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Cholangiocarcinoma (CCA) is a highly heterogeneous and aggressive malignancy

of the bile ducts with a poor prognosis and high mortality rate. Effective targeted

therapy and accurate prognostic biomarkers are still lacking. Ferroptosis is a form

of regulated cell death implicated in cancer progression and has emerged as a

potential therapeutic target in various cancers. However, a comprehensive analysis

of ferroptosis-related genes (FRGs) for predicting CCA prognosis and therapeutic

targets and determining the role of ferroptosis in CCA remain to be performed.

Here, we developed a prognostic FRG signature using a least absolute shrinkage

and selection operator Cox regression analysis in a training cohort. We then

validated it using four independent public datasets. The six-FRG signature was

developed to predict CCA patient survival, stratifying them into low-risk and high-

risk groups based on survival time. Significantly, the high-risk CCA patients had

shorter overall survival. A receiver operating characteristic curve analysis further

confirmed the prognostic FRG signature’s strong predictive ability, indicating that it

was an independent prognostic indicator for CCA patients. Furthermore, the high-

risk group was associated with fluke infection and high clinical stages. Cancer-

associated fibroblast (CAF) score and CAF markers were significantly higher in the

high-risk group than the low-risk group. Moreover, our FRG signature could

predict immune checkpoint markers for immunotherapy and drug sensitivity.

The mRNA expression levels of the six-FRG signature was validated in 10 CCA

cell lines and dividing them into low-risk and high-risk groups using the FRG

signature. We further showed that high-risk CCA cell lines were more resistant to

ferroptosis inducers, including erastin and RSL3, than the low-risk CCA cell lines.

Our study constructed a novel FRG signature model to predict CCA prognoses

which might provide prognostic biomarkers and potential therapeutic targets for
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1051273/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1051273/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1051273/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1051273/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1051273/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1051273&domain=pdf&date_stamp=2023-01-17
mailto:Siriporn.ji@chula.ac.th
https://doi.org/10.3389/fimmu.2022.1051273
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1051273
https://www.frontiersin.org/journals/immunology


Abbreviations: CCA, Cholangiocarcinoma; DEGs, Differential

FRGs, Ferroptosis-related genes; LASSO, Least absolute shrin

operator; ROC, Receiver operating characteristic; AUC, Are

GSEA, Gene Set Enrichment Analysis; GO, Gene Ontolo

Encyclopedia of Genes and Genomes; NES, Normalized enric

False discovery rate; BP, Biological process; CC, Cellular compon

function; TME, Tumor microenvironment; CAFs, Cancer-ass

Tregs, Regulatory T cells; HPA, Human Protein Atlas; IC

inhibitory concentration.

Sae-fung et al. 10.3389/fimmu.2022.1051273

Frontiers in Immunology
CCA patients. Ferroptosis sensitivity in high-risk and low-risk CCA cell lines

suggests that ferroptosis resistance is associated with high-risk group CCA.

Therefore, ferroptosis could be a promising therapeutic target for precision

therapy in CCA patients.
KEYWORDS
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1 Introduction

Cholangiocarcinoma (CCA/CHOL) is a highly heterogeneous

malignancy originating from epithelial bile ducts at any level of the

bile duct tree. Its incidence rate has significantly increased worldwide,

with higher prevalence in Asian countries over the past few years (1).

Due to a lack of effective early diagnosis, most CCA patients are

usually diagnosed at advanced stages where surgical resection cannot

be performed (2, 3). While, therapeutic options for CCA patients are

increasing, such as chemotherapy, targeted therapy, and

immunotherapy, their overall prognosis remains unsatisfactory (4–

6). Therefore, identifying novel predictive models, accurate

prognostic biomarkers, and novel therapeutic targets are urgently

required to improve overall survival of CCA patients.

Ferroptosis is a novel regulated form of cell death that relies on iron

overload, accumulation of reactive oxygen species (ROS) and

polyunsaturated fatty acids (PUFA), and phospholipid peroxidation

(7–9). System Xc− and glutathione peroxidase 4 (GPX4) are key

regulators in the glutathione pathway that control the ferroptosis

mechanism. Erastin and RAS-selective lethal (RSL3) can induce

ferroptosis by inhibiting system Xc− and GPX4 activity, respectively

(9–11). Recent studies have shown that ferroptosis represents a novel

target for efficient therapeutic strategies to overcome treatment resistance

in several cancers (12). In addition, ferroptosis-related genes (FRGs) and

ferroptosis signaling dysregulation might be associated with cancer

patient prognosis. However, the role of ferroptosis in CCA progression

and prognosis remain unknown. In addition, very few studies have

explored the therapeutic applications of ferroptosis for CCA patients.

Therefore, discovering key prognostic FRGs predicting CCA prognosis

and clinical outcomes is urgently needed since they might act as novel

biomarkers and therapeutic targets for CCA patients.

This study obtained RNA expression profiles and clinical data from

two cohorts in the Gene Expression Omnibus (GEO) database and

developed a six-FRG signature. We validated our six-FRG signature for

CCA prognosis prediction in four independent cohorts in GEO, The
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Cancer Genome Atlas (TCGA), the European Bioinformatics Institute

(EMBL-EBI) database, and the National Omics Data Encyclopedia

(NODE) database. Our six-FRG signature was used to stratify CCA

patients into two groups, confirming their prognosis prediction. In

addition, these two patient groups differed in their functional and

biological processes, immune cell infiltration, cancer-associated

fibroblast (CAF) abundance, and drug sensitivity. Moreover, we

confirmed the mRNA expression levels of these six-FRG signature in a

panel of CCA cell lines, dividing them into two groups based on their

mRNA expression levels for these six-FRG signature. We further

investigated the sensitivity of these CCA cell lines to ferroptosis

inducers, including erastin and RSL3.
2 Materials and methods

2.1 Data collection and processing

A flow chart describing the data collection and analysis process is

provided in Figure 1. Five public RNA expression and clinical

information were downloaded from four platforms. The TCGA-CHOL

dataset was downloaded from the University of California at Santa Cruz

(UCSC) Xena platform (https://xena.ucsc.edu/). The E-MTAB-6389

dataset was downloaded from the European Bioinformatics Institute

(EMBL-EBI) database (https://www.ebi.ac.uk/). The OEP001105 dataset

reported by a previous study (13) was downloaded from The National

Omics Data Encyclopedia (NODE) database (https://www.biosino.org/

node/). The GSE76297, GSE89749, and GSE107943 datasets were

downloaded from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). The GSE89749 dataset’s clinical

information was obtained from previous study (14). In total, 267 FRGs

were identified from published studies (15, 16) and the FerrDb database

(http://www.zhounan.org/ferrdb/) (17). CCA patient characteristics in all

datasets are summarized in Supplementary Table S1.
2.2 Identification of ferroptosis-related
differentially expressed and
prognostic genes

Differentially expressed genes (DEGs) were identified in the

GSE76297 cohort, which includes 91 pairs of tumor and non-tumor

tissues using a paired-sample t-test with a |log2(fold change)| > 1 and p-

value < 0.0001. A univariate Cox regression analysis was performed to

screen out prognostic genes associated with overall patient survival in the
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GSE89749 cohort. This cohort includes 111 patients of which only those

with an overall survival ≥ 30 days were included to ensure this study’s

reliability. Genes with a p-value < 0.05 were considered prognostic genes.

Finally, overlapping DEGs and prognostic genes were identified as

candidate genes using a Venn diagram. A protein-protein interaction

(PPI) network analysis was performed on candidate genes by the

STRING database (https://www.string-db.org/) (18).
2.3 FRG signature construction

The GSE89749 cohort was used as a training cohort to construct

an FRG signature. A least absolute shrinkage and selection operator

(LASSO) Cox regression analysis was used to develop the FRG

signature from candidate genes using the R statistical software’s

“glmnet” package. Then, the following formula was used to

calculate a ferroptosis-related risk score for each patient: risk score

= (Exp.Gene1 × Coef.Gene1) + (Exp.Gene2 × Coef.Gene2) + … +

(Exp.Genen × Coef.Genen), where Exp.Gene is the expression of FRG

signature genes and Coef.Gene is the regression coefficient obtained

from the LASSO Cox regression analysis. The 111 patients in the

GSE89749 cohort were stratified into low-risk and high-risk groups

based on the median risk score. Kaplan-Meier and log-rank test were

used to compare patient survival between risk groups using R’s

“survminer” package. A time-dependent receiver operating

characteristic (ROC) curve was used to predict the FRG signature’s

specificity and sensitivity for predicting patient survival at 1, 3, and 5

years using R’s “survivalROC” package. The FRG signature’s
Frontiers in Immunology 03
prognostic potential was validated using the OEP001105, E-MTAB-

6389, GSE107943, and TCGA-CHOL datasets.
2.4. Independent prognostic value analysis

A univariate Cox regression analysis was used to evaluate the

prognostic value of the FRG signature and other clinical

characteristics, including age, liver fluke infection, sex, and stage. A

multivariate Cox regression analysis was performed to evaluate

whether the FRG signature was an independent prognostic factor.

Each variable’s hazard ratio (HR) and 95% confidence interval (CI)

were calculated, with p-value < 0.05 considered statistically

significant. Moreover, Fisher’s exact test was used to assess

differences in clinical characteristics between low-risk and high-

risk groups.
2.5 Functional gene set enrichment analysis

A GSEA was performed in the training cohort using GSEA

software to identify functions and pathways enriched between low-

risk and high-risk groups based on Gene Ontology (GO;

c5.go.v7.5.1.symbols.gmt) and Kyoto Encyclopedia of Genes and

Genomes (KEGG; c2.cp.kegg.v7.5.1.symbols.gmt). Gene sets with a

|normalized enrichment score (NES)| > 1, p-value < 0.05, and false

discovery rate (FDR) < 0.25 were considered statistically significant.
2.6 Immune cell infiltration and tumor
microenvironment analysis

The CIBERSORTx algorithm (https://cibersortx.stanford.edu/)

(19) was used to analyze the immune cell fractions of 22 immune

cell types in the training cohort. Moreover, the MCP-counter (20) and

EPIC (http://epic.gfellerlab.org/) (21) algorithms were used to

estimate CAF abundance.
2.7 Drugs sensitivity and immunotherapy
prediction

Differences in drugs sensitivity between the two patient groups

were estimated by comparing half-maximal inhibitory concentration

(IC50) using R’s “pRRophetic” package and the Genomics of Drug

Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.

org/) (22). Furthermore, the differential expression of common

immune checkpoints in low-risk and high-risk groups was

examined to predict potential immunotherapy targets.
2.8 Cell culture

The human immortalized non-tumor cholangiocyte cell line

(MMNK-1) and CCA cell lines (CCLP-1, HuCCT-1, KKU-055,

KKU-100, KKU-213, KKU-214, RBE, and TFK-1) were obtained
FIGURE 1

Flow chart of the study.
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from the Japanese Collection of Research Bioresources (JCRB) Cell

Bank (Osaka, Japan). The HuCCA-1 and RMCCA-1 CCA cell lines

were developed from Thai patients with CCA (23, 24). All cell lines

were grown in Dulbecco’s modification of Eagle’s medium (DMEM;

HyClone Laboratories, Logan, UT, USA) supplemented with 10%

fetal bovine serum (Sigma-Aldrich, St Louis, MO, USA) and 1%

Penicillin–Streptomycin (HyClone Laboratories) and were cultured

in a humidified incubator at 37°C with 5% carbon dioxide. All cell

lines were tested to be negative for mycoplasma contamination.
2.9 Reverse transcription-quantitative PCR

Total RNA was extracted from the cells using GENEzol

Reagent (Geneaid Biotech, Taiwan). Then, 1 mg of RNA was

reverse-transcribed using a Maxime RT PreMix Kit (iNtRON

Biotechnology, Seongnam-si, Gyeonggi-do, Republic of Korea). RT-

qPCR was performed using iTaq universal SYBR Green Supermix

(Bio-Rad, Hercules, CA, USA) following the manufacturer’s

instructions. All primers used in this study are listed in

Supplementary Table S2. Relative expression in CCA cell lines was

normalized to MMNK-1 cell line using the 2-DDCt method with b-
actin (ACTB) as an internal control. Moreover, average 2-DCt values

were used as each gene’s values to classify CCA cell lines. Then, the

expression values were transformed to z-score in each gene of all CCA

cell lines. These z-score expression values were used to calculate risk

scores in CCA cell lines which were then stratified into low-risk and

high-risk FRG groups.
2.10 Treatment and cell viability assay

Erastin and RSL3 were obtained from ApexBio Technology

(Boston, MA, USA). Two CCA cell lines groups based on the FRG

risk groups, including CCLP-1, KKU-214, RBE, and RMCCA-1 were

seeded in 96-well plates and incubated in a humidified incubator at

37°C with 5% carbon dioxide for 24 h. The cells were treated for 48 h

using a two-fold serial dilution method with erastin concentrations of

0.3125, 0.625, 1.25, 2.5, 5, 10, 20, and 40 mM or RSL3 concentrations

of 7.8125, 15.625, 31.25, 62.5, 125, 250, 500, and 1000 nM. Cell

viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl-2H-tetrazolium bromide (MTT) assay after 48 h of

treatment. Briefly, 10 ml of MTT reagent was added to each well

and incubated in a humidified incubator for 2 h. Next, the

supernatant was removed, and 100 ml of dimethyl sulfoxide

(DMSO) was added to each well. Then, cell viability was

determined at 570 nm using a microplate reader and the percentage

of viable cells was calculated and normalized to the DMSO vehicle

control. The IC50 of erastin and RSL3 was calculated and compared

between two CCA cell line groups. Three-independent experiments

were performed with triplicate samples.
2.11 Statistical analysis

All data were analyzed using the R statistical software (version

4.1.0) or SPSS (version 22.0, IMM Corp; Armonk, NY, USA).
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Wilcoxon or Student’s t-tests were used to assess differences

between groups. The log-rank test was used to assess differences in

survival between low-risk and high-risk groups, and a Kaplan-Meier

curve was used to visualize patient survival. Pearson’s correlation

coefficient (r) was used in all correlation analyses. All results with

p-value < 0.05 were considered statistically significant (*p < 0.05,

**p< 0.01, ***p < 0.001, ****p < 0.0001).
3 Results

3.1 Candidate gene identification

This study included 267 FRGs which are listed in Supplementary

Table S3. Forty-eight ferroptosis-related DEGs were identified

between paired tumor and non-tumor tissues in the GSE76297.

Heatmap and volcano plots visualized their expression and

distribution among samples, with 21 upregulated and 27

downregulated (Figures 2A, B). One hundred eleven patients with

overall survival ≥ 30 days from the GSE89749 dataset were used a

univariate Cox regression analysis to identify prognostic genes. The

47 prognostic genes associated with survival are listed in Table 1. A

Venn diagram identified 17 intersecting genes (candidate genes)

among the 48 ferroptosis-related DEGs and 47 prognostic genes

(Figure 2C). The univariate Cox regression results for these 17

candidate genes were visualized in a forest plot (Figure 2D). Four

were protective factors (ACO1, PEBP1, GOT1, and CXCL12), and 13

genes were risk factors (FANCD2, MT1G, PTGS2, SQLE, NQO1,

SLC1A5, TF, MUC1, HELLS, SLC7A5, HAMP, SLC2A1, and RRM2)

in CCA patients. The PPI network indicated associations between 17

candidate genes (Figure 2E). Correlations among these genes are

shown by a correlation network (Figure 2F).
3.2 FRG signature construction

This study’s reliability was ensured by excluding three out of the

17 candidate genes (MTIG, TF, and HAMP) from gene signature

construction. While these three genes were downregulated in tumor

samples, their higher expression was associated with poorer

prognosis. Therefore, the expression levels of the 14 remaining

candidate genes and overall survival data from the GSE89749

cohort were used as a training cohort to construct the FRG

signature via a LASSO Cox regression analysis. A six-FRG signature

(ACO1, GOT1, PTGS2, SLC2A1, FANCD2, and SQLE) was identified

based on the LASSO Cox regression with the minimum optimal

lambda value using tenfold cross-validation (Figures 3A, B). Each

patient’s risk score was calculated using the LASSO Cox regression

analysis coefficient and patients were divided into low-risk and high-

risk groups based on their median risk score. The six-FRG signature’s

expression in the two risk groups was visualized as a heatmap

(Figure 3C). Kaplan-Meier curves were used to compare survival in

the two risk groups. They showed that survival was significantly

longer in the low-risk group than in the high-risk group (p-value <

0.0001; Figure 3D). The six-FRG signature’s predictive efficacy was

evaluated with a time-dependent ROC curve. The area under the

ROC curves (AUCs) for the six-FRG signature at 1, 3 and 5 years of
frontiersin.org
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survival were 0.7540, 0.8389, and 0.8103, respectively, suggesting that

it had high sensitivity and specificity (Figure 3E).
3.3 FRG signature validation in
independent cohorts

The six-FRG signature’s reproducibility was assessed using four

independent cohorts. Patients with overall survival < 30 days were

excluded from the validation cohorts. The model obtained with the

training GSE89749 cohort was used to calculate each patient’s risk

score in the validation cohorts. The OEP001105 (244 patients), E-

MTAB-6389 (75 patients), GSE107943 (30 patients), and TCGA-

CHOL (33 patients) cohorts were divided into low-risk and high-risk

groups according to their median risk score, except for the TCGA-

CHOL cohort, which was divided using best cut-off. Kaplan-Meier

curves for the OEP001105, E-MTAB-6389, and GSE107943 cohorts

indicated that survival was significantly shorter in the high-risk group
Frontiers in Immunology 05
than in the low-risk group (p-value < 0.0001, p-value = 0.0003, and p-

value = 0.0267, respectively; Figures 4A, C, E). While the Kaplan-

Meier curve for the TCGA-CHOL cohort was non-significant (p-

value = 0.1638), this might reflect population variation due to small

size. Nevertheless, the TCGA-CHOL cohort’s Kaplan-Meier curve

indicated that the high-risk group tended to have shorter survival

times than the low-risk group, which differed in their median survival

(Figure 4G). ROC curves were used to assess the FRG signature’s

accuracy in predicting patient survival. The AUCs at 1, 3, and 4 years

were 0.7522, 0.7078, and 0.6712 in the OEP001105 cohort,

respectively (Figure 4B). The AUCs at 1, 3, and 5 years were

0.7346, 0.7234, and 0.6433 in the E-MTAB-6389 cohort,

respectively (Figure 4D). These results indicated that the FRG

signature showed the greatest accuracy at one year, then gradually

decreased with increasing years. However, the AUCs at 1, 3, and 5

years were 0.7694, 0.8575, and 0.7552 in the GSE107943 cohort,

respectively, showing the greatest accuracy at three years (Figure 4F).

Furthermore, the AUCs at 1, 3, and 5 years were 0.7105, 0.5829, and
B

C

D

E

F

A

FIGURE 2

Identification of ferroptosis-related candidate genes. (A) Heatmap and (B) volcano plot showing the expression levels and distribution of differentially
expressed genes (DEGs) in cholangiocarcinoma (CCA) tissues and normal tissues in the GSE76297 cohort. (C) A Venn diagram showing the intersection
between DEGs and prognostic genes. (D) A forest plot showing the hazard ratios of candidate genes. (E) A protein-protein interaction (PPI) network of
the candidate genes in the STRING database. (F) A correlation network of the candidate genes.
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0.6308, in the TCGA-CHOL cohort, respectively (Figure 4H).

Altogether, these results suggested that our FRG signature could

accurately predict CCA prognosis in patients.
3.4 Independent prognostic value of the six-
FRG signature and clinical characteristics

A univariate Cox regression analysis was used to investigate the

association between risk score and clinical characteristics, including fluke

infection, sex, age, and stage in the GSE89749 andOEP001105 cohorts. A

forest plot of the univariate Cox regression showed that risk score (HR =

3.77), fluke infection (HR = 2.95), and stage (HR = 4.07) were

significantly associated with patient survival in the GSE89749 cohort

(Figure 5A). Similarly, risk score (HR = 2.08) and stage (HR = 2.24) were

significantly associated with patient survival in the forest plot of

OEP001105 cohort (Figure 5D). A multivariate Cox regression was

performed to determine whether risk score was an independent

prognostic factor. The forest plot for the multivariate Cox regression

showed that risk scores were an independent prognostic factor in the

GSE89749 and OEP001105 cohorts (p-value < 0.001; Figures 5B, E).

Furthermore, the high-risk group was also associated with fluke infection

and high clinical stages in the GSE89749 cohort, but only with high

clinical stages in OEP001105 cohort (Figures 5C, F).
3.5 GO and KEGG pathway
enrichment analyses

GSEA was performed to investigate the underlying differences in

functions and biological processes between the low-risk and high-risk

groups based on GO and KEGG pathways. The GO analysis identified

biological process (BP), cellular component (CC), andmolecular function

(MF) enriched in the high-risk CCA patient groups (Figure 6A). KEGG

pathway analysis identified differential pathway enrichment between the

low-risk and high-risk CCA patient groups (Figure 6B).
3.6 Immune cell infiltration and TME analysis

The 22 immune cell infiltration results estimated by the

CIBERSORTx algorithm showed that plasma cells, regulatory T
TABLE 1 Univariate Cox regression analysis of ferroptosis-related genes in
GSE89749 cohort.

Gene Coefficient p-value

CS -1.2200 0.0013

FANCD2 1.1184 0.0069

GSS 0.6494 0.0307

MT1G 0.1409 0.0127

PTGS2 0.3962 <0.0001

SAT1 0.3975 0.0300

ACO1 -0.5487 0.0334

ACACA 0.6612 0.0317

PEBP1 -0.4156 0.0374

SQLE 0.5543 0.0028

NQO1 0.2857 0.0336

SLC1A5 0.3307 0.0249

GOT1 -0.4960 0.0003

ACSF2 0.4344 0.0014

NOX4 0.3524 0.0198

FLT3 -1.2662 0.0445

HRAS 0.4983 0.0423

TF 0.1166 0.0193

BECN1 0.6708 0.0283

WIPI2 -1.2005 0.0192

MAPK3 0.5606 0.0076

YY1AP1 -1.2359 0.0225

HSF1 0.8390 0.0109

MUC1 0.2436 0.0023

HELLS 0.5399 0.0428

SCD 0.2713 0.0441

STAT3 0.8531 0.0045

MTOR 0.5988 0.0361

TP63 0.5130 0.0187

ISCU -0.5828 0.0123

LAMP2 -0.4613 0.0052

UBC 0.9236 0.0245

OXSR1 0.7610 0.0016

DDIT4 0.3507 0.0059

DDIT3 -0.4767 0.0189

SLC7A5 0.2031 0.0301

TRIB3 -0.3108 0.0092

ZFP69B -1.3924 0.0270

GDF15 -0.2765 0.0038

(Continued)
TABLE 1 Continued

Gene Coefficient p-value

CXCL2 -0.2605 0.0203

HAMP 0.1417 0.0370

MAP3K5 0.5430 0.0013

SLC2A1 0.5045 <0.0001

RRM2 0.5508 0.0333

CAPG 0.6259 0.0011

AURKA 0.3492 0.0125

PRDX1 0.5882 0.0137
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cells (Tregs), resting natural killer (NK) cells, and activated dendritic

cells were significantly higher in the high-risk than in the low-risk

groups. Gamma delta T cells and M1 and M2 macrophages were

significantly lower in the high-risk group than in the low-risk group

(Figure 7A). In addition, EPIC and MCP-counter algorithms were

used to estimate CAF scores in the low-risk and high-risk groups.

Both EPIC and MCP-counter algorithms showed that CAF scores

were significantly higher in the high-risk group than in the low-risk

group (Figures 7B, C). Furthermore, CAF specific marker expression

was compared between the risk groups. FAP, ACTA2, MFAP5,

COL11A1, PDPN, and ITGA11 expression levels were significantly

higher in the high-risk group than in the low-risk group (Figure 7D).

These results indicated that immune responses and CAF statuses

differed in these two patient groups, which might be translated to

target the TME in CCA.
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3.7 Potential drugs targeting the two risk
groups and an immune checkpoint analysis

The GDSC database was used to estimate IC50 of various drugs via

R’s “pRRophetic” package to predict drug sensitivity between the low-risk

and high-risk groups. The estimated IC50 for 10 drugs (BI-2536,

GW843682X, Afatinib, Paclitaxel, Imatinib, WZ-1-84, GW441756,

PHA-665752, CHIR-99021, and SB-216763) out of 138 screened drugs

were lower in the high-risk group than in the low-risk group, indicating

that the high-risk group was more sensitive to these drugs than the low-

risk group (Figure 8A). Moreover, an immune checkpoint analysis

showed that CD47, HHLA2, and TNFRSF14 expression was

significantly higher in the high-risk group than in the low-risk group

(Figure 8B). Therefore, these immune checkpoints might be effective

immunotherapy targets in the high-risk CCA patient group.
B

C

D E

A

FIGURE 3

Construction of the ferroptosis-related gene (FRG) signature in a training cohort. (A, B) A least absolute shrinkage and selection operator (LASSO) Cox
regression analysis of the candidate genes. (C) A heatmap showing the expression levels and distribution of the six-FRG signature. (D) A Kaplan-Meier
curve showing the overall survival of CCA patients. (E) Area under the curve (AUC) of time-dependent receiver operating characteristic (ROC) curves
showing the six-FRG signature’s predictive efficacy for survival time in CCA patients.
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3.8 Validation of the expression of six-FRG
signature proteins in CCA patients

A total of 8,320 proteins were identified in the OEP001105 cohort.

Four of six-FRG signature genes were present in this database (ACO1,

GOT1, SLC2A1, and SQLE). Therefore, correlations between their

mRNA and protein expression levels were analyzed in this cohort to

confirm their protein expression. Protein and mRNA levels were

significantly correlated for ACO1 (r = 0.78), GOT1 (r = 0.89),

SLC2A1 (r = 0.83) and SQLE (r = 0.78; Figures 9A–D). In addition,

the score formula obtained from the training cohort was used to

evaluate patient survival in this cohort based on the protein levels of
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these four genes. Kaplan-Meier curves showed that survival time was

significantly shorter in the high-risk group than in the low-risk group

(Figure 9E). The AUCs at 1, 3, and 4 years of survival were 0.7200,

0.7013, and 0.7360, respectively (Figure 9F). These results suggested

that these four genes could provide an accurate prognostic signature. In

addition, The Human Protein Atlas (HPA) database (https://www.

proteinatlas.org/) (25) was used to confirm the protein expression of

the six-FRG signature in CCA. The immunohistochemistry images

from The HPA database showed that ACO1 and GOT1 levels were

lower in tumor compared to normal tissues. In contrast, FANCD2,

PTGS2, SLC2A1, and SQLE were higher in tumor compared to normal

tissues (Supplementary Figure S1).
C

B D

E G

F H

A

FIGURE 4

Validation of the six-FRG signature in four independent cohorts. (A, C, E, G) Kaplan-Meier curves and (B, D, F, H) time-dependent ROC curves for each
independent cohort.
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3.9 Expression of the six-FRG signature
in CCA cell lines and ferroptosis
inducer sensitivity

RT-qPCR was used to investigate the expression of six-FRG

signature in 10 CCA cell lines relative to a non-tumor

cholangiocyte cell line (MMNK-1). ACO1 and GOT1 expression

was downregulated in most CCA cell lines compared to the

MMNK-1 cell line. In contrast, FANCD2, PTGS2, SLC2A1, and

SQLE expression was upregulated in CCA cell line compared to the

MMNK-1 cell line (Figures 10A–F). Interestingly, the expression of

the six-FRG signature in CCA cell lines showed a similar trend to

their expression in CCA tissues. Moreover, the formula constructed

from the training cohort was used to calculate risk score for each CCA

cell line and divided them into high-risk and low-risk groups. The
Frontiers in Immunology 09
functional role of the six-FRG signature in ferroptosis was

investigated by examining the sensitivity of the two CCA cell lines

with the highest (KKU-214 and RMCCA-1) and lowest (CCLP-1 and

RBE) risk scores to ferroptosis inducers (Figure 10G). Their

sensitivity to ferroptosis inducers erastin and RSL3 was compared

using IC50 values. Interestingly, the two CCA cell lines with the

lowest-risk scores (CCLP-1 and RBE) were more sensitive to both

ferroptosis inducers. The CCA cell lines with the highest-risk scores

(KKU-214 and RMCCA-1) had higher IC50 values than the CCA cell

lines with the lowest-risk scores following treatment with both

ferroptosis inducers (Figures 10H–J). These results highlight the

association between the risk score and ferroptosis sensitivity. CCA

cell lines with higher-risk scores were more resistant to ferroptosis,

indicating that protective mechanisms against ferroptosis might be

enhanced in such CCA cell lines.
B
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FIGURE 5

Univariate and multivariate Cox regression analyses of the six-FRG signature and other clinical characteristics in the (A–C) GSE89749 and (D–F)
OEP00105 cohorts.
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4 Discussion

CCA is the second most common cancer in the hepatobiliary

system. Patients with CCA have poor prognoses and high mortality

rate in which patients in advanced stages have a low 5-year survival

rate of 5% to 10%. Due to tumor heterogeneity and no effective

therapy, patients with CCA have the worst prognosis. Targeting

programmed cell death is one of the most effective cancer

treatments, and dysregulation of this pathway and its-related genes

are directly associated with prognosis of patients. Accumulating

evidence has demonstrated that ferroptosis, a recently identified

regulated cell death pathway, is a promising cancer therapy in

several cancers. In addition, several studies have shown the

relationship between FRGs and patient prognosis. While few
Frontiers in Immunology 10
previous studies have explored the relationship between FRG

signatures and prognosis in CCA patients, a comprehensive analysis

and validation in more patients and cohorts have not been performed.

Moreover, to our knowledge, studies focusing on the role of

prognostic genes and their associations with ferroptosis are limited.

Consequently, how ferroptosis contributes to CCA remains unclear.

Therefore, discovering a novel FRG signature might aid in predicting

prognosis and developing novel therapeutic targets that can help to

improve the overall survival of CCA patients.

This study constructed an FRG signature to predict the prognosis

of CCA patients. Seventeen DEGs with prognostic values were

identified in a training cohort using paired-sample t-tests and

univariate Cox regression analyses. We then obtained a six-FRG

signature related to patient survival in a LASSO Cox regression
B

A

FIGURE 6

Functional and pathway enrichment analyses in a training cohort. (A) Gene Ontology (GO) analysis of differences between risk groups in three functional
categories: Biological processes (BPs), cellular components (CCs), and molecular functions (MFs). (B) A Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis of differences between risk groups.
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analysis in a training cohort. Following Kaplan-Meier analyses, our

FRG signature showed that CCA patients with high-risk scores had

poor prognoses, and low-risk scores had a longer survival time,

indicating that our new FRG signature had strong prognostic

potential in CCA patients. Predictive ability was further confirmed

via ROC curve analyses, where our FRG signature had adequate

predictive power. Furthermore, univariate and multivariate Cox

regression analyses indicated that the risk score based on this six-

FRG signature was an independent prognostic factor. The risk scores

were associated with fluke infection and clinical stages in patients in

the GSE89749 cohort, but only with clinical stages in patients in the

OEP001105 cohort, potentially reflecting the small number of fluke-

infected patients in this cohort. Therefore, our novel six-FRG

signature can accurately predict prognoses for CCA patients and

divide them into low-risk and high-risk groups in which appropriate

therapeutic strategies can be used for personalized therapy.
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High expression of four genes in the six-FRG signature (FANCD2,

PTGS2, SLC2A1, and SQLE) were associated with poor prognosis in

CCA patients and low expression of the six-FRG other two genes

(ACO1 and GOT1) were associated with poor prognosis in CCA

patients. Previous studies have shown that most FRGs in the signature

are involved in tumor progression in CCA and various other cancers.

ACO1, also known as IRP1, is an RNA-binding protein that controls

iron homeostasis by regulating TFRC and FTH1 expression in CCA

and hepatocellular carcinoma (26, 27). ACO1 depletion decreased

iron levels and suppressed erastin- and RSL3-induced ferroptosis in

melanoma (28). Moreover, GOT1 downregulation suppressed

ferroptosis in melanoma by reducing a-ketoglutarate which is a

metabolic intermediate in ROS production (29). However, the role

of GOT1 in CCA remains unknown. In contrast, FANCD2 was found

to be a ferroptosis suppressor in bone marrow injury by regulating the

expression of iron metabolism and lipid peroxidation-related genes
B C

D

A

FIGURE 7

Immune cell infiltration and tumor microenvironment (TME) analysis. (A) A box plot showing the differences in multiple immune cells between low-risk
and high-risk groups based on the CIBERSORTx algorithm. (B, C) A box plot showing differences in cancer-associated fibroblast (CAF) score based on
EPIC and MCP-counter algorithms. (D) A box plot comparing CAF marker expression levels between risk groups. Key: ns, not significant; *p < 0.05; **p <
0.01; ***p < 0.001; ****p < 0.0001.
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(30). FANCD2 was identified as a prognostic gene associated with

poor prognosis in colon cancer, lung adenocarcinoma, clear cell renal

cell carcinoma, and glioma (31–34). PTGS2, also known as COX-2,

was identified as an upregulated ferroptosis marker during ferroptosis

(11). PTGS2 was upregulated in tumor tissues and promoted tumor

progression and chemotherapy resistance in various cancers (35–37).

PTGS2 has been shown to promote tumor development in CCA,

while its inhibition potentiated conventional chemotherapy effects

(38–41). SLC2A1, also known as GLUT1, is a glucose transporters

family member. SLC2A1 was found to be upregulated and play a role

in tumor progression in various cancers (42–45). A previous study

identified SLC2A1 as a prognostic gene in CCA patients (46, 47).

Overexpression of SQLE, a key enzyme in cholesterol biosynthesis,

increased lipid peroxidation, leading to ferroptosis (48). Recent

studies found that SQLE promoted tumor progression, and its

expression was associated with poor prognosis in breast cancer,

pancreatic adenocarcinoma, and bladder cancer (49–51). In

summary, consistent with the previous studies, our study showed

that ACO1 and GOT1 were downregulated and correlated with good

prognosis in CCA patients. In contrast, FANCD2, PTGS2, SLC2A1,

and SQLE were upregulated and correlated with poor prognosis in

CCA patients. However, their functional roles in ferroptosis and CCA

progression remain unknown, and mechanistic studies on each

prognostic FRG in our signature are needed.
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In addition, our GO analysis identified BP, CC, and MF

enrichments in the high-risk group. Among the BPs, the nuclear

division process was enriched in the high-risk group, indicating that

they might have higher proliferation than the low-risk group. The CC

results showed that Golgi apparatus components were enriched in the

high-risk group. Previous studies have shown that the Golgi

apparatus plays important roles in cellular redox control and

prevents ferroptosis (52, 53). The MF results showed that cell

adhesion molecules, such as laminin and cadherin binding, and cell

adhesion mediator activity were enriched in the high-risk group.

Recently, cell-cell interaction was found to regulate ferroptosis

sensitivity (54). Moreover, a KEGG pathway analysis was used to

identify the main signaling pathways contributing to CCA by

comparing low-risk and high-risk groups. Many signal transduction

pathways frequently dysregulated in cancers were enriched in the

high-risk group, including the phosphatidylinositol, mammalian

target of rapamycin (mTOR), vascular endothelial growth factor

(VEGF), erb-be receptor tyrosine kinase (ERBB), Wnt, and

mitogen-activated protein kinase (MAPK) signaling pathways.

These signaling pathways have been shown to play important roles

in CCA and various cancers (55–66). In contrast, amino acid,

carbohydrate, and lipid metabolism were enriched in the low-risk

group, while glycan biosynthesis and metabolism were found to be

enriched in the high-risk group. In summary, our study has shown
B

A

FIGURE 8

Drug sensitivity prediction and immune checkpoint analysis. (A) Differences in estimated half-maximal inhibitory concentration (IC50) between risk groups
for 10 candidate drugs. (B) A box plot comparing immune checkpoint marker expression levels between risk groups. Key: ns, not significant; *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001.
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differences in signaling pathway enrichment between CCA risk

groups, which could be targeted to develop treatment strategies and

improve prognosis in each CCA risk group.

Accumulating evidence has shown the interplay between tumor

cells and other cell types in the TME, including a subset of immune

cells and CAFs that play important roles in tumor progression and

developing therapeutic resistance (67). CCA is a dysmorphic tumor

with abundance CAFs and immunosuppressive cells in the TME (68).

Therefore, we further investigated immune cell and CAF enrichment

by comparing low-risk and high-risk groups. Tregs are an immune

system component that suppressed anticancer immunity and are

associated with poor prognoses in various cancers (68–71). Recent

studies showed that FOXP3+, a Treg marker associated with poor

prognosis in CCA patients (72, 73). Plasma cells were found to be a

source of immunosuppressive factor interleukin (IL)-10 (74, 75).

Moreover, CAFs are major TME components with tumorigenic
Frontiers in Immunology 13
properties, especially, in immunosuppressive TME modulation

(76). This study found that levels of these immunosuppressive

components, including Tregs, plasma cells, and CAFs were

significantly higher in the high-risk group. Therefore,

immunosuppressive components might be promising therapeutic

targets to improve the efficacy of CCA treatment and patient survival.

Drug sensitivity prediction analysis was performed to overcome

treatment resistance and improve CCA patient prognosis, particularly

in the high-risk group. Our analysis predicted 10 effectives potentially

candidate drugs for the high-risk CCA patient group. Paclitaxel,

Imatinib, and Afatinib are US Food and Drug Administration

(FDA)-approved drugs used in clinics to treat various cancers. A

recent study showed that Paclitaxel could be a drug candidate for

CCA patients resistant to conventional therapies (77). Our analysis

supported Paclitaxel potentially having a better effect in treating CCA

patients within the high-risk group. The ABL, KIT, and PDGFR
B
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FIGURE 9

Validation of the six-FRG signature based on protein levels in the OEP001105 cohort. (A–D) Scatter plots showing the correlation between mRNA and
protein expression levels of ACO1, GOT1, SLC2A1, and SQLE. (E) A Kaplan-Meier curve comparing survival time between patient groups defined on six-
FRG signature protein levels. (F) Time-dependent ROC curves.
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inhibitor Imatinib was effective in treating gastrointestinal stromal

tumor with KIT or PDGFR overexpression or mutation (78). The

epidermal growth factor receptor (EGFR) and ERBB tyrosine kinase

inhibitor Afatinib has been used as a first-line drug for non-small cell

lung cancer patients with an EGFRmutation (79). However, relatively

few studies have investigated the efficacy of these kinase inhibitors in

CCA patients (80–82). Moreover, PLK1 inhibitors BI-2536 and

GW843682X were predicted to be effective drugs for the high-risk

group. Consistent with our results, previous studies have shown that

PLK1 was associated with poor prognosis in CCA patients, and its

inhibition was effective against CCA cells (83–85). NTRK1 fusion has

been found in CCA patients (86) resulting in constitutive TRKA

activation, and its inhibition showed positive responses in specific
Frontiers in Immunology 14
CCA patient groups (87). In this study, a selective TRKA inhibitor

GW441756 was shown more effective in the high-risk group. In

addition, selective c-Met inhibitor PHA-665752 and GSK3B

inhibitors CHIR-99021 and SB-216763 were shown to be more

effective in the high-risk group. Both c-MET and GSK3B were

associated with poor prognosis, and targeting c-MET or GSK3B has

been reported to be potentially effective in treating CCA patients (88–

93). Altogether, based on risk stratification groups, our study

predicted effective candidate drugs for treating CCA patients, which

could be used in precision therapy to improve their prognosis.

Immunotherapy has been proposed as a potential therapeutic

option for CCA (94, 95). However, the outcomes of anti-PD-1/PD-L1

immune checkpoint inhibitors (ICIs) remain controversial in CCA.
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FIGURE 10

Expression of the six-FRG signature in CCA cell lines and their sensitivity to ferroptosis inducers. (A-F) The relative expression levels of the six-FRG
signature in 10 CCA cell lines normalized to a non-tumor MMNK-1 cell line. (G) Risk scores calculated using six-FRG signature in 10 CCA cell lines.
(H) Cell viability of CCLP-1, RBE, KKU-214, and RMCCA-1 treated with erastin. (I) Cell viability of CCLP-1, RBE, KKU-214, and RMCCA-1 treated with RSL3.
(J) A table showing IC50 of erastin and RSL3 in CCLP-1, RBE, KKU-214, and RMCCA-1. Key: ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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In this study, PD-1 (PDCD-1) and PD-L1 (CD274) expression levels

did not differ between low-risk and high-risk groups. Interestingly,

other immune checkpoint markers, including CD47, HHLA2, and

TNFRSF14 showed significantly higher expression in the high-risk

group. Therefore, these immune checkpoints might be potential

targets for developing ICIs to reactivate antitumor immunity which

might improve the survival of patients with poor prognoses.

Previous studies have analyzed FRG signatures in several cancers.

However, most have analyzed FRG signatures and classified patients

into low-risk and high-risk groups that did not reflect relative

ferroptosis levels (96–98). Therefore, this study calculated risk

scores based on the expression levels of a six-FRG signature in each

CCA cell line and could divide them into low-risk and high-risk

groups. Using two representative CCA cell lines of the low-risk and

high-risk groups, our study showed that low-risk score CCA cell lines

were significantly more sensitive to ferroptosis inducers than high-

risk score CCA cell lines. This result suggests that ferroptosis

resistance might explain the relationship between the high-risk

group and poor prognosis. Consistent with our findings, a previous

study showed that activating ferroptosis suppressor genes enabled

CCA cells to evade ferroptosis (99). Therefore, inhibiting ferroptosis

suppressor genes and targeting ferroptosis resistance mechanisms

might be effective therapeutic strategies for improving prognosis,

particularly in the high-risk group. Besides ferroptosis resistance

mechanisms, other factors, such as CCA stage, might contribute to

differences in ferroptosis inducer sensitivity in the two CCA cell line

groups. Unfortunately, information on the stages of CCA cell lines is

only available for the high-risk group (i.e., RMCCA-1: T2N0M0;

KKU-214: stage IVB)

However, our study had some limitation. First, the data used in this

study were collected from public databases. Consequently, they differed

appreciably in their CCA patient numbers, patient heterogeneity,

ethnicity, and etiology. Second, the FRGs were identified from FerrDb

and previous studies. However, the role of ferroptosis in cancers is still in

its infancy. Therefore, some unidentified FRGs might be missing from

our analyses. Finally, further in vitro and in vivo studies are needed to

investigate the roles of these prognostic genes in ferroptosis and their

underlying mechanisms in CCA.
5 Conclusions

In summary, our study showed that a six-FRG signature scoring

model could divide CCA patients into low-risk and high-risk groups.

Our novel FRG signature model effective predicted the prognosis of

CCA patients, potentially providing prognostic biomarkers and

potential therapeutic targets for CCA patients. Moreover, oncogenic

signaling pathways, immune cell and CAF infiltration, drug

sensitivity, and immune checkpoint marker expression differed

between two CCA risk groups, which might represent novel

therapeutic targets for improving survival, particularly of patients

with poor prognoses. In addition, we predicted drug candidates for

CCA patients in the high-risk group. Based on ferroptosis sensitivity

in low-risk and high-risk CCA cell lines, our results suggest that

ferroptosis resistance is associated with the high-risk group and

targeting ferroptosis resistance mechanisms in this group could be a

promising therapeutic strategy for these CCA patients.
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