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Cancer organoid co-culture
model system: Novel approach
to guide precision medicine

Jin Yuan, Xiaoyang Li and Shengji Yu*

Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/
Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Three-dimensional cancer organoids derived from self-organizing cancer

stems are ex vivo miniatures of tumors that faithfully recapitulate their

structure, distinctive cancer features, and genetic signatures. As novel tools,

current cancer organoids have been well established and rapidly applied in

drug testing, genome editing, and transplantation, with the ultimate aim of

entering clinical practice for guiding personalized therapy. However, given that

the lack of a tumor microenvironment, including immune cells and fibrous

cells, is a major limitation of this emerging methodology, co-culture models

inspire high hope for further application of this technology in cancer research.

Co-culture of cancer organoids and immune cells or fibroblasts is available to

investigate the tumor microenvironment, molecular interactions, and chimeric

antigen receptor-engineered lymphocytes in cancer treatment. In light of the

recent progress in cancer organoid co-culture models, it is only possible to

recognize the advantages and drawbacks of this novel model to exploit its full

potential. In this review, we summarize the recent advances in the application

of cancer organoids and co-culture models and how they could be improved

in the future to benefit cancer research, especially precision medicine.

KEYWORDS

cancer organoids, co-culture models, tumor microenvironment, cancer-associated
fibroblasts, CAR-T cells
Abbreviations: 3D, three-dimensional; ASCs, adult stem cells; CAFs, cancer-associated fibroblasts; CRC,

colorectal cancer; ECM, extracellular matrix; ESCs, embryonic stem cells; iPSCs, pluripotent stem cells;

BMSCs, bone marrow stroma cell; PDAC, pancreatic ductal adenocarcinoma; PDOs, patient-derived

organoids; TME, tumor microenvironment.
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1 Introduction

Cancer precision medicine has been deeply and widely

explored through experimental studies to clinical evaluations

to achieve the goal of individualized treatment and improve

patient prognosis. However, genotype-based cancer precision

medicine has some limitations or deficiencies. Genomic

instability during sustained cancer proliferation within the

tumor microenvironment (TME) gives rise to intra- and inter-

tumoral heterogeneity, contributing to drug resistance,

treatment failure, and progression. Cancer development is an

evolving, highly regulated, dynamic biochemical process

associated with TME. Genetic mutations accumulated in the

copying process during DNA replication of cancer cells drive the

generation of intratumoral heterogeneity within a tumor or

inter-tumoral heterogeneity between tumors, with interactions

among cancer cells, immune cells, and fibroblasts leading to

TME alterations. Moreover, tumor heterogeneity increases due

to TME alterations. Thus, the provoked interaction network

within TME hinders the clinical application of precision cancer

therapy. Further developing preclinical models to investigate the

TME and guide clinical precision therapy is required.

Organoids are three-dimensional (3D) cell clusters in vitro

that contain key characteristics of an organ in vivo, including a

self-organizing stem cell population that can differentiate into

organ-specific cells (1). Organoids recapitulate the structure,

function, and genetic signature of the original organ, thus

providing a solid foundation for future research on stem cells,

regenerative biology, organogenesis, precision medicine, and

human pathologies (2). Organoids can be derived from

embryonic stem cells (ESCs), induced pluripotent stem cells

(iPSCs), and adult stem cells (ASCs) through a process similar to

the acquisition of their distinctive organization (1). Self-

assembly and differentiation through organoid formation

depend on implicated cell signaling pathways mediated by

intrinsic components and the extracellular environment,

including the extracellular matrix (ECM) and media. Due to a

better understanding of ECM biology and technologies for cell

culture (3, 4), organoid culture has been progressively

implemented. Moreover, organoids have shown exciting

potential and have been a popular research focus in tissue

engineering and biological research in the past decade.

Intra-tumoral heterogeneity is one of the characteristics of

cancers that promotes tumor evolution and makes cancer

treatment challenging (5). Given that heterogeneous cancer

cells and cancer-associated cells within a tumor contribute

unequally to progression with complex intercellular

interactions, cancer research findings using 2D cancer cell

lines have been challenged. Cancer organoids retain the 3D

structure of the TME, providing a physical context for molecular

interactions. Recently, a cancer organoid co-culture model was

developed and utilized to elucidate cell-to-cell interactions,
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mechanisms of cancer immune responses, and the mechanism

of tumor metastasis. We summarize the history of cancer

organoids that show great potential and promise in modeling

human diseases. We also summarized the applications of cancer

organoids in cancer research on multiple systems in the human

body. Various excellent reviews have discussed the applications

of cancer organoid model systems in genomic analysis and drug

screening. Here, we discuss a novel cancer organoid co-culture

model system with the advancement of its applications for

investigating cell-cell interactions, immune response within

cancers, and underlying mechanisms of cancer evolution and

personalized precision medicine. We also provide further

insights into novel applications and development directions of

the cancer organoid co-culture model system. We hope that this

review provides a better perspective to help researchers apply

this practical method to cancer research and precision medicine.
2 Organoid overview

An organoid is a stem cell-derived 3D cell culture that

obtains the structure, collection of multiple cell types, and

functionality of the corresponding tissue. Organoids are

promising candidates for biomedical applications with

tremendous potential and appealing prospects (6, 7). For the

past few decades, numerous studies of stem cells have led to a

better understanding of their behavior, with emerging

methodologies of controlling stem cells’ self-organization and

differentiation, which provides a scientific basis for the further

establishment of organoids (7). There are two types of stem cells.

One is ESCs and the other is ASCs. ESCs possess developmental

totipotency and can differentiate into all cell types. ASCs are

undifferentiated stem cells with the capacity to differentiate,

maintain homeostasis, and regenerate in a specific organ (8).

Since 1981, substantial scientific progress in stem cell research

has paved the way for organoid development (Figure 1).

Moreover, more restricted ASCs have exhibited the capacity to

form organoids in vitro once grown in the appropriate

extracellular matrix and provided with specific molecular

factors (9). The critical point for organoid formation and

growth is whether the culture conditions duplicate the in vivo

niche signaling pathways for stem cells, which contributes to

sustaining stem cell functions and inducing differentiation (10).

As a novel tool and methodology, organoids have been

sufficiently developed, widely studied, and adopted in various

biomedical research fields (11). Organoids preserve the principal

features of organ biology with greater experimental accessibility

than that of animal models. Moreover, studies focusing on

human embryonic and fetal tissues can be easier to conduct

without restricting ethical concerns, such as prenatal

development and tissue maintenance. Organoids also provide

a platform to simulate the pathological environment for
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experiments at the organ level that cannot be performed at

molecular, cellular, or animal levels. Based on this, precision

medicine can be carried out using an organoid-based high-

throughput screening and profiling strategy, facilitating

preclinical evaluation and treatment guidance.
3 Cancer organoid

Organoids have been widely used to investigate neoplastic

diseases, aside from being used to establish a normal

developmental model. Patient-derived prostate cancer

organoids were established for nearly a decade by Chen et al.

(12). Recently, various cancer organoids, including colorectal

cancer (CRC) (13), breast cancer (14), hepatocellular cancer

(15), and non-small cell lung cancer (16), have been developed

for drug screening, radiotherapy screening, genome editing,

transplantation, and oncogene identification (Table 1). Most

cancer organoids were obtained from patient-derived cancer

samples and generated under ASCs-organoid conditions, but

CRISPR-Cas9 nuclease genome editing system established the

minority. Yilmaz et al. established CRC organoids via CRISPR-

Cas9-based APC editing with lentivirus transfection using colon

organoids derived from transgenic mice (33). Few studies have

focused on developing organoids using other biological samples.

Gao et al. successfully established prostate cancer organoids by

culturing collected circulating tumor cells (12). Moreover,
Frontiers in Immunology 03
cancer organoids from cells in the urine and bronchoalveolar

lavage fluid have already been established, providing a novel

approach for cancer organoid establishment (34, 35).

Likewise, cancer organoids contain the cancerous cell

composition of the original tumors and possess the

corresponding features and genetics. The generation of various

cancer organoids requires distinct methods. There are no

standardized culture media or procedures for experiments.

Optimal tissues are commonly obtained from tumor margins

with a minimal necrosis rate. Generally, the entire process is

initiated by mechanical and enzymatic digestion of tumor

samples into ~1 mm diameter pieces, subsequently seeding the

tissue suspension onto Matrigel as a biomimetic scaffold.

Matrigel , which mainly contains laminin, entactin,

proteoglycans, and collagen IV, primarily contributes to the

cellular architecture of organoids (36). Unlike culturing healthy

organoids, media with reduced growth factors is preferred for

cancer organoid culture to minimize clonal selection and avoid

confounding drug treatment effects (37). Growth factors for

cancer organoid culture include Wnt3A, R-spondin-1, TGF-b
receptor inhibitor, epidermal growth factor, and Noggin, but the

combination and concentration of these factors added to the

media depend on the specific cancer type. Compared to the

initiated culture process, organoid passage is a more simplified

but essential process during the culture period. The issue we

must be concerned with is the passage number of cancer

organoids that can be used for investigations. Upon passage,
FIGURE 1

Organoid and co-culture system development. The history of organoid and cancer organoids and the well-established co-culture system of
various cancer organoids and specific cell types.
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TABLE 1 Applications of organoids in cancers.

Cancer Source Establishment Organoid Max Drug Radiotherapy Genome diting
trans lanta-
tion

Related genes and molecular activity Ref.

Prediction of drug response; irinotecan; 5-FU; 5-
FU–oxaliplatin; combination therapy

(13)

Hedgehog inhibition, sorafenib resistance; CD44 (15)

KHDRBS3, CD44, 5-FU (17)

Epirubicin, oxaliplatin, 5-FU (18)

IL-1, JAK/STAT signaling, TGF-b, NF-kB (19)

Autophagy, CD44, 5-Fluorouracil (20)

Mutation and copy number landscape;
characterization (growth, purity, histologic/
lineage marker)

(16)

RHOF, SLC16A3, ANXA10, CDHR1 (21)

TME; AKT2, KRAS, CCNE1 (22)

Precancer pathologies, PTEN, CTCF, ARID1A,
PIK3CA, TP53, ARID1A, POLE, FAT1, CTNNB1

(23)

MLH1, TFE3, PARP1, FANCD2, PMS2, MET (24)

EGFR variant III (25)

FOXM1 inhibition; tumor proliferation (26)

Otx2, c-MYC; SMARCA4; EZH2 inhibition (27)

Clonal evolution; treatment response (28)

EZH2 inhibition; drug screening (29)

Early diagnosis of non-responding patients (30)

Modeling Breast Cancer, knockout of P53, PTEN,
RB1, NF1

(14)

Representative of the tissue origin in primary
culture

(31)
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Digestive
system

CRC Biopsy 63%(40/63) PDO N √ × ×

HCC Surgery 50% PDO N √ × ×

GC Surgery N PDO N √ × ×

GC Surgery N PDO 4 √ × √

PDAC N N PDO 25 √ × ×

ESCC Biopsy 71.4%(15/21) PDO 7 × × ×

Respiratory
system

NSCLC Surgery 88%(57/65) PDO, PDXO ≥10 √ × ×

LADC Surgery 80%(12/15) PDO ≥10 √ × ×

Genital
system

OC Surgery N PDO N √ × ×

EC Biopsy N PDO 6 √ × ×

cCCC Biopsy N PDO 7 √ × ×

Central
nerve
system

GBM Surgery 91.4%; 66.7%; 75% PDO N √ × ×

Ms Surgery N PDO N √ √ ×

MB N N PDO N √ × ×

Urinary
system

UBC Surgery 70%(12/17) PDO 26 √ × ×

PCa Surgery,
biopsy

16%(4/25) PDO, PDOX 35 √ × ×

Endocrine
system

PTC Biopsy 7% PDO 5 × √ ×

Breast BC N N – 20 × × √

BC Biopsy N PDO 4 √ × ×
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the genetic material of cancer cells within organoids undergoes

mutations or alterations (18, 20, 23). Consequently, the

authentication of cancer organoids is particularly important

for their authenticity and credibility. Although cancer

organoids are preferred and widely used in cancer research,

their limitations cannot be neglected. Exogenous growth factors

and small molecules added to organoid growth may result in

clonal selection, and the components of the culture media may

interact with the tested drug, complicating the conclusion. In

addition, inappropriate sample collection may significantly

impact the successful culturing rate because of less active

proliferating cells and increased necrosis.
4 Cancer organoid application

As advancements have been made in cancer organoid

development, cancer organoids have become a widely accepted

practical model in cancer research (Figure 2). Cancer organoids

are primarily used in drug screening for personalized medicine

approaches. The drug response of patient-derived organoids

(PDOs) mainly simulates patients’ initial responses to the

same agents (28, 38–40). These studies have shown that the

genetic changes that drive oncogenic pathways correspond to

this therapy. Therefore, drug screening is the primary part of

cancer organoid applications in cancer research to screen the

most effective drugs and predict their therapeutic effects. A

combination of other conditions, including radiation, was

added to determine the most effective therapeutic strategy. For

example, the FOXM1 inhibitor thiostrepton combined with

radiotherapy (4 Gy) remarkably suppresses the proliferation of

meningioma organoid models (26). Such a cancer organoid

model may be applied in immunoradiotherapy investigations.

In addition, the transplantation model is an excellent platform

for mimicking human disease.

The orthotopic transplantation of cancer organoids has been

established in preclinical models. Sequencing analysis is

commonly used to identify type-specific differentially

expressed genes. RNA sequencing analysis and whole-exome

sequencing were performed to identify cancer-related

oncogenes. Moreover, as time passes, these techniques are the

primary authentication methods for cancer organoids, and

targeted sequencing is used to identify target mutations.

CRISPR-Cas9 technology is revolutionary in genome editing

and has been applied in organoid research. However, the precise

integration of exogenous DNA sequences into human organoids

is deficient in knock-in approaches. To address this, CRISPR-

Cas9-mediated homology-independent organoid transgenesis

was established to enable the efficient generation of knock-in

human organoids representing different tissues (41), concluding

that this technique can be used to achieve fast and efficient gene

knock-in in human wild-type organoids.
T
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Cancer organoids are now versatile tools in cancer research

with a wide range of potential applications, showing

the prospects of this advanced methodology in cancer

research. However, there are some shortcomings. Organoids

only comprise the epithelial layer without the native

microenvironment of the surrounding mesenchyme, immune

cells, nervous system, or muscular layer (42). Developing a novel

co-culture model system of cancer organoids with other cells or

organoids may recapitulate cell-cell interactions. In addition, the

culture media should be improved to promote organoid growth

and long-term expansion while minimizing the impact of

growth factors in the media on the behavior of organoids (43).

Cancer organoids have been established based on various human

cancers; however, some cancer types, such as sarcomas, are still

not involved. Consequently, refining culture approaches for rare

heterogeneous cancer organoids and applying this tool for

precision medicine should be addressed in future studies.
5 Co-culture model in
cancer organoids

Co-culture is a method for culturing multiple distinct cell

types, directly or indirectly, within the same culture

environment (44). The cancer organoid co-culture model can

efficiently simulate the environment for interactions between

cancer organoids and cells within a tumor. Given that there are

no immune cells, the nervous system, or mature TME in cancer

organoids, a co-culture model was developed to solve this

problem. The cancer organoid co-culture model was

established for three main purposes. The first and most

common application is to drive organoid formation via direct
Frontiers in Immunology 06
or indirect interactions between specific cell types within tumors.

The second is the generation of specific tumor-targeting

cytotoxic immune cells for cancer therapy using cancer

organoids. The third is to detect the immune crosstalk

between cancer organoids and specific cells, which is

commonly implemented as a suspension of one cell

population, usually cancer-associated fibroblasts, with the

secretion of signaling factors and cytokines to condition the

medium for the organoid. Marked advances in cancer organoids

have been made by employing co-cultures of cancer organoids

with specific cell types (Table 2). Moreover, the cancer organoid

co-culture system with a specific type of cell can be used for

different research purposes, and the co-culture of cancer

organoids with multiple types of cells may accurately mimic

tumor conditions.
5.1 Cancer-associated fibroblasts (CAFs)
co-culture

CAFs play a major role in tumor-stromal crosstalk, which

can be mediated by cell-cell contact, soluble factors, extracellular

vesicles, and metabolites (69). CAFs account for most TME,

particularly in CRC, and play critical roles in cancer progression,

from the regulation of cancer cell proliferation and stem cell

maintenance to drug resistance (70). CRC organoids and CAFs

co-culture were established by Farin et al. to obtain an in vitro

model for fibroblast plasticity in CRC, revealing that co-culture

increased the contractility of CAFs, which was modulated by

Wnt and IWP-2. Moreover, CRC PDO-CAF models were

developed for drug testing and elucidation of CRC-CAF

crosstalk, demonstrating that CAFs maintained the
FIGURE 2

The procedures of cancer organoids establishment and applications of the co-culture system. Tumor tissues derived from surgically resected
tumors or biopsies were dissected into small pieces or digested into cells, mixed with Matrigel, and cultured in media supplemented with
specific growth factors. Cancer organoids (dissected into cells or not) were co-cultured with organoids, cancer-associated fibroblasts or related
cells primarily immune cells to model the interactions between specific cells within tumors or TME.
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TABLE 2 Co-culture modeling systems of cancer OGs with biological subjects.

Co-cultures Cancer Ratio Time Additional Single Modeling for Related genes/
molecules

Year References

eckpoint
n vitro model

PD-1 2018 (45)

– 2018 (46)

IFNg, IL-2, PD-L1 2018 (47)

of PD-L1/PD-1
on PDAC

ARG1, NOS2, NO 2020 (48)

P38, TGF-b/BMP,
MAPK, PI3K, NF-kB

2020 (49)

K phenotype PVR, MICA, ULBP2,
IL-10

2020 (50)

tumor-antigen PD-L1 2021 (51)

nd test of tumor- PD-L1 or TIM3 or
TIGIT or LAG3

2021 (52)

HER2 and PD-L1
of anti-HER2 and

AKT/mTOR, PD-L1,
HER2

2021 (53)

ng immune cells SIRT1, CXCR4/
CXCL12

2022 (54)

antibody- – 2022 (55)

onse Immune checkpoint
expression, CYFRA

2022 (56)

SOX2 2018 (57)

rowth and Wnt, Sfrp1, Dkk1, E-
cadherin, Zeb1, Vim,
Ctnnb1

2020 (58)

with CAFs PI3K-Akt 2020 (59)

(Continued)
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OGs condition cells

Cells Immune
cells

CTLs/
dendritic
cells*

GC* – 16 h – No Determination of efficacy of immune ch
inhibition on cancer cell growth in an i

Lymphocytes PDAC – 72 h – No Establishment of PDAC TME

Lymphocytes Mixed 20:1 7 d IL-2 and anti-PD-1 Yes Obtain tumor reactive T cells

CTLs/
dendritic cells

PDAC – 96 h – No Determination of the effect of inhibition
interaction and PMN-MDSC depletion

Macrophage* CRC* – 48 h – Yes Establishment of CRC TME

NK cells PDAC – 7-14d – No Identification of impact of PDAC on N

CD8+/
dendritic cells

GC 250:1 – – No Prediction of CD8+ cells therapy using
presented DCs to expand CD8+ T cells

op-T cells PDAC 1:1 7 d – No Generation of CD8+ or CD4+opT cells a
killing efficacy

CTL/ MDSCs GC – 48 h Nivolumab,
Mubritinib,
Cabozantinib

No Determination of concomitant effect of
and screen responses to a combination
immunotherapy

Macrophages/
CD8+ T cells

CRC 2/1:2 24 h – No Determination of the relationships amo
and tumor cells

NK cells BC 30:1 – – No Test direct anti-tumor cytotoxicity and
dependent cell-mediated cytotoxicity

CD3+ T cells CCA 25-50:1 7 d IL-2 Yes Test anti-tumor organoid immune resp

CAFs

LUSC 2:1 8-12 d – Yes Capture key components of the TME

CRC – – -、 No Determination of fibroblasts on tumor g
malignancy

CRC between
2:1 and
3:1

– Capecitabine, 5-FU,
oxaliplatin and
irinotecan

No Investigation of the interaction of CRC
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TABLE 2 Continued

Co-cultures Cancer Ratio Time Additional Single Modeling for Related genes/
molecules

Year References

Determination of OGs forming efficiency Lactate, CD44+,
OXPHOS, MCT1

2021 (60)

Investigation of interactions of CCA and CAFs;
examination of the effects of CAFs on the response of
OGs to the anticancer drugs

FAP, CD29, Periostin,
IL6, IL17A, IGF1,
IGF2, NO

2021 (61)

Determination of OGs forming efficiency and phenotype
transition of paracancerous fibroblasts

Notch 2021 (62)

Determination of effect of CAFs on drug-resistance of
tumor

– 2022 (63)

Studying the phenotype of individual cell types in a mixed
cell population
mixed cell population

pyruvate carboxylase,
malic enzyme 1

2020 (64)

Investigation of the interaction of CRC cells with MSCs TNF-a, IFN-g, PI3K/
AKT, GM-CSF,
CD154

2018 (65)

Recapitulation of the early organogenesis of the fallopian
tube

PAX8, LGR5, FOXJ1,
Wnt

2020 (66)

Determination of Organoid-forming efficiency Cancer-associated
parenchymal cells

2019 (67)

Determination of eCOs infiltration by GBM compared
with NP spheroids

VIMENTIN, MMP2,
NESTIN, SOX2

2018 (68)

holangiocarcinoma; CRC, colorectal cancer; CTLs, Cytotoxic T Lymphocyte Cells; Dkk1, Dickkopf-related protein 1; eCOs, early-
lioblastoma; GM-CSF, Granulocyte macrophage colony-stimulating factor; HCC, Hepatocellular carcinoma; HUVEC, human
lls, organoid-primed T cells; OSCC, Oral squamous cell carcinoma; PDAC, Pancreatic ductal adenocarcinoma; PMN-MDSC,
s; Sfrp1, Secreted frizzled-related protein 1; TME, tumor microenvironment.
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OSCC 1:1 – – No

HCC/
CCA

1:1 – Sorafenib,
regorafenib, 5-FU

Yes

OSCC 1:1 7-10 d – Yes

PDAC 10:1 48 h Gemcitabine Yes

PSCs PDAC – – – Yes

BM-MSC CRC 1:1, 2:1,
4:1, and

8:1

– Ultraviolet radiation
and X-rays

Yes

FTMSC, HUVEC FTEC 10:7:2 7 d DKK1 Yes

Lung epithelial cells/
stromal cells

BC – 14 d – Yes

OGs eCOs GBM – 48 h – Yes

*Represents the organoids were derived from mouse.
ARG1, arginase 1; BM-MSC, bone marrow-derived mesenchymal stromal cell; CAFs, Cancer-associated fibroblasts; CCA, C
stage cerebral organoids; FTEC, Fallopian tube epithelial cells; FTMSC, Fallopian tube mesenchymal stem cells; GBM, G
umbilical vein endothelial cells; LUSC, lung squamous carcinoma; NOS2, nitric oxide synthase 2; OG, organoid; op-T ce
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proliferation of CRC organoids in the hydrogels without adding

growth factors and regained distinct signaling pathways that

were absent in the CRC organoid culture alone but existed in

tumors (59). This indicated that the CRC-CAF co-culture model

was appropriate for evaluating drugs and helped bring us closer

to the goal of personalized cancer medicine. Similarly, CAFs

promoted the growth of in vitro HCC tumor organoids and

transplantation xenograft models, conferring drug resistance to

sorafenib, regorafenib, and 5-fluorouracil (61). This study was

also conducted recently to determine the effect of CAFs on drug

resistance in pancreatic ductal adenocarcinoma (PDAC) (63).

CAFs are essential for tumor progression, and co-culture of

CAFs and cancer organoids can recapitulate the TME within the

origin of the tumor. Thus, elucidating the interactions between

tumor organoids and CAFs may help improve culture media for

better growth of organoids and simulation of the tumor.

Cancer organoid co-culture systems have been established

for a wide range of applications. Fallopian tube epithelial cells

co-cultured with fallopian stromal cells and endothelial cells

form a miniature 3D structure with high efficiency, significantly

suppressing Wnt inhibitors (66). Bone marrow stromal cells

(BMSCs) enhance the anticancer effect of radiotherapy on CRC

cells by secreting cytokines that inhibit proliferation and induce

apoptosis of CRC cells. Such a mechanism would presumably be

based on suppression of the PI3K/AKT signaling pathway,

which may contribute to the attenuation of cell proliferation

and death under irradiation with co-cultured BMSCs (65). A

cancer organoid co-culture system was also developed to

establish metastasis models to investigate the metastatic

features of cancer. Breast cancer cells were co-cultured with

lung epithelial cells to test organoid-forming efficiency (67). The

cancer organoid co-culture model is an ideal tool to test the effect

of various stromal cells on cancer development and progression,

metastasis, and drug efficacy.
5.2 Immune cells co-culture

The major application of cancer organoid co-culture models

is the co-culture of cancer organoids with immune cells,

including cytotoxic T lymphocytes and dendritic cells (45), NK

cells (55), macrophages (49, 54), and lymphocytes (46, 47)

(Table 2). James et al. co-cultured PDAC organoids with CAFs

and CD3+ T lymphocytes to develop a specific TME for PDAC

(46). To obtain tumor-reactive T cells, peripheral blood

lymphocytes were added and co-cultured with non-small cell

lung cancer organoids, providing a clinically feasible strategy for

generating patient-specific T cells for adoptive T cell transfer

(47). Similarly, to investigate how CRC driver mutations

dysregulate epithelial signaling from stromal and immune

cells, CRC organoids were cultured either alone or with

colonic fibroblasts and macrophages to directly compare

mutation- and microenvironment-driven cell-type-specific
Frontiers in Immunology 09
signaling networks in CRC organoid mono- and co-cultures

(49). More recently, a novel co-culture approach was developed

to predict the efficacy of precision medicine to achieve a better

prognosis for gastric cancer patients, using tumor antigens to

stimulate antigen-presenting dendritic cells (DCs), followed by

co-culture with CD8+ T cells to promote cytolysis and

proliferation of these T cells before co-culture with patient-

derived gastric cancer organoids (51). Such an approach may be

considered more relevant within the TME instead of being

induced by an artificial approach to T cell activation (32).

The era of checkpoint blockade immunotherapy is in full

swing, exhibiting outstanding efficacy by unblocking negatively

controlled T cells and triggering anticancer T cell responses. Co-

culturing PDO with immune cells combined with checkpoint

blockade inhibitors has been applied in a series of studies on

cancer precision medicine (51–53, 56), providing important

insights into predicting precision therapy efficacy with PDO.

This process takes nearly ten days and includes cancer organoid

establishment after surgical resection, preparation of immune

cells, co-culture, drug testing, and determination of efficacy. This

novel platform may guide clinical treatment at the microscopic

level and benefit patients without needing long waiting periods

based on advances in organoid culture techniques. Moreover,

several studies have focused on generating tumor-specific

lymphocytes for tumor-targeting therapy through co-culture

(45–48, 51, 52). This method, with its excellent prospects, may

achieve more accurate cell therapy with better clinical efficacy.
5.3 CAR-T cells co-culture

Currently, immunotherapy approaches, primarily immune

checkpoint blockades, only select specific patient populations.

The co-culture of cancer organoids and TME cells may provide

an environment for immunotherapy research, making it a highly

appealing and efficient option (47, 71). CAR-T cells are

autologous and allogeneic T cells engineered to target specific

antigens and markers on cancer cells, explicitly recognizing and

eliminating cancer cells through direct T-cell cytotoxicity (72).

The co-culture of cancer organoids and CAR-T cells provides a

platform for predicting CAR-T cell efficacy and toxicity

assessment (Table 3). Recently, Chen et al. established a

successful preclinical testing ex vivo technological platform for

a co-culture model system to evaluate CAR-T cell-mediated

cytotoxicity against bladder cancer organoids targeting MUC1

(74). Such co-culture model systems for autologous HBVs+ HCC

organoids and CD39+ HBV-CAR-T cells or CD39+ personalized

tumor-reactive CD8+ T cells were also modeled to assess their

anticancer efficiency (75). In addition, a co-culture of GBM

organoids expressing EGFRvIII with 2173BBz CAR-T cells was

performed, demonstrating the utility of rapid testing of antigen-

specific CAR-T cell treatment responses (25). In addition, Farin

et al. co-cultured CRC organoids with EGFRvIII-CAR NK-92
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cells to model a platform for identifying and selecting suitable

target antigens and assessing the anticancer activity of CAR-NK-

92 cells (73). Notably, only one clinical trial has been carried out

to evaluate the anticancer effects of CAR-engineered

lymphocytes on cancer organoids, focusing on investigating

the anticancer effects of CAR-macrophages in organoids

derived from patients with breast cancer (NCT05007379).

Because cancers exhibit diverse heterogeneity and genetic

instability, cancer therapeutic approaches should be

personalized. Cancer organoids preserve the histological

features, cellular diversity, genetic heterogeneity, and

mutational diversity of the tumor origin. Accordingly, co-

culture of CAR-derived cells and cancer organoids can fully

capture the molecular and cellular processes of immunotherapy,

showing enormous potential in predicting therapeutic efficacy

and cytotoxicity.
6 Discussion

As a major technological breakthrough, organoids are now

well-established and vigorously developed as a vital

methodology in biomedical studies. Organoids have been

applied in tissue engineering, regenerative medicine, disease

modeling, drug screening, and toxicological studies, restoring

the 3D structure and primary cell types, but also in translational

applications such as the prediction of chemotherapy,

radiotherapy resistance before treatment, and gene editing,

enabling mutation rectification (76). Although organoids have

a wide range of applications in cancer research and clinical

practice, the current version is a rough model, and culture

procedures for specific cancer types must be constantly

standardized and improved. Organoids are found in various

organs that have been created, such as the brain, retina,

gastrointestinal tract, tongue, thyroid, liver, pancreas, skin,

lung, kidney, and heart (7). However, obstacles impede the

generation of organoids in some organs, such as bone and soft
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tissue engineering. Human‐periosteum‐derived cells allow the

scalable generation of semiautonomous callus organoids that

induce the formation of bone micro-organs upon implantation

(77). For most cancers, 3D organoid models have already been

established for cancer investigations with barely any

technological restrictions. However, no relevant studies have

investigated organoids in rare malignant tumors that are equally

promising in research on these rare cancers, such as bone and

soft tissue sarcomas and neuroendocrine tumors. Bone and soft

tissue sarcomas are commonly characterized by chromosomal

translocations with a low mutational burden. Because of the

advantage of gene editing of cancer organoids, mechanism-

based sarcoma organoid models may provide theoretical

support for invest igations focusing on elucidating

sarcomagenesis and other extensive applications.

Tumor cell lines in mice and patient-derived xenografts have

long been used as cancer research models and have made

significant contributions. However, various shortcomings

hinder using these experimental models in clinical

applications. Cell lines generally contain only one type of cell

without co-cultured immune cells, stromal cells, TME, or organ-

specific capability, losing the genetic heterogeneity of the origin

tumor after multiple passages and clonal selection. In addition,

there is a lack of immune response between the original tumor

and the immune environment in immunodeficient mice.

Human-derived cancer cells have evolved, potentially

impacting chemotherapy by reshaping the genomic landscape.

Such xenograft models are highly time- and resource-intensive.

Cancer organoids may also overcome the aforementioned

restrictions. Genetic modification of the insertions of

oncogenic mutations in stem cells leads to the generation of

genetically modified organoids. Unlike patient-derived

xenografts, cancer organoids are easier to obtain and establish

biobanks for restoration and can be used for high-throughput

drug screening. Cancer organoids based on specific cancers and

even on a specific individual used in high-throughput screening

are expected to become powerful tools for precision therapy.
TABLE 3 Co-culture modeling systems of cancer OGs with CAR-engineered lymphocytes.

Cancer type Colorectal cancer (73) Glioblastoma (25) Bladder cancer
(74)

Hepatocellular carcinoma
(75)

Year 2019 2020 2021 2021

Lymphocytes NK cell line NK-92 T cells CD4+, CD8+ T cells CD8+ T cells

Antigen EPCAM, EGFRvIII EGFRvIII MUC1 HBV surface protein, FRIZZLED,
EPCAM

Ratio – – – 10:1

Co-culture time – 3 days – 24 hours

Cytotoxicity
assays

Luciferase-based 3D assay, live-cell imaging
experiments

Cytokine ELISA,
immunostaining

Cytokine detection
assays

Imaging-based analysis

EGFRvIII, Epidermal growth factor receptor variant III; HBV, hepatitis B virus.
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Furthermore, screening can be performed using biobanks to

identify new drugs and explore new indications.

Cancer organoids have a major shortcoming: fewer immune

cells and specific types of cancer-associated stromal cell

organoids. A cancer organoid co-culture model system appears

to address this issue (Figure 3). This approach may be

considered closer to what occurs within the TME (48). With

regard to the co-culture of cancer-associated cells, CAFs account

for most cancer organoid co-culture studies. CAFs, as essential

complements of TME, have been shown to facilitate cancer

progression and promote treatment resistance. CAFs contribute

to treatment resistance, mainly through impaired drug delivery

and biochemical signaling (61).

Given the existence of direct or indirect biochemical crosstalk

between cancer cells and CAFs, the roles of CAFs in the immune

response, drug resistance, and cancer proliferation must be

demonstrated in specific cancer types. Although other cell types,

such as BMSCs, were observed to be radiation protective through

their well-known regenerative functions after ionizing radiation

(65), such co-culture models with additional conditions are

encouraged in cancer research for comprehensive treatment of

cancer owing to the characteristics of the subtype. Co-culture of

cancer organoids and immune cells can not only establish a model

system to interrogate cancer sensitivity to immunotherapy for

individuals at any period during treatment but also provide a

clinically practical method for the creation of patient-specific T
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cell products for adoptive T cell transfer through expanding

circulating tumor-reactive T cells by co-culture (47). NK cells, T

cells, and dendritic cells were co-cultured with cancer organoids to

investigate immune responses in cancer. This novel model was

considered an efficient method for rapidly evaluating the effect of

immune checkpoint inhibitors on activating cytotoxic

lymphocytes and increasing infiltration in the context of T-cell

infiltrates (46). Single-cell T-cell receptor sequencing (scTCR-seq)

is another novel single-cell approach that can identify paired a-
and b-TCR subunits that determine the specificity of infiltrating T

cells. Association analysis of scTCR-seq with T-cell phenotypes

(activation, memory, and exhaustion) and antigen specificity

determination may provide more in-depth insights into cancer

immunotherapy based on this novel tool.
7 Conclusions

The advanced technology of co-culturing CAR-engineered

lymphocytes and cancer organoids is superior in personalized

medicine owing to the maintenance of heterogeneity and the

TME. CAR-engineered lymphocytes combined with organoid

applications in drug tests, genome editing, and high-throughput

screening will be our future research direction. However,

because the therapeutic effect of CAR-T cell immunotherapy

in solid tumors has not been as effective as in blood cancers
FIGURE 3

A summary of the four conditions for cancer organoids co-culture.
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owing to poor trafficking, limited persistence, limited

infiltration, and T cell inhibitory activity in the TME, there

has been little research on this area to date (78–80).

Consequently, it has been proposed that checkpoint blockade

inhibitors combined with CAR-engineered cells are a promising

treatment approach for solid tumors (81–85), with a platform of

organoids providing recapitulation of the environment.

Recently, CAR-engineered cell therapy has been expanded to

novel cell types, and the expression of CARs in NK cells has been

considered a more successful variant. Cancer organoid-based co-

culture systems may provide a platform for evaluating the

clinical therapeutic effects of adoptive cell therapies. Moreover,

genetic mutations in altered surface antigens in specific cancer

cells must be identified to provide primary evidence for this

methodology to achieve higher targeting and therapeutic

efficiency. To broaden its applications, further research is

needed to establish various co-culture model systems for

organoid cancer research.
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