
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Mingqiang Kang,
Fujian Medical University Union
Hospital, China

REVIEWED BY

Lauren Merlo,
Lankenau Institute for Medical
Research, United States
Mohamed Rahouma,
Weill Cornell Medical Center,
NewYork-Presbyterian, United States
Wen Yu,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Zhenyu Ding
dingzhenyu@scu.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted
to Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 23 September 2022
ACCEPTED 21 November 2022

PUBLISHED 08 December 2022

CITATION

Li Q, Liu T and Ding Z (2022)
Neoadjuvant immunotherapy
for resectable esophageal
cancer: A review.
Front. Immunol. 13:1051841.
doi: 10.3389/fimmu.2022.1051841

COPYRIGHT

© 2022 Li, Liu and Ding. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not
comply with these terms.

TYPE Review
PUBLISHED 08 December 2022

DOI 10.3389/fimmu.2022.1051841
Neoadjuvant immunotherapy
for resectable esophageal
cancer: A review

Qing Li †, Ting Liu † and Zhenyu Ding*

Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University,
Chengdu, China
Esophageal cancer (EC) is one of themost common cancers worldwide, especially

in China. Despite therapeutic advances, the 5-year survival rate of EC is still dismal.

For patients with resectable disease, neoadjuvant chemoradiotherapy (nCRT) in

combination with esophagectomy is the mainstay of treatment. However, the

pathological complete response (pCR) rate to nCRT of 29.2% to 43.2% is not

satisfactory, and approximately half of the patients will develop either a

locoregional recurrence or distant metastasis. It is, therefore, necessary to

explore novel and effective treatment strategies to improve the clinical efficacy

of treatment. Immunotherapy utilizing immune checkpoint inhibitors (ICIs) has

significantly changed the treatment paradigm for a wide variety of advanced

cancers, including EC. More recently, increasing clinical evidence has

demonstrated that neoadjuvant immunotherapy can potentially improve the

survival of patients with resectable cancers. Furthermore, accumulating findings

support the idea that chemotherapy and/or radiotherapy can activate the immune

system through a variety of mechanisms, so a combination of chemotherapy and/

or radiotherapy with immunotherapy can have a synergistic antitumor effect.

Therefore, it is reasonable to evaluate the role of neoadjuvant immunotherapy

for patients with surgically resectable EC. In this review, we discuss the rationale for

neoadjuvant immunotherapy in patients with EC, summarize the current results of

utilizing this strategy, review the planned and ongoing studies, and highlight the

challenges and future research needs.

KEYWORDS

esophageal cancer (EC), immune checkpoint inhibitor (ICI), immunotherapy,
neoadjuvant therapy, chemotherapy, radiotherapy
Introduction

Esophageal cancer (EC) is the sixth leading cause of cancer-related mortality

worldwide, with approximately 544,000 deaths from EC in 2020 (1). In contrast to

Western countries, esophageal squamous cell carcinoma (ESCC) accounts for

approximately 90% of EC cases in East Asia (1, 2). Surgery remains the mainstay for
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the treatment of early-stage EC. However, most patients with EC

are already in a locally advanced stage at the time of diagnosis,

and surgery alone has a limited effect, with a 5-year survival rate

of only 25% (3). For resectable locally advanced EC, neoadjuvant

chemoradiotherapy (nCRT) could improve survival compared

to surgery alone (4, 5). Therefore, preoperative nCRT followed

by surgery has become the standard of care for these patients (6).

However, nearly half of patients still develop local recurrence or

distant metastases after surgery (4). It is therefore necessary to

explore novel and effective treatments to improve survival.

In recent years, immune checkpoint inhibitors (ICIs) have

made significant advances in a variety of tumors (7, 8). In EC,

the KEYNOTE-181 study showed that compared with

chemotherapy, pembrolizumab demonstrated a longer overall

survival (OS, 6.7 vs. 9.3 months), a higher objective response rate

(ORR, 7.4% vs. 16.7%) and a lower incidence of grade 3-5

adverse events (AEs, 40.9% vs. 18.2%) as 2nd-line treatment

(9). In addition, the RATIONALE-302 (10), ATTRACTION-3

(11) and ESCORT studies (12) all showed positive results in

similar populations. The latest results from the JUPITER-06

(13), CheckMate 648 (14), ORIENT-15 (15), ESCORT-1st (16)

and KEYNOTE-590 (17) studies showed that treatment of

patients with advanced EC with programmed death 1 (PD-1)

inhibitors plus chemotherapy as 1st-line therapy resulted in

significantly longer OS and progression-free survival (PFS)

than chemotherapy alone. These results suggest that ICIs have

promising prospects for EC treatment.

Currently, ICI neoadjuvant therapy has been tried in a

variety of tumors, such as lung cancer (18, 19), melanoma

(20–23), bladder cancer (24), colon cancer (25) and

glioblastoma (26, 27). ICI neoadjuvant therapy for EC is also

being actively explored. In this review, we will describe the

rationale for ICI neoadjuvant therapy in EC, the reported

outcomes, the planned and ongoing studies, the unresolved

issues, and the directions for future research.
Rationale of neoadjuvant therapy

Biological basis of EC

Antitumor immune responses can be driven by mutation-

associated neoantigens that are recognized as nonself-foreigners

by T cells that have escaped negative selection during T-cell

development (28). Tumor mutational burden (TMB) is a

prototype measure of tumor foreignness that reflects the

diversity of neoantigens (28). Therefore, a high TMB is

positively correlated with the efficacy of ICIs (29–32), and the

US Food and Drug Administration approved TMB as a

companion diagnostic biomarker as an indication for using the

PD-1 inhibitor pembrolizumab to treat patients with

unresectable or metastatic solid tumors. The genomic

aberrations in EC have been comprehensively studied (33–38),
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and a high TMB occurs in most cases of EC (39, 40). In addition,

programmed cell death-ligand 1 (PD-L1) is widely expressed in

EC cells and is associated with a poor prognosis (41–43). In a

pooled analysis, PD-L1 overexpression was found in 559/1,350

ESCC patients (41.4%) (42). For patients with ESCC, PD-L1 was

negatively associated with a pathological complete response

(pCR, 13% vs. 32%) after nCRT treatment (44, 45).

Furthermore, PD-L1 expression also predicts a high

postoperative recurrence rate and low survival rate in ESCC

patients (46). Not surprisingly, anti-PD-1 antibodies show good

clinical efficacy and safety for the treatment of advanced EC (9–

17). It is also reasonable to evaluate the role of ICIs in

preoperative treatment.
Actions of ICIs

Anti-PD-(L)1 antibodies block the inhibitory signals between

tumor cells and T cells in the tumor microenvironment (TME),

reversing the exhausted state of T cells (47–49). Dendritic cells

(DCs) originating from primary tumors take up tumor antigens

and traffic to tumor-draining lymph nodes, where they present

antigens in an ineffective or tolerogenic manner to tumor-specific

T cells. Anti-PD-(L)1 antibodies also increase antigen

presentation by blocking the inhibitory signals between PD-L1-

expressing DCs and T cells, resulting in the “in situ” expansion of

tumor-specific T cells. These activated T cells enter the blood

circulation or lymphatic vessels and then enter the primary tumor

tissue or distant micrometastases to exert antitumor effects. The

presence of a primary tumor allows the induction of a broader and

stronger T-cell response (48, 49) (Figure 1). In addition, tumor-

specific T cells in the blood circulation continue to clear residual

tumor cells after surgery (49) (Figure 1). Moreover, preoperative

immunotherapy can activate the patient’s immune system to form

immune memory cells (50), enabling the immune system to play

an immune surveillance role (47–49) (Figure 1). Compared with

adjuvant immunotherapy, neoadjuvant immunotherapy seems to

be more advantageous (47–49). In 2016, researchers validated this

idea in mouse models of spontaneously metastatic breast cancer

where neoadjuvant therapy was superior to adjuvant

immunotherapy in eradicating distant micrometastases (51). In

human studies, neoadjuvant immunotherapy has been explored in

a variety of tumors, such as lung cancer (18, 52), melanoma (20–

23), and glioblastoma (26, 27).
Synergistic effect with radiotherapy

In addition to local effects, radiotherapy sometimes leads to

tumor regression in unirradiated lesions, a phenomenon known

as the abscopal effect (53–55). Demaria et al. (56) first attributed

the abscopal effect to immune-mediated mechanisms, and

others also confirmed that radiotherapy could activate the
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body’s immune system (57, 58). ICIs block the inhibitory

signals between immune cells and tumor cells, increasing

the presentation of tumor antigens (47–49). Radiotherapy

also modulates the immune system in multiple ways

(Figure 2). Radiotherapy induces immunogenic cell death,

upregulates chemokines or cytokines, and recruits immune

cells to the TME (59–61). Radiotherapy activates the type I

interferon response via the stimulator of interferon genes

pathway. Type I interferon is a well-known mediator of DC

recruitment and maturation (62–64). Importantly, radiation

therapy serves as an in situ vaccine by increasing the release of

tumor antigens and the uptake of antigens by DCs (65–67). Last

but not least, radiotherapy increases the expression of PD-L1

(59, 68). Although the interactions between ICIs and

radiotherapy are not well established, their combination

enhances the antitumor effects (69–73), which has been

confirmed in preclinical models (59, 73, 74). In patients with

EC, this combination is now being actively considered as a first-

line treatment (75, 76).
Synergistic effects with chemotherapy

Chemotherapy has dual modulatory effects on the immune

system. In addition to its well-known immunosuppressive
Frontiers in Immunology 03
effects, chemotherapy has recently been found to have

immune-activating properties (77, 78). Chemotherapy

promotes immunogenic cell death and initiates antitumor

immune responses (79, 80). Chemotherapy suppresses

immunosuppressive cells, activates effector cells, and increases

DC and T-cell infiltration (80–86). Chemotherapy kills tumor

cells, which releases tumor antigens (87). Both preclinical and

clinical studies found that commonly used chemotherapeutic

agents, such as oxaliplatin, cisplatin, paclitaxel, and 5-

fluorouracil, promote the upregulation of PD-L1 expression in

EC and other cancers (86, 88–94). Therefore, chemotherapy is

also synergistic with ICIs (Figure 2). In advanced EC, compared

with chemotherapy alone, the combination of chemotherapy

and ICIs shows clinical and statistical survival benefits (9–17),

and this combination has been approved for the treatment of a

variety of tumors (82).

In summary, ICIs exert antitumor effects by modulating the

body’s immune system instead of killing tumor cells directly. In

accumulating studies, durable tumor control was achieved with

better effects than traditional chemotherapy and/or radiotherapy

(95–98). This unique mechanism provided the rationale for

neoadjuvant immunotherapy, whereby long-term survival is

expected. It is theoretically feasible to combine chemotherapy

and/or radiotherapy with ICIs for neoadjuvant treatment of

locally advanced resectable EC.
A B

C

FIGURE 1

Potential mechanism of neoadjuvant immunotherapy. (A) This figure provides a stepwise overview of the potential mechanism of the antitumor
effect of ICIs in the presence of a primary tumor. (B) After surgical removal of the primary tumor, T cells in the blood circulation can continue to
exert antitumor effects to clear any remaining tumor cells. (C) After surgical removal of the primary tumor, immune memory cells prevent any
postoperative recurrence and metastasis. PD-1, programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; MHC, major
histocompatibility complex; TCR, T-cell receptor; TME, tumor microenvironment; DCs, dendritic cells.
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Clinical studies

Reported clinical studies

Multiple clinical trials have explored the efficacy and safety

of immunotherapy against resectable EC in the neoadjuvant

setting (Table 1, Figure 3). Initially, clinical trials examined

neoadjuvant immunotherapy plus chemoradiotherapy (CRT)

(99, 100), and recent trials have evaluated neoadjuvant

chemoimmunotherapy (101–112) and neoadjuvant

immunotherapy plus antiangiogenic therapy (113). Current

reported clinical trials on neoadjuvant immunotherapies are

mainly single-arm studies with small samples. Most of them

were conducted in China and were directed against ESCC.
Efficacy

The efficacy outcomes are graphically summarized in

Figure 3. Among the 15 included studies, 13 evaluated the

radiologic response with the Response Evaluation Criteria

in Solid Tumors (RECIST) (99, 101–111), with the ORR

fluctuating from 49.0% to 100% and the disease control rate

(DCR) fluctuating from 87.5% to 100% (Figure 3). All of these

studies reported R0 resection rates ranging from 80.5%

to 100.0%.
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The pCR rate was reported by all studies, and 10 of 15

reported the major pathological response (MPR) rate. Five

studies did not report MPR (100, 101, 104, 105, 108). The

addition of ICI to CRT led to pCR rates of 55.6% and 30.3%,

respectively (99, 100), and led to an MPR rate of 89.0% (99)

(Figure 3). When neoadjuvant ICI was combined with

chemotherapy, different pCR and MPR rates were achieved,

with the pCR ranging from 16.7% to 50.0% (101–112) and the

MPR from 41.7% to 72.2% (102, 103, 106, 107, 109–112)

(Figure 3). Combining chemotherapy with camrelizumab and

apatinib led to a pCR rate of 24.1% and an MPR rate of 51.7%

(113) (Figure 3). It is noteworthy that 11 of these 15 studies

noted that a pCR was defined as the absence of residual tumor in

both the primary tumor and lymph nodes (ypT0N0) (99–103,

106–110, 112), whereas the other 4 studies did not explicitly

indicate ypT0N0 was required for a pCR (104, 105, 111, 113).

When compared with the classic CROSS (49%) (114) or

NEOCRTEC5010 study (43.2%) (4), ICIs combined with

chemotherapy showed no significant advantage in the pCR rate.

In studies where ICIs were combined with CRT, such as the

PALACE-1 study (99), a better pCR of 55.6% was reported. In

another PERFECT study (100), a higher pCR in patients with EAC

was also reported (30.3% vs. 23% for CRT). Notably, the results of

these small-scale preliminary studies were unreliable, and additional

large-scale studies are needed to confirm the efficacy of neoadjuvant

immunotherapy in patients with locally advanced resectable EC.
FIGURE 2

This figure provides a stepwise overview of the potential mechanism of the synergistic antitumor effect of immune checkpoint inhibitors (ICIs)
combined with radiotherapy and/or chemotherapy. PD-1, programmed cell death protein 1; PD-L1, programmed cell death 1 ligand 1; MHC,
major histocompatibility complex; TCR, T-cell receptor; TME, tumor microenvironment; DCs, dendritic cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1051841
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Reported clinical trials of neoadjuvant immunotherapy for the treatment of resectable esophageal cancer.

PALACE-1 PERFECT Shen et al. ESONICT-1 SIN-ICE Yang et al. Xing et al. Yang et al. He et al. NICE ESONICT-
2

NIC-
ESCC2019

PEN-ICE TD-NICE Wang et al.

tudy Pilot study II Pilot study II II II II II II Ib

16 30 23 20 60 20 56 18 45 30

ESCC ESCC ESCC ESCC ESCC ESCC ESCC ESCC ESCC ESCC

II-IVA II-IVA II–III III-IVa III-IVA III-IVA II-IVA II–IVA II-IVA II-III

ab Camrelizumab Toripalimab Camrelizumab Toripalimab Camrelizumab Toripalimab Camrelizumab Pembrolizumab Tislelizumab Camrelizumab

PD-1 PD-1 PD-1 PD-1 PD-1 PD-1 PD-1 PD-1 PD-1 PD-1

axel/
in-bound
xel,
latin

Paclitaxel,
carboplatin

Paclitaxe,
cisplatin

nab-paclitaxel,
carboplatin

Paclitaxel,
carboplatin

nab-paclitaxel,
carboplatin

Docetaxel,
cisplatin

nab-paclitaxel,
cisplatin

Platinum-based
two-drug

nab-
paclitaxel,
carboplatin

nab-paclitaxel,
nedaplatin,
apatinib

2, Q3W 2, Q3W 2, Q3W 2, Q3W 2, Q3W 2, Q3W 2, Q3W 3, Q3W 3, Q3W 2-4, Q3W

NA NA NA NA NA NA NA NA NA NA

eks 4 weeks 4-6 weeks 3-6 weeks 4-6 weeks 4-6 weeks 4-6 weeks 6 weeks 4-6 weeks 4-6 weeks 4-8 weeks

afety pCR pCR Safety,
feasibility

Safety,
feasibility,
MPR

pCR pCR, AEs pCR Safety, efficacy MPR Safety

pplicable; pCR, Pathologic complete response; MPR, Major pathological response; AE, Adverse events.
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sintilima sintili
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drugs
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album
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Chemotherapy
cycle

5, Q1W 5, Q1W 2, Q3W 2, Q3W 3, Q3

Radiotherapy 23 fractions of
1.8 Gy

23 fractions
of 1.8 Gy

NA NA NA

Time from
neoadjuvant
therapy to surgery

4-6 weeks 1-3 weeks 3-5 weeks 4-6 weeks 4-6 w

Primary endpoints Safety Feasibility Safety, feasibility pCR, AEs pCR,

ESCC, Esophageal squamous cell carcinoma; EC, Esophagus adenocarcinoma; NA, Not A
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Safety

The safety results are graphically summarized in Figure 3. The

rates of failure to complete neoadjuvant therapy varied from 0% to

15.0%, mainly due to treatment-related AEs (TRAEs) (99, 100,

108), patient decisions (107, 110, 112) or disease progression

(100). One study did not report the specific reason for 2 patients

not proceeding to the planned neoadjuvant treatment (103). The

rates of failure to undergo resection ranged from 0% to 40%. There

were various reasons reported for not proceeding to resection:

disease progression (99, 100, 102, 103, 105, 108, 111, 112), patient

refusal (100–103, 105–112), death (99, 100, 108), TRAEs (105),

compromised general condition (110) and dropped out (108).

Notably, in the ESONICT-2 study, 8 of 20 patients failed to

undergo surgery, 3 patients refused surgery due to symptom relief,

and another 5 patients were not suitable for radical surgery, but no

specific reasons were reported (109). Surgical delays were reported

in 2 of the 15 included studies, and all were attributed to TRAEs

(108). The rates of patients experiencing surgical delay were 15.7%

(108) and 17.2% (113), respectively.

In the two studies that added ICI to CRT, the incidence of

grade 3 and higher AEs was 65.0% and 42.5%, respectively (99,
Frontiers in Immunology 06
100). Most of these AEs were lymphopenia or gastrointestinal

related (i.e., anorexia or nausea) and occurred during the

neoadjuvant treatment period (99, 100). During neoadjuvant

treatment with ICI chemotherapy, reported rates of AEs ranged

from 3.0% to 56.7%. Here, the most frequently reported AEs

were hematological disorders (101–103, 105–112), followed by

gastrointestinal-related (i.e., anorexia, vomiting, diarrhea) (103,

107, 110–112), and immune-related AEs (i.e., enteritis,

hyperthyroidism, dermatitis) (105, 109, 110). Rash (101, 110),

pneumonia (105, 108), alopecia (103, 111), fatigue (107, 111),

fever (108) and blurred vision (108) have been reported in only a

few studies. One study reported AEs associated with

neoadjuvant therapy; however, these events were not reported

in a graded manner (104). The combination of chemotherapy

with ICI and apatinib led to 36.7% of patients experiencing grade

3 AEs. No grade 4 or 5 AEs were reported (113).
Registered clinical trials

More clinical trials can be found at ClinicalTrials.gov

(Table 2). In most of them, either CRT or chemotherapy is
A

B

C

FIGURE 3

Published clinical studies on immune checkpoint inhibitor (ICI) neoadjuvant therapy in resectable esophageal cancer (EC). (A) The radiologic
response. (B) The pathological response. (C) The safety results. ICIs, immune checkpoint inhibitors; CRT, chemoradiotherapy; ORR, objective
response rate; DCR, disease control rate; pCR, pathologic complete response; MPR, major pathological response; AEs, adverse events; ESCC,
esophageal squamous cell carcinoma; EAC, esophageal adenocarcinoma; NA, not available.
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TABLE 2 Registered clinical trials in ClinicalTrials.gov investigating neoadjuvant immunotherapy for the treatment of resectable esophageal cancer.

Neoadjuvant
treatment protocol

NCT
Number

Pathological
type

Phase Intervention Sample
size

Primary
endpoint

Status

ICIs+CRT NCT05357846 ESCC 3 Tislelizumab/Paclitaxel/Cisplatin /Radiation 422 OS Not yet
recruiting

NCT05323890 ESCC 2 Tislelizumab/ Albumin paclitaxel/Cisplatin/
Radiation

15 MPR, pCR Recruiting

NCT05043688 ESCC 2 SHR-1210/Albumin paclitaxel/Carboplatin/
Radiation

204 pCR Not yet
recruiting

NCT04974047 ESCC 2 Tislelizumab/Paclitaxel/Cisplatin/Radiation 65 pCR Recruiting

NCT04973306 ESCC 2/3 Tislelizumab/Paclitaxel/Carboplatin/
Radiation

176 pCR, OS Recruiting

NCT04888403 ESCC 2 Toripalimab/Albumin paclitaxel/Nedaplatin/
Radiation

45 pCR Not yet
recruiting

NCT04776590 EC 2 Tislelizumab/Albumin paclitaxel/Caboplatin/
Radiation

30 pCR Recruiting

NCT04644250 ESCC 2 Toripalimab/Paclitaxel liposome/
Carboplatin/Radiation

32 pCR Recruiting

NCT04568200 ESCC 2 Durvalumab/Paclitaxel/Carboplatin/
Radiation

60 Tumor and
pathological response

Recruiting

NCT04437212 ESCC 2 Toripalimab/Paclitaxel/Cisplatin/Radiation 20 MPR Recruiting

NCT04435197 ESCC 2 Pembrolizumab/Carboplatin/Paclitaxel/
Radiation

143 pCR Recruiting

NCT04177875 EC 2 Teripalimab/Docetaxel or albumin
paclitaxel/Cisplatin/Radiation

44 MPR/ORR Recruiting

NCT03792347 ESCC 2 Pembrolizumab/Paclitaxel/Carboplatin/
Radiation

143 pCR Recruiting

NCT03544736 EC 1/2 Nivolumab/Paclitaxel/Carboplatin/Radiation 30 TEAE Recruiting

NCT03490292 EC/GEC 1/2 Avelumab/Paclitaxel/Carboplatin/Radiation 24 DLTs/pCR Recruiting

NCT03064490 EGC 2 Pembrolizumab/Paclitaxel/Carboplatin/
Radiation

38 pCR Recruiting

NCT03044613 EC/GC/EGC 1 Nivolumab/Relatlimab/Carboplatin/
Paclitaxel/Radiation

25 TRAE Recruiting

NCT02844075 ESCC 2 Pembrolizumab/Taxol/Carboplatin/
Radiation

18 pCR Active, not
recruiting

ICIs+Chemo NCT05476380 ESCC 2 Camrelizumab/Paclitaxel/Cisplatin 39 pCR Recruiting

NCT05302011 ESCC 2 Pembrolizumab/Docetaxel/Carboplatin or
Cisplatin

30 Tumor and
pathological response

Recruiting

NCT05281003 ESCC 2 Pembrolizumab/Paclitaxel/Cisplatin 128 pCR Not yet
recruiting

NCT05244798 ESCC 3 Tislelizumab/Albumin paclitaxel/Cisplatin
Tislelizumab/Albumin paclitaxel/Cisplatin/
Radiation

360 pCR Not yet
recruiting

NCT05213312 ESCC 2/3 Nivolumab/Paclitaxel or 5Fluorouracil/
Cisplatin

90 pCR Recruiting

NCT05189730 ESCC 2 Tislelizumab/Paclitaxel/Cisplatin 80 pCR, AEs Recruiting

NCT05182944 ESCC 2 Camrelizumab/Albumin paclitaxel/Cisplatin 130 pCR, DFS Recruiting

NCT05174325 ESCC 2 Sintilimab/Albumin paclitaxel/Cisplatin 30 pCR Recruiting

NCT05050760 ESCC NA Camrelizumab/Oxaliplatin/Docetaxel/
Tegafur

55 Safety, Feasibility Not yet
recruiting

NCT05028231 ESCC NA PD-1 or PD-L1/Chemotherapy 46 pCR Recruiting

NCT04937673 ESCC 2 Camrelizumab/Albumin paclitaxel or
paclitaxel/Cisplatin

40 Biomarkers related to
pCR

Not yet
recruiting

NCT04848753 ESCC 3 Toripalimab/Paclitaxel/Cisplatin 500 EFS Recruiting

NCT04844385 ESCC 2 Toripalimab/Albumin paclitaxel/Nedaplatin 83 2-year PFS rate Recruiting

(Continued)
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adopted in combination with ICI. In others, ICI is used alone

(NCT04215471, NCT04196465, NCT03987815, NCT02735239),

combined with radiotherapy (NCT05176002, NCT03200691),

combined with both multitargeted small molecule inhibitors and

CRT or chemotherapy (NCT04929392, NCT04757363,
Frontiers in Immunology 08
NCT04666090), combined with both CRT and anti-EGFR

antibody (NCT05355168), or used in combination with another

ICI and CRT (NCT03776487).

In addition to these phase 2 studies, several phase 3 studies

deserve special attention. Hong et al. designed a randomized
TABLE 2 Continued

Neoadjuvant
treatment protocol

NCT
Number

Pathological
type

Phase Intervention Sample
size

Primary
endpoint

Status

NCT04813523 GEJAC 2 Pembrolizumab/5Fluorouracil /Cisplatin/ 30 MPR Recruiting

NCT04807673 ESCC 3 Pembrolizumab/Paclitaxel/Cisplatin 342 EFS Recruiting

NCT04804696 ESCC 2 Toripalimab/Paclitaxel/Cisplatin 53 pCR Recruiting

NCT04767295 ESCC 2 Camrelizumab/Albumin paclitaxel/
Carboplatin

28 ORR Recruiting

NCT04625543 ESCC 2 Sintilimab/Paclitaxel/Cisplatin 100 MPR Not yet
recruiting

NCT04506138 ESCC 1/2 Camrelizumab/Albumin paclitaxel/
Carboplatin

46 pCR/MRP Recruiting

NCT04460066 EC 1/2 Anti-PD-L1 antibody/Albumin paclitaxel/
Cisplatin

70 MPR Not yet
recruiting

NCT04389177 ESCC 2 Pembrolizumab/Carboplatin/Paclitaxel 50 MPR Recruiting

NCT04280822 EC 3 JS001/Paclitaxel/Cisplatin 400 3 years EFS/5 years
EFS

Recruiting

NCT04221555 GAC/GEJAC 2 Durvalumab/Docetaxel/Oxaliplatin/S-1 68 pCR Recruiting

NCT04006041 ESCC 2 Toripalimab/Paclitaxel/Cisplatin 44 pCR Recruiting

NCT03946969 ESCC 1/2 Sintilimab/Liposomal paclitaxel/Cisplatin/S-
1

40 TEAE Recruiting

NCT03917966 ESCC 2 SHR-1210/Docetaxel/Nedaplatin 40 ORR/MPR Recruiting

NCT03914443 ESCC 1 Nivolumab/5Fluorouracil /Cisplatin/
Docetaxel

36 DLTs Active, not
recruiting

NCT03448835 GC/GEJC 2 Atezolizumab/Capecitabine/Oxaliplatin/
Docetaxel

20 AE Recruiting

ICIs alone NCT04215471 ESCC 2 Anti-PD-L1 antibody SHR-1316 30 OR Not yet
recruiting

NCT04196465 EC/GC/Liver
Cancer

2 Anti-PD-L1 antibody IMC-001 48 MPR Recruiting

NCT03987815 ESCC 2 Nivolumab 20 MPR Recruiting

NCT02735239 EC 1/2 Durvalumab 75 AE/DLT Active, not
recruiting

ICIs+Radiation NCT05176002 ESCC 1/2 Camrelizumab/Radiation 26 MPR, AEs Recruiting

NCT03200691 ESCC 2 Anti-PD-1 antibody SHR-1210/Radiation 21 pCR Unknown
status

ICIs+CRT+Multi-
targeted inhibitor

NCT04929392 EC/GEC 2 Pembrolizumab/Paclitaxel/Carboplatin/
Radiation/Lenvatinib Mesylate

24 pCR, cCR Recruiting

ICIs+Chemo+ Multi-
targeted inhibitor

NCT04757363 EGC 2 Nivolumab/Regorafenib/Oxaliplatin/
Leucovorin/ 5-FU

35 6-month PFS Recruiting

NCT04666090 ESCC 2 Carillizumab/Albumin paclitaxel/
Nedaplatin/Apatinib

38 MPR Recruiting

ICIs+CRT+anti-EGFR
antibody

NCT05355168 ESCC 1/2 Camrelizumab/Nimotuzumab/
Chemoradiotherapy

57 pCR, MPR Recruiting

Dual ICIs+CRT NCT03776487 GC/GAC/GEJAC 1/2 Ipilimumab/Nivolumab/5Fluorouracil/
Oxaliplatin/Radiation

30 AE Recruiting
fr
AE, Adverse events; cCR, clinical complete response; DLT, Dose limiting toxicity; EC, Esophagus cancer; EGC, Esophagogastric cancer; EGFR, Epidermal growth factor receptor; EFS, Event
free survival; ESCC, Esophageal squamous cell carcinoma; GAC, Gastric adenocarcinoma; GC, Gastric cancer; GEJAC, Gastroesophageal junction adenocarcinoma; MPR, Major
pathological response; NA, Not Applicable; OR, Objective response; ORR, Objective remission rate; pCR, Pathologic complete response; PFS, Progression free survival; TEAE, Treatment
emergent adverse events; TRAE, Treatment-related adverse events.
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controlled trial (RCT) to compare PD-1 inhibitors combined with

preoperative CRT versus neoadjuvant CRT for locally advanced

ESCC (NCT05357846). The KEYSTONE-002 study was designed

to evaluate the efficacy and safety of pembrolizumab in

combination with chemotherapy for preoperative neoadjuvant

therapy and then the continued use of pembrolizumab as

adjuvant therapy postoperatively compared with neoadjuvant

CRT and surgery for locally advanced ESCC (NCT04807673).

Two other studies are comparing the efficacy of neoadjuvant

chemotherapy combined with immunotherapy versus

neoadjuvant chemotherapy in resectable ESCC (NCT04848753,

NCT04280822) . Immunotherapy plus neoadjuvant

chemotherapy versus immunotherapy plus neoadjuvant CRT is

also being studied (NCT05244798).

In summary, neoadjuvant chemoradiotherapy remains

the standard treatment for locally advanced esophageal

cancer, and neoadjuvant immunotherapy is in the clinical trial

stage. No indications for neoadjuvant immunotherapy are

currently authorized.
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The challenges

Neoadjuvant immunotherapy in EC is still in its infancy, and

many unanswered questions remain. Here, we summarize the

challenges and future directions (Figure 4).
AEs

ICIs might cause specific toxicity profiles, i.e., immune-related

AEs, different from those of chemo- or radiotherapy (70, 115). In

addition, when combination therapy is adopted, the type and

severity of TRAEsmight be more complex (70, 116). The PACIFIC

study reported a higher incidence of treatment discontinuation due

to AEs in the ICI plus CRT group than in the CRT alone group

(15.4% vs. 9.8%) (117). In a meta-analysis including 3,144 patients,

ICIs plus chemotherapy had a significantly higher incidence of AEs

in non-small cell lung cancer (NSCLC) (118). Similarly, the

CheckMate 648 study reported that patients with advanced
FIGURE 4

Challenges of neoadjuvant immunotherapy for esophageal cancer. ICIs, immune checkpoint inhibitors; CRT, chemoradiotherapy, AEs, adverse
events; EC, esophageal cancer.
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ESCC treated with nivolumab plus chemotherapy had a higher

incidence of grade 3-4 TRAEs than those treated with

chemotherapy alone (47% vs. 36%) (14).

In neoadjuvant immunotherapy for EC, a combination of

CRT with ICIs increased the pCR rate, but the incidence of grade

3 or worse AEs was high, and deaths during treatment were

reported (99, 119). In the PALACE-1 study, one patient died of

esophageal hemorrhage while awaiting surgery (99). In another

phase II clinical study (NCT02844075), among the 26 patients

who underwent surgery after treatment with pembrolizumab

and CRT, 2 patients died of acute lung injury after surgery (119).

In radiation-free therapies, although the grade 3-4 AE rate was

decreased (120), treatment-related surgical delay was reported

(108). In the NICE study, surgery was delayed by a median of 19

days due to AEs (108).

The current available toxicity data were all collected from

single-arm studies with limited numbers of patients. Large

randomized controlled studies are warranted to establish the

safety of ICI neoadjuvant treatment of EC. From the above

reports, lung injury is a concern when CRT and ICIs are used

concurrently. In clinical practice, the extent of cancer lesions or

lymph node metastases and the dose of radiation delivered to the

lungs should be clearly defined for patients receiving CRT in

combination with ICIs. In addition, delayed toxicities remain

elusive due to insufficient follow-up.
Response evaluation

Pathologic response is the most common surrogate endpoint

for relapse-free survival and OS in cancer neoadjuvant therapy

(48). pCR is defined as the absence of any viable tumor in the

surgically resected specimens and all sampled lymph nodes

(121). MPR, described as ≤10% of residual viable tumor

(RVT) in a surgically resected specimen, has been proposed as

an alternative parameter (122). To date, pCR and MPR are the

most commonly used metrics for assessing the response to

neoadjuvant immunotherapy. However, other criteria for

pathological assessment have been used for EC. In the

PERFECT study, the pathologic response was assessed

according to Mandard’s tumor regression grade score (100).

It is highly appreciated when the pathological response is

reported in a uniform and reproducible manner to allow for

valid cross-study comparisons. However, the pathological

response criteria that were developed for chemotherapy and/or

radiotherapy may not be suitable for neoadjuvant

immunotherapy. In addition, OS was reported to be correlated

with the response spectrum of RVT, implying that if assessments

beyond pCR and MPR could be performed, prognostication

could potentially be available for all patients (123, 124).

Recently, immune-related pathologic response criteria

(irPRC) have been developed, that is, scoring 0 to 100% irRVT

in 10% intervals (125). This approach, first described for
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neoadjuvant anti-PD-1 monotherapy in NSCLC (18), has been

extended to other tumor types and combination treatment

regimens (126). %irRVT =viable tumor area/total tumor bed

area, whereby the total tumor bed=regression bed +RVT+

necrosis. The regression bed is defined as the area of immune-

mediated tumor clearance characterized by tumor-infiltrating

immune cells, tumor cell death with cholesterol clefts, and

hallmarks of tissue repair, such as neovascularization and

proliferative fibrosis (125). Currently, irPRC has not been

adopted in EC, and more studies are needed to confirm the

prognostic value of %irRVT.

Additionally, neoadjuvant immunotherapy may bring

difficulties to radiological response evaluation since the tumor

regression pattern seems different from what may happen during

chemo- or radiotherapy. Radiographic responses such as

pseudoprogression or a delayed response to immunotherapy

have been frequently reported (127–129) and are expected

during the neoadjuvant immunotherapy of EC. However, no

such observations were reported in the 15 included studies.

None of the studies reported any mismatch between the

radiological and pathological responses. Whether this was due

to the limited number of patients is unknown. We predict that as

more studies related to neoadjuvant immunotherapy become

available, such discrepancies in the radiological response

between immunotherapy and chemotherapy and/or

radiotherapy will be revealed. This will pose a challenge in the

near future.
Treatment modalities

In neoadjuvant immune combination therapy, the

chemotherapy regimens were mainly paclitaxel and platinum

(99, 100, 111, 112) (Figure 3). Chemotherapy was administered

weekly for 5 weeks in neoadjuvant therapy with CRT and ICIs (99,

100, 119, 130, 131). In neoadjuvant therapy using ICIs and

chemotherapy, preoperative treatment was generally

administered every 3 weeks for 2 cycles (101–110). However, a

higher pCR and MPR were achieved in two studies that used 3

cycles of treatment (111, 112).

Theoretically, chemotherapy may induce lymphopenia and

selectively deplete immunosuppressive cells (80), while ICI

therapy may result in the proliferation of tumor-specific T

cells (48). Therefore, ICI therapy applied after chemotherapy

may allow for the proliferation of effector T cells and reduce the

possibility of killing tumor-specific T cells with the

chemotherapeutic drugs, producing better antitumor efficacy.

In a retrospective study, ICIs used 1-10 days after chemotherapy

was superior to ICIs used before or concurrent with

chemotherapy in patients with refractory lung cancer (132). In

addition, Xing et al. (105) showed that in neoadjuvant treatment

of EC, sequential immunotherapy after chemotherapy was more

effective than concurrent chemo-immunotherapy.
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From these reported results, ICI combined with CRT

achieved higher rates of pCR and MPR over chemotherapy

(120). It should be kept in mind that the results from these

small-scale preliminary studies are unstable and inconclusive.

Whether pCR from variant treatment modalities could be

translated into improved survival remains largely unknown.

The most suitable treatment modality for neoadjuvant therapy

has yet to be determined. It was interesting to see other

treatment modalities such as ICI in combination with

radiotherapy (NCT05176002, NCT03200691), kinase

inhibitors (NCT04929392, NCT04757363, NCT04666090), or

ICIs alone (NCT04215471, NCT04196465, NCT03987815,

NCT02735239) are being evaluated in different trials, in

addition to the mainstream CRT or chemotherapy

combination (Table 1).
Adjuvant immunotherapy

In the NADIM study, patients with resectable stage IIIA

NSCLC received neoadjuvant treatment with platinum-based

chemotherapy plus nivolumab before surgical resection,

followed by adjuvant nivolumab monotherapy for 1 year. This

study showed that the treatment regimen was well tolerated, and

at 24 months, the PFS was 77% and the OS was 90% (19). Based

on the results of the NADIM study, several ongoing phase III

clinical studies of lung cancer (KEYNOTE 617, IMPOWER 030,

AEGEAN) or breast cancer (KEYNOTE-522) are evaluating

patients receiving ICIs neoadjuvant therapy followed by 1 year

of ICIs after surgery. Similar studies are underway in the EC

(NCT05213312, NCT05189730, NCT05182944, NCT04813523,

NCT02844075, KEYSTONE-002). In a phase II clinical study

(NCT02844075), ESCC patients received neoadjuvant

immunotherapy, followed by surgery and immunotherapy for

2 years. The preliminary results of this study showed that at a

median follow-up of 11.7 months, the median OS was not

reached and the 6- and 12-month OS rates were 89.3% and

82.1%, respectively (119).

Theoretically, postoperative adjuvant ICI therapy is a

reasonable option to prevent postoperative recurrence and

metastasis. However, there are some issues that deserve our

attention. As one example, in patients with HER2-positive early-

stage breast cancer, neoadjuvant anti-HER2 therapy plus

chemotherapy followed by surgery and adjuvant therapy with

anti-HER2 therapy was beneficial only for patients without a

pCR (133). These results prompted us to think that adjuvant

therapy could be less relevant in selected populations, such as

patients with a pCR (134). Among the ongoing clinical studies of

neoadjuvant immunotherapy for EC, two studies are applying

adjuvant treatment only for patients who have not achieved a

pCR (NCT05213312, NCT05189730); in the KEYSTONE-002

study and the NCT04813523 study, postoperative adjuvant

therapy is being administered to all patients; and in the
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NCT05182944 study, different adjuvant therapy is being used

for patients with pCR and non-PCR. It remains unknown

whether all patients should receive ICIs after surgery.

Additionally, prolonged use of ICIs may lead to increased

AEs. In mouse tumor models, compared with mice given 2 doses

of neoadjuvant immunotherapy, mice treated with 2 doses of

neoadjuvant immunotherapy plus 4 adjuvant immunotherapy

did not display any significant increase in OS but they did have

an increase in immune-related AEs (135). Furthermore, the

optimal treatment interval and duration of adjuvant ICIs

related to treatment compliance and financial toxicity also

represent significant challenges (134). The duration of

adjuvant therapy in current clinical studies is very

inconsistent. Of note, the half-life of most anti-PD-1

antibodies is 12-20 days regardless of the dose (136),

suggesting a longer interval between adjuvant anti-PD1 doses

might be optimal. All in all, the development of a postoperative

adjuvant treatment strategy must be based on a comprehensive

assessment of the survival benefit, treatment compliance, and the

toxicities and side effects.
Predictive markers

PD-L1 expression could be used to predict the efficacy of

pembrolizumab in advanced EC (9). However, for neoadjuvant

therapy, the current data do not support PD-L1 expression as a

biomarker in EC (99, 100, 103, 105–108, 110, 111, 113).

Theoretically, the level of CD8+ T infiltration into the TME

correlates with the efficacy of immunotherapy, since blocking the

PD-1/PD-L1 interaction can restore the tumor-killing effect of

exhausted CD8+ T cells (137). However, in neoadjuvant

immunotherapy, recent studies showed no significant

difference in CD8+ T cells between responders and

nonresponders (99, 100, 106, 107). Recently, TCF-1+ CD8+ T

cells were found to be precursor exhausted CD8+ T cells with

stem cell-like properties, and TCF-1+CD8+ T cells were

associated with immunotherapy efficacy (138, 139). The

PALACE-1 study revealed that compared with nonpCR

patients, there was an increased percentage of TCF-1+ cells in

the samples from pCR patients (99). These findings are

consistent with recent reports (139–141).

Genomic analysis showed that in some studies, TMB was

higher in the pCR group compared to the nonpCR group (106,

108). However, He et al. (107) indicated TMB failed to

distinguish the two groups. Beyond TMB, immune-related

genes have received increasing attention. The PERFECT study

found that those who responded to neoad juvant

immunotherapy had a significantly higher IFN-g score at

baseline, while those who did not respond to neoadjuvant

immunotherapy had higher expression of ICI resistance-

related genes in their tumor tissues despite the presence of

cytotoxic T-lymphocyte infiltration (100). He et al. (107) also
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found that responders had higher chemokine CXCL5 expression

and lower chemokine CCL19 and UMODL1 expression

compared with nonresponders.

In summary, TCF-1+ CD8+ T cells, TMB and immune-

related genes deserve further exploration in larger-scale clinical

studies for predicting the response to neoadjuvant

immunotherapy for EC. Going forward, the identification of

biomarkers reflecting complex tumor-immune system

interactions and immune system-host interactions will help us

to identify patients who will truly benefit from neoadjuvant

immunotherapy. In addition, although traditional imaging

techniques cannot accurately reflect the pathological changes

of tumor tissue during neoadjuvant therapy, with advances in

imaging technology, particularly positron emission tomography

technology, we may be able to label specific immune cells,

checkpoint molecules, or markers of metabolic processes

associated with the neoadjuvant treatment response or

resistance to guide or adjust clinical decision-making (142, 143).
Conclusion

Although the use of immunotherapy for preoperative

neoadjuvant therapy versus adjuvant therapy may be

theoretically more effective, and neoadjuvant immunotherapy

has shown preliminary positive results in resectable EC in some

clinical studies, further validation of the feasibility, safety, and

efficacy of neoadjuvant immunotherapy in large randomized

clinical studies is still needed. In addition, a number of

unresolved issues must be addressed before neoadjuvant ICIs

strategies can be widely adopted as the standard of care.

Identifying predictive biomarkers will be key to selecting

appropriate populations, and the role of adding adjuvant

therapy must be fully understood. Furthermore, long-term

follow-up is needed to determine the long-term outcomes and
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assess any delayed toxicity. We are confident that neoadjuvant

immunotherapy will move forward into a new chapter.
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