cells had higher enrichment scores in the high-

PGES groups, such as CD8+ T, T helper, Tfh, Th1, and Th2 cells

(Figures 5C, D). The results of the CIBERSORT algorithm

showed that the PGES was positively correlated with plasma

cells, CD8+T cells, CD4 memory-activated T cells, follicular

helper T cells , and regulatory T cells (Tregs), M0

macrophages, and neutrophils. However, PGES was negatively
Frontiers in Immunology 08
correlated with resting immune cells, such as naïve B cells, CD4

memory resting T cells, resting NK cells, and resting mast cells

(Figure 5E). Based on the ESTIMATE algorithm calculating the

immune and stromal scores to predict the infiltration of

nontumor cells, we found that the stromal score was higher in

the low-PGES group, and the immune and estimate scores were

higher in the high-PGES group (Figure 5F). These results

indicated that the high-PGES group had a higher degree of

immune cell infiltration.
Role of score in immunotherapy
and chemotherapy

The high-PGES group had more mutations, and PBRM1,

SETD2, and BAP1 were higher in the high-PGES group

(Figures 6A, B). The TMB in the high-PGES group was

higher, indicating that increase in neoantigens and active

immunity, which is consistent with the characteristics of

immune infiltration (Figure 6C).

The prognosis of the high TMB group was worse than that of

the low-TMB group (Figure 6D). Among the combinations of

TMB and PGES, the prognosis of high-PGES patients in the high
A

B D

E

F

G

I

H

J K L

C

FIGURE 4

Prognostic value of the PGES. (A, B) K-M curve of survival difference and predictive accuracy of PGES in the training group. (C, D) K–M curve of
survival difference and predictive accuracy of PGES in the testing group. (E, F) K–M curve of survival difference and predictive accuracy of PGES
in the entire group. (G, H) K–M and ROC curves of PGES predicting survival in E-MTAB-1980 dataset. (I, J) K–M and ROC curves of PGES
predicting survival in GSE22541 dataset. (K, L) Predictive accuracy of PGES in other studies. PGES, polyamine gene expression score.
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TMB group was the worst (Figure 6E). A total of 47 immune

checkpoints were analyzed, 36 of which were correlated with

PGES, which was positively correlated with T cell depletion

markers PDCD1, CTLA-4, TIGIT, and LAG3. Of the 32

differentially expressed chemokines, 24 were positively

correlated with PGES (Figure 6F). PGES was positively

correlated with stemness indices (Figure 6G), indicating that

high-PGES patients had lower degrees of cell differentiation and

higher malignancy, which explains the poor prognoses of the

high-PGES patients. In the IMvigor210 cohort, the SD/PD group

(nonresponders) had a higher PGES (Figure 6H), and the

prognoses of patients in the high-PGES group were poor

(Figure 6I). The TIDE of patients in the high-PGES group was
Frontiers in Immunology 09
higher (Figure 6J). Although the high-PGES patients had higher

degrees of immune cell infiltration, they might not be sensitive to

immunotherapy because of immune escape. These results

indicated that PGES can effectively predict the response of

ccRCC on immunotherapy.

The “pRRophetic” package was used in predicting the

sensitivity of different PGES groups to therapeutic drugs.

Among the common chemotherapeutic drugs in ccRCC,

patients with high PGES were sensitive to sunitinib and

temsirolimus (Figures 7A, B), whereas patients with low PGES

were more sensitive to sorafenib, pazopanib, and gemcitabine

(Figures 7C–E). In addition, we also found that targeting the cell

cycle (etoposide) and Wnt/b-catenin pathway (FH535) was
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FIGURE 5

Functional enrichment analyses and immune infiltration characterization of different PGES groups. (A, B) Pathways enriched at high and low
PGES. (C, D) Differences in immune cells and immune function among different PGES groups based on ssGSEA algorithm. (E) Correlation
analysis between PGES and immune cells based on the CIBERSORT algorithm. (F) The stromal, immune, and estimate scores of the high- and
low-PGES groups were evaluated by the estimate algorithm. PGES, polyamine gene expression score. **p < 0.01, ***p < 0.001 and ns means
no significance.
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FIGURE 6

Predictive value of PGES on ccRCC immunotherapy. (A, B) The waterfall plot shows the mutation frequency of the high- and low-PGES groups.
(C) TMB differences between high and low PGES. (D) K–M curve of survival difference between high and low TMB. (E) K–M curve of survival
difference stratified by TMB and PGES. (F) Correlation analysis of PGES with immune checkpoint and chemokines. (G) Correlation analysis
between PGES and stemness indices. (H) Boxplot shows PGES difference between CR/PR and SD/PD. (I) K–M curve of difference in overall
survival between high and low PGES. (J) Difference in TIDE between high and low PGES. PGES, polyamine gene expression score; ccRCC, clear
cell renal cell carcinoma. ***p < 0.001.
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more effective in patients with low PGES (Figures 7F, G),

whereas immunosuppressants (rapamycin) were more effective

in patients with high PGES (Figure 7H).
Validation in genes in tissue samples

In the formula, EDA, SEMA3G, ENPP5, EMX2, and

OPCML were favorable factors, whereas PCDHGC3 was a risk

factor. We verified in the tissue samples that EDA, SEMA3G,

ENPP5, EMX2, and OPCML had low expression levels in the

ccRCC tissues (Figures 8A–E). By contrast, PCDHGC3

expression increased in the cancer tissues (Figure 8F).
Screening of key PMRGs in ccRCC and
its potential biological functions

To further explore the role of PMRG expression in ccRCC,

we used WGCNA to identify PMRGs closely related to ccRCC.

When the soft threshold was 11, the fitting index (R2) and

average connectivity of the scale-free topology model can reach a

stable state (Figure 9A). A total of 16 modules were obtained

(Figure 9B), we extracted genes from tan, cyan, and pink

modules which were most associated with tumors (correlation

coefficient > 0.5, Figure 9C). Then, we intersected these genes

with the PMRGs. Finally, SRM was identified as the key PMRGs

in ccRCC. Patients with high SRM expression at the protein level

were associated with poor prognosis (Figure 9D). To explore the

effect of SRM on the biological function of ccRCC cells, 786-0

and 769-P were selected for cell experiments. We transfected

ccRCC cells with the lentivirus and detected interference
Frontiers in Immunology 11
efficiency by qRT-PCR. The lentivirus significantly interfered

with the expression of SRM in the 786-0 and 769-P cells

(Figures 9E, F). CCK8 and colony formation assays showed

that the knockdown of SRM can significantly inhibit ccRCC cell

proliferation (Figure 9G). Transwell assay showed that the SRM

knockdown can significantly inhibit cell migration and invasion

(Figure 9H). Scratch assay showed that knockdown of SRM

could inhibit the migration of ccRCC cells (Figure 10A). In

addition, we divided the patients into high expression and low

expression groups based on the median SRM expression.

Compared with the low expression group, the score of the

high expression group was higher (Figure 10B). Correlation

analysis showed that score was positively correlated with SRM

expression (Figure 10C). qRT-PCR result showed that the score

decreased after knockdown of SRM (Figure 10D). After

treatment of ccRCC cells with sunitinib, knockdown of SRM

increased cell survival, suggesting that knockdown of SRM could

increase resistance to sunitinib (Figures 10E, G). After treatment

of cells with sorafenib, knockdown of SRM reduced cell viability,

suggesting that knockdown of SRM could increase the sensitivity

of cells to sorafenib (Figures 10F, H).
Discussion

PM in tumor cells is usually abnormal, and the occurrence of

tumors is closely related to the abnormality of many enzymes in

the process of PM (53–57). Recent studies have found that

polyamines can regulate T cell differentiation and activate B

cells, but their regulatory role in other immune cell types still

needs further research (5). There is a complex cross talk

mechanism between PM and TME. PM can become a
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FIGURE 7

PGES and drug sensitivity analyses. (A–H) The drug sensitivity difference of sunitinib, temsirolimus, sorafenib, pazopanib, gemcitabine,
etoposide, FH535, rapamycin in high and low PGES. PGES, polyamine gene expression score.
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potential target for improving tumor immunotherapy. However,

PM in ccRCC TME has not been explored.

In this study, we analyzed the expression of PMRGs in ccRCC

at the transcriptome and single-cell levels. PMRGs had higher

expression levels in CD8+ T cells and fibroblasts. Polyamines

regulate the differentiation of T cells (58). Chemokines secreted

by fibroblasts can repel effector T cells while recruiting

immunosuppressive cells (59). Fibroblasts are associated with

metastasis of cancer patients and are a risk factor (60). We

identified 3 PMRG expression subtypes based on 16 PMRGs.

Significant differences in prognosis and biological pathways were

found among subtypes. The prognosis of PMRG expression cluster

A was better, and cancer and immune-related pathways were

significantly enriched in PMRG expression cluster A, such as

renal cell carcinoma, ERBB signaling pathway, and endocytosis.

The ERBB signaling pathway not only promotes cell proliferation

but also directly creates an immunosuppressive TME to enable

tumors to evade antitumor immune responses (61). The prognosis

of PMRG expression cluster C was the worst, and metabolic

pathways were mainly enriched, such as linoleic acid

metabolism. GO analyses showed that the DEGs were

significantly enriched in signal transduction and proliferation.

KEGG analysis showed that DEGs were enriched in cancer
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metabolism and immune-related pathways, such as PI3K-Akt

signaling pathway, PD-L1 expression and PD-1 checkpoint

pathway in cancer. These results indicated that PMRG

expression plays a key role in cancer and immune regulation.

On the basis of the prognostic DEGs, we developed the PGES

and performed internal and external validation. PGES can be used

as a reliable prognostic marker for patients with ccRCC. We found

that cluster A has the lowest scores in the PMRG expression cluster

and gene clusters, which can explain the better prognosis of cluster

A. GSEA analysis showed that immune and metabolic pathways

were significantly enriched in the high-PGES group. Given the close

relationship between polyamines and immunity, we evaluated the

immune cell infiltration of high- and low-PGES groups based on

the ssGSEA, CIBERSORT, and ESTIMATE algorithms. The degree

of immune cell infiltration increased in the high-PGES groups,

especially T cells. T cell depletion markers were also highly

expressed in the high-PGES groups, such as PDCD1, CTLA-4,

TIGIT, LAG3, TNFRSF9, and CD27. Those markers can lead to T

cell dysfunction (62–65). ccRCC mediates immune dysfunction by

inducing immunosuppressive cells, such as Tregs, and inhibits the

activities of the active molecules of effector T cells and antigen-

presenting cells by upregulating checkpoints (66). Inhibitory

receptors, immunosuppressive cytokines, and metabolic factors
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FIGURE 8

Validation of tissue samples. (A–F) Expression of EDA, SEMA3G, ENPP5, EMX2, OPCM, and PCDHGC3 in ccRCC cancer and normal tissues.
*p < 0.05, **p < 0.01, ****p < 0.0001.
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FIGURE 9

Identification of key PMRGs in ccRCC and in vitro cell function experiments. (A) Screening of soft threshold. (B) Hierarchical clustering
dendrogram of 16 modules. (C) Heatmap of correlations between modules and tumor. (D) K–M curves of SRM in protein levels. (E–F)
Knockdown efficiency of SRM in 786-0 and 769-P. (G) Effects of SRM knockdown on CCK8 and clone formation ability of ccRCC cells.
(H) Transwell was used to detect the effect of SRM on the migration and invasion ability of 786-0 and 769-P. PMRGs, polyamine
metabolism-related genes; ccRCC, clear cell renal cell carcinoma. ***p < 0.001, ****p < 0.0001.
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can promote T cell dysfunction in tumors (67). In our study, the

high-PGES group had higher infiltration levels of T cells and

expression of cytokines, but the prognosis was poor, suggesting

that T cells in tumors are in a dysfunctional state. The immune and

estimate scores of the high-PGES group were higher, indicating that

the TME of the high-PGES group was more complex. Moreover,

the TMB of the high-PGES group was higher. Theoretically, the

number of neoantigens that can be recognized by T cells increases

with TMB, and immunotherapy improves. However, T cells may be

in a dysfunctional state, and the prognoses of patients with high

TMB are poor, consistent with the previous study of ccRCC (68,

69). Tumor immune escape can better predict the prognosis of

patients than TMB and PD-L1, and T cell dysfunction is an

important cause of immune escape (70). The tumor formed an

immunosuppressivemicroenvironment to promote immune escape

(71). Impaired metabolism in the TME also contributes to immune

escape (72). The high-PGES group had a higher level of immune

escape and was positive correlated with Treg cells. Studies have
Frontiers in Immunology 14
shown that immune escape is mainly attributed to the high

infiltration of Tregs cells and the expression of a large number of

immunosuppressive receptors on T cells (73). PGES can effectively

predict the effect of ccRCC on immunotherapy. In the IMvigor210

cohort, the PGES of nonresponders was higher, and the prognosis

of patients in the high-PGES group was worse. Although the high-

PGES patients had higher infiltration levels of immune cell, they

may not be sensitive to immunotherapy due to immune escape.

SRM was a key PMRG identified by WGCNA. SRM is

overexpressed in prostate cancer and can be used as a reliable

biomarker and therapeutic target (74, 75). SRM overexpression can

increase the drug resistance of bladder cancer to pirarubicin, and

SRM knockdown can improve the chemotherapy efficacy of

bladder cancer cells (76). We found that SRM still plays an

oncogenic role in ccRCC, and SRM knockdown can inhibit

malignant biological behavior of ccRCC cells. Compared with

the control group, PGES decreased significantly after SRM

knockdown, and SRM expression was positively correlated with
A

B D

E F G H

C

FIGURE 10

Validation of treatment response in vitro. (A) Scratch assay was used to detect the effect of SRM on the migration ability of 786-0 and 769-P.
(B) Score difference between high and low SRM expression groups. (C) Correlation analysis between score and SRM expression. (D) Differences
in scores between shSRM and negative control cell lines. (E–F) Effect of knockdown of SRM on 786-0 cell survival after treatment with sunitinib
and sorafenib. (G–H) Effect of knockdown of SRM on 769-P cell survival after treatment with sunitinib and sorafenib. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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PGES. ccRCC cells are resistant to sunitinib and sensitive to

sorafenib after knockdown of SRM, which is consistent with our

analysis that patients with high PGES are sensitive to sunitinib and

patients with low PGES are sensitive to sorafenib. In addition, SRM

can regulate the immune microenvironment, and SRM

knockdown can inhibit the proliferation of fibroblasts (77).

SRM knockdown can significantly reduce spermine level in

ovarian cancer cells, and targeting polyamines can make ovarian

cancer sensitive to immunotherapy (78). The regulatory

mechanism of SRM in the ccRCC immune microenvironment

deserves further study. Finally, we verified the expression of genes

used to develop PGES in ccRCC tissues. EDA, SEMA3G, ENPP5,

EMX2, and OPCMLwere favorable factors and had low expression

levels in ccRCC tissues, whereas PCDHGC3 was a risk factor and

highly expressed in cancer tissues.

Our study has some limitations. First, we only verified the

expression of genes in the PGES. The applicability of PGES to a

larger population should be further verified. Second, the PM

mechanism in ccRCC immune microenvironment still needs

further exploration. Third, the PGE score does not necessarily

correlate with polyamine level, and the relationship with actual

polyamine levels will require additional study.
Conclusion

We revealed the biological characteristics of PMRG

expression subtypes and developed the PGE score to

accurately predict the prognoses of patients and response to

immunotherapy. The key PM gene SRM can promote the

malignant progression of ccRCC.
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