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Introduction: Antibody-mediated immunity is an essential part of the immune

system in vertebrates. The ability to specifically bind to antigens allows

antibodies to be widely used in the therapy of cancers and other critical

diseases. A key step in antibody therapeutics is the experimental

identification of antibody-antigen interactions, which is generally time-

consuming, costly, and laborious. Although some computational methods

have been proposed to screen potential antibodies, the dependence on 3D

structures still limits the application of these methods.

Methods:Here, we developed a deep learning-assisted predictionmethod (i.e.,

AbAgIntPre) for fast identification of antibody-antigen interactions that only

relies on amino acid sequences. A Siamese-like convolutional neural network

architecture was established with the amino acid composition encoding

scheme for both antigens and antibodies.

Results and Discussion: The generic model of AbAgIntPre achieved

satisfactory performance with the Area Under Curve (AUC) of 0.82 on a

high-quality generic independent test dataset. Besides, this approach also

showed competitive performance on the more specific SARS-CoV dataset.

We expect that AbAgIntPre can serve as an important complement to

traditional experimental methods for antibody screening and effectively

reduce the workload of antibody design. The web server of AbAgIntPre is

freely available at http://www.zzdlab.com/AbAgIntPre.

KEYWORDS

antibody-antigen interaction, deep learning, sequence feature, SARS-CoV, Siamese-
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Introduction

Antibody-mediated immunity is an essential part of the

immune system in vertebrates. Antibodies are a special class of

proteins with Y shape. One key responsibility of these proteins is

the specific recognition and neutralization of foreign agents. The

root of the specificity of antibodies to a particular antigen can be

traced to the diversity of each tip of antibodies’ Y-shaped

structures (1). This binding specificity of antibodies has been

widely used in the biotechnology and biopharmaceutical

industry, where monoclonal antibodies (MAbs) have become

the most promising therapeutic method in the market because of

their high specificities and long half-lives (2–4). With the rapid

advances in bioengineering, more MAb derivatives with greater

affinity and specificity are available such as antibody-drug

conjugates (ADCs) and fusion proteins (5).

One latest application of MAbs is for the treatment of

coronavirus disease 2019 (COVID-19). The COVID-19

pandemic has placed a heavy burden on society. Currently,

there are a variety of vaccine strategies, such as inactivated

vaccines, nucleic acid-based vaccines, and vector vaccines, to

provide protection against COVID-19 (6). All the vaccine

strategies aim at enabling the immune system to produce

antibodies that bind to the antigens from severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), the viral

pathogen causing COVID-19. But some patients may not be

suitable for vaccination due to a severe allergic reaction or may

fail to mount a protective immune response through vaccines (7,

8). Therefore, a shortcut turns out to be directly treating the

COVID-19 patients with the specific MAb against SARS-CoV-2.

Indeed, very recently, anti-SARS-CoV-2 MAbs, including

Bebtelovimab and Tixagevimab plus cilgavima, have been

approved by FDA for treatment or pre-exposure prophylaxis

against COVID-19, suggesting MAbs can become an effective

complement to vaccines (9, 10). On the other hand, some other

MAbs fail to obtain FDA authorization because of their reduced

efficiency against the current Omicron variant of COVID-19

(11), which again stressed the importance of the recognition of

antibody-antigen specificity.

Given the importance of identifying the antibody-antigen

recognition specificity, radioimmunoassay (RIA) and enzyme-

linked immunosorbent assay (ELISA) methods have been widely

applied to identify the affinity and specificity of antibody-antigen

interactions (12, 13). Due to the coating contamination of RIA

and the false positives caused by non-specific and staggered

reactions in ELISA, surface plasmon resonance (SPR),

fluorescence activated cell sorting (FACS), bio-layer

interferometry (BLI), cryogenic electron microscopy (cryo-

EM) and other technologies are often used to detect the

specificity of antibodies more accurately. However, some of

these experimental methods are labor intensive, time-

consuming, and costly. In addition, these experimental
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methods are unsuitable for large-scale high-throughput

antibody screening.

On the other hand, the increasing availability of

experimental data of antibody-antigen interaction provides

valuable guidance for the development of computational

approaches. The International ImmunoGeneTics (IMGT)

information system is the most well-known immunity-related

database that integrates sequence, genome, and structure

immunogenetic data (14). Other sequence databases such as

Database of ImmunoGlobulins with Integrated Tools (DIGIT)

(15), abYsis (16), iReceptor (17), and Observed Antibody Space

(OAS) (18) also source a large amount of sequencing data

indicating antibody-antigen interaction. The Immune Epitope

Database (IEDB) is established mainly for epitopes (19). The

experimental data on antibody and T cell epitopes in the context

of disease, allergy, autoimmunity and transplantation provides a

reference for antibody design and immunotherapy development.

Among these antibody-related databases, the structural antibody

database (SAbDab) collects all the available antigen-antibody

complexes in the Protein Data Bank (PDB) (20). Various types

of antigens with their binding antibodies have provided insights

for understanding the generic mechanisms of antigen-antibody

binding. In contrast to SAbDab, the Coronavirus antibody

database (CoV-AbDab) collected antibodies that bind to at

least one beta coronavirus (21). Up to now (Version of July

2022), CoV-AbDab has included approximately 10,000 entries,

which are valuable for the fundamental research of SARS-CoV-2

and the development of the corresponding vaccines and drugs.

Thanks to the increasingly available experimental data,

several computational approaches for computational antibody

design have been developed. Molecular docking is a classical

method for predicting antibody-antigen binding mode and

relative positions. However, molecular docking is often

computationally expensive, especially when dealing with

flexible molecules such as antibodies (22). The emergence of

epitope or paratope prediction tools based on structural or

sequence features, such as PECAN (23), BepiPred2.0 (24), and

Epipred (25), greatly reduces the search space of docking. Many

software or tools can directly predict antibody-antigen

interactions. Lim et al. predicted the binding of PD-1 and

CTLA-4 antibodies by training a convolutional neural network

(CNN) with complementarity-determining region (CDR)

sequence features (26). By using the multi-head attention

network with position-embedding of CDRs, Wang et al.

developed a model which can accurately distinguish the

antibodies binding to the SARS-CoV-2 S protein and influenza

HA (27). These computational methods provide alternative

choices for early screening and effectively supplement

experimental methods.

Still, the aforementioned computational methods have issues

to be improved: (i) Most of them require the structural

information of antigens or antibodies which are hard to
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obtain; (ii) These methods are often implemented for one

specific antigen, and therefore are not widely applicable; (iii)

The published algorithms or tools did not have a user-friendly

interface for non-specialists to use. To this end, we proposed

AbAgIntPre, an online tool to predict the interactions between

antibodies and antigens based only on the sequence features.

AbAgIntPre combines the composition of k-spaced amino acid

pairs (CKSAAP) encoding and CNN deep learning framework

for an efficient prediction of antibody-antigen interactions.

AbAgIntPre enables general antigen-antibody interaction

prediction by capturing various types of antigens. We also

established a specific interaction prediction model for

coronavirus, including severe acute respiratory syndrome

coronavirus 1 (SARS-CoV-1) and SARS-CoV-2. For the

convenience of the community, we have implemented

AbAgIntPre as a web server with a friendly interface. Users

can freely select the generic model and SARS-CoV-specific

model to meet their needs.
Methods

Datasets

Many structures of antibodies and corresponding antigens

are collected in the SAbDab database (20). We selected

antibodies with heavy and light chain information and

removed those complexes with antigenic sequences less than

50 amino acids (28). After applying this restriction, 1489
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antibody-antigen complexes were retained. Considering the

high specificity of the antibodies, we removed the sequence

redundancy according to antibodies by applying CD-HIT (29)

with a high sequence identity threshold of 0.98 and obtained 918

complexes. Because of the high specificity of the antibodies, we

further divided the 918 complexes into 408 subgroups based on

antigen sequences with a sequence identity threshold of 0.90. By

the above procedures, we assumed that similar antibodies can

bind similar antigens within the same subgroup, while the

antigens and antibodies from different subgroups cannot bind

to each other effectively (Figure 1A). As a result, we generated

3892 antibody-antigen pairs as the positive samples. Antigens

and antibodies from different subgroups were randomly paired

to form the negative samples, and the ratio of positive to negative

samples was controlled to be 1: 1. Considering that the sequences

of antibodies binding to different types of antigens are quite

different, models may not perform satisfactorily in predicting the

antigens which are quite different from those used in training. To

this end, we used ClustalW (30) to establish the phylogenetic tree

for antigens in the above 408 subgroups and divided these

subgroups into seven clusters (Figure 1B). The training set and

independent test set were generated from each cluster according

to a ratio of 4:1 to ensure that no bias was introduced by the

differences in antigen types.

We also collected antibodies binding to SARS-CoV and

trained a SARS-CoV-specific predictor. SARS-CoV antibody

data were collected from CoV-AbDab (21) and screened out

the antibodies related to SARS-CoV-1 and SARS-CoV-2.

Antibodies that could only bind to one SARS-CoV were taken
B

C

A

FIGURE 1

Overview of AbAgIntPre. (A) Flowchart of the generic prediction model of AbAgIntPre. (B) Clustering tree of 918 antigens in 408 subgroups.
(C) The Siamese-like CNN framework of AbAgIntPre.
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as the positive samples, and those that could not bind to SARS-

CoV were taken as the negative samples. A total of 9309 positive

samples and 1710 negative samples were obtained, including

1965 positive samples of SARS-CoV-1, 7344 positive samples of

SARS-CoV-2, 996 negative samples of SARS-CoV-2 and 714

negative samples of SARS-CoV-2.
Sequence encoding

The previous literature has shown that the sequence

compositions can effectively reflect the properties of antibodies

such as specificity, stability, viscosity and immunogenicity. For

example, Hebditch et al. predicted the solubility of antibodies by

using a linear model with amino acid compositions and several

other sequence features (31). Liaw et al. developed an algorithm

for predicting amyloidogenesis of light chains of antibodies

based on a random forest (RF) classifier with dipeptide

composition (DPC) (32). Several analyses have demonstrated

that there is also a preference of residues or motifs in epitopes of

specific antibody (33–35). Kadam et al. developed a classifier for

predicting antibody class(es) for epitopes with sequence

composition features (36). El-Manzalawy et al. predicted

flexible length linear B-cell epitopes by using support vector

machine (SVM) with amino acid pairs encoding strategy (37).

In this study, we used CKSAAP as the preferred sequence

composition-based encoding strategy. CKSAAP summarizes the

frequency of k-spaced amino acid pairs normalized by all

possible 400 kinds of pair combinations (38, 39), which

reflected the amino acid composition of the antibodies and the

residue preference of epitopes in antigens. To capture the

characteristics of protein sequence more comprehensively, we

calculated the results of each protein when k = 0,1,2,3. Therefore,

each protein is represented as a 1600-dimensional vector.

We also compared the performance of CKSAAP encoding

with those of the alternative encodings, including:

One-hot encoding
One-hot encoding is a typical sequence coding strategy in

machine learning (ML). In one-hot encoding, we used a 20-bit

vector of ‘0’ or ‘1’ to represent 20 kinds of amino acids, ‘1’ at each

position denotes a specific amino acid, and ‘0’ for the rest of

bits (40).

Position-specific scoring
matrix encoding

In PSSM profiles, each residue in query protein is encoded as

a 20-dimensional vector, in which each element reflects the

conservation of 20 kinds of amino acids at corresponding

position among a set of homologous sequences (41, 42). We

generated the PSSM profiles of all the antigens and antibodies by

applying PSI-BLAST (43) search against the NR90 database with
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three iterations. The e-value cutoff for including sequences in the

profiles was set to 0.0001, and other parameters remained

the default.

DPC encoding
DPC encoding uses a 400-dimensional vector to capture the

character of the protein sequence (44). Each dimension

corresponds to the frequency of a specific dipeptide

combination in the query protein sequence.

Word2Vec embedding
In natural language processing, word2vec has been widely

used to obtain the distributed representation of words (45, 46).

The k-mers in protein sequences can be regarded as words in a

document. Therefore, we trained a CBOW-based word2vec

model with protein sequences in NR90 by using the genism of

the python package. Each sequence was divided into several k-

mers, and each k-mer was represented by a 64-dimensional

embedding vector. In this study, we set k to 3 and set the window

size to 4 to capture the context information.
Deep learning framework

In this study, we used a Siamese-like CNN as the deep

learning classifier to infer whether the query antigen and

antibody can interact (Figure 1C). Specifically, our model

mainly included three parts: input module, convolution

module, and prediction module. In the input module, antigens

or antibodies were coded by CKSAAP encoding scheme, and

four channels correspond to four k-spaced values in CKSAAP.

The convolution module further processed the encoded feature

vectors. AbAgIntPre included two convolution modules, each of

which consists of a batch normalization layer, convolution layer,

rectified linear unit, and pooling. Two fully connected layers

were used to map the learned distributed features to the sample

label space and yield the probability of interaction between the

given antigen and antibody.

We also compared the performance of our deep learning

framework with those of several traditional ML models,

including RF, SVM, Adaboost (ADA), logistic regression (LR),

and multilayer perceptron (MLP). All the traditional ML models

were implemented through the sklearn (https://scikit-learn.org/)

of the python package.
Performance evaluation

In this study, we used receiver operating characteristic

(ROC) and precision-recall (PR) curves to measure the

performance of the predictors. ROC and PR curves reflect

the overall relationship between sensitivity and specificity and
frontiersin.org
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the overall relationship between precision and recall when

different thresholds are applied. The definitions of sensitivity

(i.e., recall), specificity, and precision are as follows:

Sensitivity = Recall =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

where TP, TN, FP, and FN denote the number of true

positive, true negative, false positive, and false negative

samples, respectively. The larger the area under the curve

(AUC), the higher the prediction performance.

In addition, to test whether antigen-antibody binding could

be simply determined by sequence similarity, we also compared

our models with the well-established PSI-BLAST method on the

independent test set. First, testing samples were aligned to

training samples by PSI-BLAST (43). Then, we randomly

combined each antigen and antibody with top 10 E-value in

the PSI-BLAST results. If there was no combination appearing in

the training positive set, then the query antigen-antibody pair

was considered as non-interacting with zero prediction score.

Otherwise, the prediction score could be calculated as follows:

PredictionScorePSI−BLAST

=
100 − RankAb − 1ð Þ � RankAg − 1

� �� �

100

where RankAb and RankAg denote the ranking of E-value in

PSI-BLAST results. The more similar the query antigen or

antibody is to known sequences, the higher the prediction score.
Results

Establishment of AbAgIntPre generic
prediction model

By collecting various antigens and their corresponding

antibodies in SAbDab, we have established a generic

prediction model of antigen-antibody interaction. First, 918

high-quality antibody-antigen complexes were collected after

data cleaning and redundancy removal. Then the 918 pairs of

complexes were clustered into 408 subgroups. The high-quality

positive and negative antibody-antigen pairs can be assigned

based on this grouping, following the principle that similar

antibodies bind similar antigens (Figure 1B; see Methods for

details). In each cluster, we randomly divided the training set
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and the independent test set according to the ratio of 4: 1. We

applied five-fold cross-validation (CV) on the training set. To

select the sequence encoding method suitable for our study, we

used the RF model to verify the one-hot, DPC, CKSAAP, PSSM,

and word2vec encoding strategies in the five-fold CV

(Figures 2A, B). Figure 2A shows that under the condition of

low false positive rate, the true positive rates of word2vec, PSSM

and one-hot encodings are significantly lower than those of DPC

and CKSAAP encodings, which suggests that the encoding

strategy based on amino acid composition is more suitable for

dealing with antibody-antigen interaction issues.

An independent test set that was not involved in the model’s

training process was further introduced to validate the

performance. We trained different ML models with the same

training set and compared their performances on this

independent test set. Considering that antibody-antigen

interaction prediction belongs to the pair-input problem,

among these ML models, we focused on the Siamese-like

network which is commonly used in pair-input prediction

problem (47–49). Our Siamese-like CNN ensured unbiased

feature extraction by sharing the parameters between the two

sub-networks. Although the results of CV based on RF model

showed the superiority of CKSAAP encoding, we verified the

applicability of CKSAAP encoding in CNN model through the

same CV dataset used in RF model. As shown in Figure 2, the

results with CNN (Figures 2C, D) agree well with those with RF

models (Figures 2A, B). Since CKSAAP covers a broader range

of compositional features than does the capture of only adjacent

amino acids, we eventually adopted CKSAAP to encode the

antigen and antibody sequences in the independent test and final

training of the generic model. Independent test results show that

the performance of our Siamese-like CNN model outperforms

other traditional ML models (Figure 3). It is also worth noting

that antigen-antibody interaction cannot be accurately judged

simply by sequence similarity, as the true positive rate of PSI-

BLAST was lower than those of some ML methods, especially

than that of the CNN architecture when requiring lower false

positive rate (Figure 3). Nonetheless, due to the scarceness of

samples in rare antigen groups like the CLS5 covering only 13

antigens, our model was not sufficiently trained for such cases.

We believe that the performance of our model could be further

improved with the increasing experimental data.
Establishment of AbAgIntPre SARS-CoV-
specific prediction model

Due to the highly contagious and sometimes lethal, the

SARS-CoV pandemics present enormous challenges to medical

care, economies, and social lives in 2003 and 2020-2022.
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Development of therapies for SARS-like coronavirus, especially

pandemic SARS-CoV-2, is urgently needed. Effective

characterizing and prediction for SARS-like coronavirus would

assist vaccine and MAb therapy development and facilitate the

elimination of the pathogens. In this study, we also established a

SARS-CoV-specific prediction model to predict the probability

that the antibodies bind SARS-CoV-1 and SARS-CoV-2. The

SARS-CoV-specific prediction model was trained and tested

based on the antibody-antigen pair annotations from CoV-

AbDab. Due to the extreme disparity in the ratio of positive

samples to negative samples, we used only ROC curve to

evaluate the SARS-CoV-specific model since ROC curve is less

affected by the unbalanced dataset. Figure 4 shows that in the
Frontiers in Immunology 06
five-fold CV, the performance of each fold is equivalent to that of

the generic model, and this result is acceptable considering the

size and the unbalanced nature of the SARS-CoV dataset.
Perturbation test on SARS-CoV-2
S protein antibodies

He et al. sorted SARS-CoV-specific single B cells to isolate 107

monoclonal antibodies from two recovered patients in COVID-19

(50). We collected these antibodies binding to SARS-CoV-2 S

protein and then predicted the 107 interactions using our SARS-

CoV-specific model. Considering that the CDRs, especially the
B

C D

A

FIGURE 2

Performance comparison among different sequence encoding strategies in RF model and CNN model. (A) ROC curves of the five-fold cross-
validation (CV) with RF model. (B) PR curves of the five-fold CV with RF model. (C) ROC curves of the five-fold CV with CNN model. (D) PR
curves of the five-fold CV with CNN model.
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CDRH3 and L3 loops play an important role in the antibody-

specific recognition, we tested the validity of the prediction by

randomly replacing the residues in CDRH3 and L3 loops.

Specifically, for the above 107 antibodies, we applied three

different perturbation tests: perturb CDRH3, perturb CDRL3 and

perturb both CDRH3 and CDRL3. Taking perturb CDRH3 as an

example, we randomly replaced every amino acid located in the

CDRH3 loop with any of the other 19 amino acids to mimic the

antibodies with perturbed functions. Figure 5 shows that predicted

scores of the perturbed antibodies significantly declined compared

with the original antibodies. As expected, replacing CDRH3 or
Frontiers in Immunology 07
CDRL3 could severely reduce the prediction scores (p-value =

6.19E-09 and 1.13E-12, respectively), while the impact of the

replacement of CDRH3 and CDRL3 together was the most

significant (p-value = 1.67E-22).
AbAgIntPre web server

To facilitate the community, we built a web server named

AbAgIntPre with two models corresponding to the generic and

the SARS-CoV-specific models, respectively. AbAgIntPre takes
BA

FIGURE 3

Performance comparison among different prediction models on independent test set. (A) ROC curves of the independent test. (B) PR curves of
the independent test.
FIGURE 4

The ROC curves of the five-fold cross-validation on the SARS-CoV dataset.
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the FASTA sequences of the antigen, the antibody heavy chain

and the antibody light chain as its input. The user can select the

corresponding prediction model according to the antigen type.

We also provide three levels of stringent thresholds,

corresponding to the false positive rates of 1%, 5%, and 10%.

The prediction result can be displayed directly on the web page,

while is also supported to be sent via the provided E-mail

address. We hope that the introduction of AbAgIntPre can

reduce unnecessary experimental procedures and provide

hypotheses and supplements for accelerating the development

of antibody drugs.
Discussion

The identification of antibody-antigen interaction is an essential

problem in immunology and a prerequisite of antibody design and

vaccine development. Although the experimental methods achieved

the highest accuracy, these methods often need high cost of time,

labor, and specific experimental conditions. Molecular docking

based on protein structures is a common computational method

for predicting antibody-antigen interactions (22). However, due to

the difficulty in obtaining accurate structures of both antibody and

antigen from sequences, predicting the interactions remains a

difficult task. Mutual recognition of epitope and paratope is the

key to specific binding of antigen and antibody. Many efforts have

been devoted to predict the potential epitopes and paratopes based

on ML methods (23–25), which provided insights into the

characterization of antibodies and antigens through sequence

features. Early studies have shown that the sequence components

can well reflected the properties of antibodies and the amino acid

preference of the epitopes (31, 32). In this study, we used CKSAAP

encoding as the preferred and compared it with several popular

sequence encoding strategies. The independent test results showed
Frontiers in Immunology 08
that CKSAAP encoding based on the sequence composition is

superior to any other encoding strategies.

Although ML-based methods have been able to successfully

predict potential paratopes and epitopes, direct prediction of

antibody-antigen interaction remains a problem even if the

epitopes or paratopes are known. The prediction of antibody-

antigen interaction problem can be regard as a binary

classification task. For well-known immunotherapy targets PD-1

and CTLA-4, the researchers have developed CNN model to

predict interaction between antibodies and these two targets (26).

Multi-head attention network was used to predict the binding of

antibodies to SARS-CoV-2 S protein and influenza HA (27).

Although these models performed well, they may not be able to

predict unseen antigens due to their highly specific antigen scopes.

For this reason, we established two prediction models, namely the

generic prediction model and SARS-CoV-specific prediction

model by using CNN architecture with CKSAAP sequence

encoding strategy. Compared with the traditional ML methods,

our results showed that the CNN architecture performs better

both in the generic prediction model and SARS-CoV-specific

prediction model. For the convenience of the community, we built

the AbAgIntPre web server. Users can input the sequences

of antigens and antibodies respectively to obtain the

prediction results.

Although the performance of our prediction models is

competitive, the applicable domain of our models is still

limited. The generic prediction model achieves the purpose of

prediction by learning the binding patterns of different types of

antigens and antibodies, but it cannot accurately discern

antibody-antigen pairs with subtle sequence variations.

Therefore, the generic model is suitable for primary antibody-

antigen pair screening, but not for precise antibody design. On

the other hand, the SARS-CoV-specific model can more

precisely predict whether an antibody-antigen pair can interact
BA

FIGURE 5

Perturbation test on SARS-CoV-2 S protein antibodies. (A) Prediction score distribution of SARS-CoV-2 S protein with antibodies under different
perturbation strategies. (B) T-test results between different perturbation groups. Value in each heatmap cell represents the -log10 (p-value).
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when the antibody or antigen sequences are similar to each

other, but it is only applicable to SARS-CoV antibody-antigen

pairs. Apparently, the quantity and diversity of antigens and

antibodies in the training set directly affects the performance of

our model in practical application. SAbDab contained all the

antibody structures available in the PDB and we used these data

to train the generic model (20). But the antibody/antigen

coverage of SAbDab is still not fully satisfactory, and more

exhaustive antibody-antigen interaction data with sequence

annotations are required to improve the prediction. In

addition to SAbDAb, we have also searched other popular

immune-related databases (14, 16–19) for available training

data. IMGT and Abysis are two well-known databases that

provide a wealth of antibody data as well as a series of search

tools. However, they mainly provide the germline sequences of

antibodies and have no corresponding antigen information.

IEDB houses abundant manually curated epitope data and

most antibody-specific epitopes have been already included in

the SAbDAb database. iReceptor and Observed Antibody Space

collected NGS sequence data on B-cell receptors but there is no

exact antigen information available. In summary, due to the

limited data included in the public databases, there is still a

prominent gap between the coverage of our training data and the

real world. We believe that our models will perform better when

more comprehensive and sizable antibody-antigen interaction

data become available.
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