
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Piero Pileri,
Toscana Life Sciences, Italy

REVIEWED BY

Mario U. Mondelli,
University of Pavia, Italy
Elizabeth De Gaspari,
Adolfo Lutz Institute, Brazil
Giuseppe Andrea Sautto,
Lerner Research Institute,
United States

*CORRESPONDENCE

Justin A. Green
justin.green@astrazeneca.com
Elizabeth J. Kelly
beth.kelly@astrazeneca.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Vaccines and Molecular Therapeutics,
a section of the journal
Frontiers in Immunology

RECEIVED 05 October 2022

ACCEPTED 06 December 2022
PUBLISHED 13 January 2023

CITATION

Maaske J, Sproule S, Falsey AR,
Sobieszczyk ME, Luetkemeyer AF,
Paulsen GC, Riddler SA, Robb ML,
Rolle C-P, Sha BE, Tong T, Ahani B,
Aksyuk AA, Bansal H, Egan T,
Jepson B, Padilla M, Patel N,
Shoemaker K, Stanley AM,
Swanson PA 2nd, Wilkins D,
Villafana T, Green JA and Kelly EJ
(2023) Robust humoral and cellular
recall responses to AZD1222 attenuate
breakthrough SARS-CoV-2 infection
compared to unvaccinated.
Front. Immunol. 13:1062067.
doi: 10.3389/fimmu.2022.1062067

TYPE Original Research
PUBLISHED 13 January 2023

DOI 10.3389/fimmu.2022.1062067
Robust humoral and cellular
recall responses to AZD1222
attenuate breakthrough
SARS-CoV-2 infection
compared to unvaccinated

Jill Maaske1†, Stephanie Sproule2†, Ann R. Falsey3,4,
Magdalena E. Sobieszczyk5, Anne F. Luetkemeyer6,
Grant C. Paulsen7,8, Sharon A. Riddler9, Merlin L. Robb10,
Charlotte-Paige Rolle11, Beverly E. Sha12, Tina Tong13,
Bahar Ahani14, Anastasia A. Aksyuk15, Himanshu Bansal2,
Timothy Egan2, Brett Jepson2, Marcelino Padilla15,
Nirmeshkumar Patel2, Kathryn Shoemaker2,
Ann Marie Stanley15, Phillip A. Swanson 2nd15,
Deidre Wilkins15, Tonya Villafana1, Justin A. Green16*†

and Elizabeth J. Kelly15*†

1Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca,
Gaithersburg, MD, United States, 2Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals
R&D, AstraZeneca, Gaithersburg, MD, United States, 3University of Rochester School of Medicine
and Dentistry, Rochester, NY, United States, 4Rochester Regional Health, Rochester, NY, United
States, 5Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Columbia University Irving Medical Center, New York, NY, United
States, 6Zuckerberg San Francisco General, University of California, San Francisco, San Francisco,
CA, United States, 7Department of Pediatrics, University of Cincinnati College of Medicine,
Cincinnati, OH, United States, 8Division of Pediatric Infectious Diseases, Cincinnati Children’s
Hospital Medical Center, Cincinnati, OH, United States, 9Division of Infectious Diseases,
Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States, 10Walter Reed Army
Institute of Research, Silver Spring, MD, United States, 11Orlando Immunology Center, Orlando,
FL, United States, 12Division of Infectious Diseases, Department of Internal Medicine, Rush
University Medical Center, Chicago, IL, United States, 13National Institute of Allergy and Infectious
Diseases, National Institutes of Health, Bethesda, MD, United States, 14Bioinformatics, Vaccines &
Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States,
15Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca,
Gaithersburg, MD, United States, 16Clinical Development, Vaccines & Immune Therapies,
BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
Background: Breakthrough severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) infection in coronavirus disease 2019 (COVID-19) vaccinees

typically produces milder disease than infection in unvaccinated individuals.

Methods: To explore disease attenuation, we examined COVID-19 symptom

burden and immuno-virologic responses to symptomatic SARS-CoV-2
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infection in participants (AZD1222: n=177/17,617; placebo: n=203/8,528) from

a 2:1 randomized, placebo-controlled, phase 3 study of two-dose primary

series AZD1222 (ChAdOx1 nCoV-19) vaccination (NCT04516746).

Results: We observed that AZD1222 vaccinees had an overall lower incidence

and shorter duration of COVID-19 symptoms comparedwith placebo recipients,

as well as lower SARS-CoV-2 viral loads and a shorter median duration of viral

shedding in saliva. Vaccinees demonstrated a robust antibody recall response

versus placebo recipients with low-to-moderate inverse correlations with

virologic endpoints. Vaccinees also demonstrated an enriched polyfunctional

spike-specific Th-1-biased CD4+ and CD8+ T-cell response that was associated

with strong inverse correlations with virologic endpoints.

Conclusion: Robust immune responses following AZD1222 vaccination

attenuate COVID-19 disease severity and restrict SARS-CoV-2 transmission

potential by reducing viral loads and the duration of viral shedding in saliva.

Collectively, these analyses underscore the essential role of vaccination in

mitigating the COVID-19 pandemic.
KEYWORDS

AZD1222 (ChAdOx1 nCoV-19), COVID-19 vaccine, SARS-CoV-2, breakthrough
infection, serology, cell-mediated immunity
Introduction

Vaccination has drastically reduced the global mortality and

morbidity burden of coronavirus disease 2019 (COVID-19) (1, 2),

yet global circulation of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) remains high (3). Breakthrough

infections in COVID-19 vaccinees have been observed as

immunity to primary series vaccination wanes and new

antigenically distinct variants emerge (4–7); however, these

typically produce milder disease than infections in unvaccinated

individuals (8–11).

AZD1222 (ChAdOx1 nCoV-19) is a simian, replication-

deficient, adenovirus-vectored COVID-19 vaccine that has

demonstrated safety and efficacy in preventing symptomatic

disease (12, 13). To date, the immune response elicited by
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; MERS-CoV, Middle

lizing antibody; NGS,

d mononuclear cells;

action; SARS-CoV-2,

h1, T helper cell 1;

f concern.

02
two-dose primary series AZD1222 vaccination has

predominately been studied in SARS-CoV-2-seronegative

populations, wherein AZD1222 has been observed to induce

systemic anti-SARS-CoV-2 spike glycoprotein (spike), receptor-

binding domain, and neutralizing antibody (nAb) responses

(13–17), and polyfunctional T helper cell 1 (Th1)-dominated

CD4+ and CD8+ cellular immune responses characterized by

diverse T-cell receptors with broad coverage of SARS-CoV-2

spike epitopes (14, 18). The protective immune response

conferred by AZD1222 vaccination upon breakthrough SARS-

CoV-2 infection is less well-characterized.

Prevention of COVID-19 in adults by AZD1222 primary

vaccination was studied in a large, diverse population from US,

Chile, and Peru in a 2:1 randomized, placebo-controlled, phase 3

study (NCT04516746) (19). Study participants who developed

protocol-defined COVID-19 symptoms were requested to

contact their study site to initiate illness visits, which entailed

collection of nasopharyngeal swabs, saliva samples, sera, and

PBMCs for analysis (13). Here, we describe COVID-19

symptom burden and immuno-virologic outcomes in study

participants with reverse transcriptase polymerase chain

reaction (RT-PCR)-confirmed SARS-CoV-2 infection to

characterize the recall response to primary series AZD1222

vaccination and explore disease attenuation compared with

placebo recipients.
frontiersin.org
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Results

Pooled sera from AZD1222 vaccinees
demonstrates a broad neutralizing
antibody response against SARS-CoV-2
variants of concern

nAb responses have been proposed as a SARS-CoV-2

correlate of protection across multiple vaccine platforms (20).

We have previously analyzed nAb responses against the

ancestral SARS-CoV-2 virus 28 days post-second dose primary

series in our phase 3 study (13). As outlined in Sobieszczyk et al.

(21), data for the follow-up period were obtained prior to and

during a global SARS-CoV-2 Alpha wave and Omicron had not

been identified at the time of data cut-off (July 30, 2021).

To provide context for this analysis of breakthrough

infections, we assessed nAbs elicited against contemporary

variants of concern (VoCs) using pooled sera obtained from

vaccinees (n=210 participants; n=21 pools) 28 days following

their second dose of primary series AZD1222. These samples

were randomly selected from participants enrolled in the

immunogenicity substudy of NCT04516746 who had

consented to future use of biospecimens for exploratory

analyses. Demographics of the participants who contributed to

the pools (Supplemental Table 1) was representative of the wider

NCT04516746 study population (13). nAb geometric mean

titers (GMTs) were highest against the ancestral SARS-CoV-2

pseudovirus (202.1), with modest reductions observed against

Alpha (133.1), Gamma (59.5), and Delta (103.1) pseudoviruses

and larger decreases observed against Beta (32.7) and Omicron

BA.1 (21.7) pseudoviruses (Supplemental Figure 1).
Participants with symptomatic SARS-
CoV-2 infection

The analyses of SARS-CoV-2 infection in this manuscript are

restricted to participants in the fully vaccinated analysis set (FVS)

(i.e., those who were SARS-CoV-2 seronegative at baseline and

remained on the study for ≥15 days after their second dose of

primary series AZD1222 or placebo without SARS-CoV-2

infection) who experienced their first symptomatic RT-PCR-

confirmed SARS-CoV-2 infection and provided samples during

the 28-day illness period. The overall number of FVS participants

who initiated illness visits and had confirmed SARS-CoV-2

positive symptomatic illness confirmed by adjudication was low

(AZD1222: n=177/17,617; [1.00%]; placebo: n=203/8,528,

[2.38%]) at the time of data cut-off. The demographics of

participants initiating illness visits were broadly similar between

AZD1222 and placebo arms (Supplemental Table 2). Although

vaccinees were younger (median age: 42 versus 46 years,

AZD1222 versus placebo), a greater proportion of vaccinees had
Frontiers in Immunology 03
a very high or high exposure risk to COVID-19 per Occupational

Safety and Health Administration categories (27.1% versus 21.2%,

AZD1222 versus placebo).
Illness e-Diary responses illustrate
COVID-19 disease attenuation in
AZD1222 vaccinees

Participant illness e-Diary responses illustrated that

vaccinees had an overall lower incidence of COVID-19

symptoms compared with placebo recipients (Figure 1A;

Supplemental Table 3). Vaccinees had shorter mean symptom

durations (by ≥1 day) than placebo recipients for chills

(1.6 versus 2.8 days), cough (2.2 versus 3.2), fatigue (4.7 versus

6.7), muscle aches (2.9 versus 3.9), body aches (3.0 versus 4.0),

new loss of smell (3.9 versus 5.3), congestion (5.3 versus 7.1), and

runny nose (4.0 versus 5.5) (Figure 1B; Supplemental Table 3). A

low incidence of COVID-19 disease in participants aged >65

years limited comparisons regarding symptom incidence and

burden between age groups (Supplemental Table 3).
Virologic outcomes are attenuated in
AZD1222 vaccinees with breakthrough
infections

Analyses of SARS-CoV-2 viral loads in nasopharyngeal

swabs and saliva samples revealed a trend towards lower GMT

in vaccinees compared with placebo recipients at all timepoints

throughout the illness period (Figures 2A, B). The median

duration of viral shedding in saliva samples was shortened in

vaccinees compared to placebo by 3 days (Figure 2C). Among

cases, with sequence data at Illness Day 1 (ILL-D1), median

overall viral loads in nasopharyngeal swabs (Figure 2D) and

saliva samples (Figure 2E) were lower in vaccinees versus

placebo recipients with consistent trends towards lowered viral

loads observed for the ancestral SARS-CoV-2 virus and the

Alpha variant across both sample types. Median vaccinee SARS-

CoV-2 Epsilon viral loads were higher in nasopharyngeal swabs

but were lower in saliva samples compared with those observed

in placebo.
AZD1222 vaccinees produce a robust
antibody recall response to attenuate
SARS-CoV-2 infection

Median ILL-D1 anti-spike-binding titers in vaccinees were

similar to peak titers seen 14 days after dose 2 of AZD1222 (13)

and median titers in vaccinees were higher than those observed

in placebo recipients at all timepoints (Figure 3A). Subgroup

analyses illustrated that the kinetics and magnitude of the spike-
frontiersin.org
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binding antibody response differed by vaccinee age: median

titers were lower at ILL-D1 and higher at ILL-D14 and

ILL-D28 in vaccinees aged ≥65 versus those aged 18–64 years,

although numbers of participants aged ≥65 years were small

(AZD1222: n=10; placebo n=16).

Median ILL-D1 nAb titers were comparable to peak titers

observed 28 days after dose 2 of AZD1222 (13) and further

increased throughout the illness visit period, with higher titers in

vaccinees than in placebo recipients at all time points

(Figure 3B). As with anti-spike-binding antibodies, subgroup

analyses showed the impact of age on the kinetics and magnitude

of nAb response – median titers in vaccinees aged ≥65 versus

18–64 years were lower at ILL-D1 and ILL-D14 but higher at

ILL-D28. Median titers within the placebo arm peaked at

ILL-D14 and were also higher in participants aged ≥65 versus

18–64 years.

Nucleocapsid antibodies were induced more slowly than

spike-binding antibodies and were lower in overall magnitude,
Frontiers in Immunology 04
with higher median titers in placebo recipients versus vaccinees

at ILL-D14 and ILL-D28 (Figure 3C). Subgroup analyses

revealed median titers were higher in placebo participants

aged ≥65 versus 18–64 years. GMTs were broadly similar in

vaccinees aged ≥65 or 18–64 years, despite a lower median titer

in vaccinees aged ≥65.

Median spike-binding titers differed with increased time

since second dose of primary series vaccination (Figure 4). At

ILL-D1, lower median spike-binding antibody titers were

observed in vaccinees with ≥60 days since second dose

primary series than those with <60 days. However, this did not

prohibit participants with longer intervals between primary

series and illness from mounting equivalent responses to

participants with shorter intervals, as evidenced by ILL-D14

and ILL-D28 titers.

ILL-D1 nAb responses inversely correlated with SARS-CoV-2

virologic outcomes, with low-to-moderate correlations observed

for nasopharyngeal viral loads (Pearson: AZD1222 –0.137;
A

B

FIGURE 1

AZD1222 vaccinees had an overall lower incidence and shorter duration of COVID-19 symptoms compared with placebo recipients upon
symptomatic SARS-CoV-2 infection. (A) Incidence and (B) mean duration of self-reported COVID-19 symptoms recorded in participant e-
Diaries during the 28-day illness period. (A) Symptoms with differences of ≤1.5% between arms were excluded from this plot. (B) Symptoms with
differences in mean durations of ≤1 day between arms are excluded from this plot. Error bars depict standard deviation.
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B

C

D E

A

FIGURE 2

Virologic outcomes to breakthrough infection are attenuated in AZD1222 vaccinees compared to unvaccinated. (A) SARS-CoV-2 genome
copies from participant nasopharyngeal swabs collected at illness visits determined by quantitative (q)RT-PCR. Line plot with geometric means
and 95% CI. Viral genome copies were imputed to 1 when the SARS-CoV-2 nasopharyngeal swab qualitative result was not detected. (B) SARS-
CoV-2 quantitation (Log10 viral copies/mL) in participant saliva over time. Line plot with mean ± SD. Not detected values of viral quantitation
are treated as 0. (C) Cumulative incidence plot of SARS-CoV-2 clearance (saliva samples). The median time to clearance of viral shedding for
each group is marked by a circle. (D, E) Viral load by SARS-CoV-2 variant (viral genome copies) in nasopharyngeal swabs (D) and saliva samples
(E) collected at first illness visit determined by qRT-PCR. The bottom and top edges of the box indicate the first and third quartiles, the
difference is the IQR, the line inside the box is the median, and the marker inside the box is the geometric mean. The whiskers that extend from
the box indicate the minimum and maximum after removing outliers (i.e., datapoints >1.5 x IQR from the box). Viral genome copies are imputed
to 1 when the SARS-CoV-2 nasopharyngeal swab qualitative result is not detected.
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placebo –0.445) and viral shedding titers in saliva (Pearson:

AZD1222 –0.469; placebo –0.398) (Figures 5A, B). ILL-D1 nAb

responses in vaccinees displayed moderate correlations with

duration of shedding, with weaker correlations observed in

placebo recipients (Pearson: AZD1222 –0.441; placebo –0.113)

(Figure 5C). As outlined in Aksyuk et al. (22), ILL-D1 spike-

binding antibody responses also inversely correlated with

virologic outcomes, with similar, albeit weaker, low-to-moderate

correlations observed for viral shedding titers in saliva (Pearson:

AZD1222 –0.436; placebo –0.251). As with ILL-D1 nAb responses,

vaccinee spike-binding antibody responses displayed stronger
Frontiers in Immunology 06
correlations with duration of shedding than those in placebo

recipients (Pearson: AZD1222 –0.323; placebo –0.067) (22).
AZD1222 vaccination induces greater
spike-specific T-cell responses following
breakthrough infection

Spike-specific CD4+ and CD8+ T-cell responses were

assessed by intracellular cytokine staining (ICS) assay

following stimulation of participant PBMCs with SARS-CoV-2
B

C

A

FIGURE 3

The kinetics and magnitude of the breakthrough anti-SARS-CoV-2 antibody response are impacted by age and vaccination status. Levels of
anti-SARS-CoV-2 (A) spike-binding, (B) neutralizing, and (C) nucleocapsid antibodies in AU/mL. The bottom and top edges of the box indicate
the first and third quartiles, the difference is the IQR, the line inside the box is the median, and the marker inside the box is the geometric mean.
The whiskers that extend from the box indicate the minimum and maximum after removing outliers (i.e., datapoints >1.5 x IQR from the box).
(A, B) Yellow shaded region denotes peak antibody titers observed during primary analysis [13].Statistical evidence between groups was
determined by post-hoc two-tailed Mann-Whitney tests. Not significant (NS), p>0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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spike peptide pools. At ILL-D1, vaccinees had higher frequencies

of spike-specific CD4+ (Figure 6A) and CD8+ (Figure 6B) T cells

than placebo recipients (any response CD4+: P ≤ 0.01; any

response CD8+: P ≤ 0.05). Furthermore, AZD1222 vaccination

was associated with a higher proportion of responders than

placebo recipients (AZD1222 versus placebo: CD4+ 14/15 [93%]

versus 16/32 [50%]; CD8+ 10/15 [67%] versus 8/32 [25%]).

Interestingly, AZD1222 vaccination did not impact participants

de novo antiviral T-cell responses as SARS-CoV-2 nucleocapsid-

specific CD4+ and CD8+ T-cell frequencies were not statistically

different between both groups (Supplemental Figure 2).

Spike-specific T cells from responders were further assessed to

determine the frequencies and proportions of individual cytokines

produced. We found that vaccinees had a greater proportion of

polyfunctional Th1 CD4+ T cells (i.e., T cells with the ability to

secrete >2 cytokines from the panel) than placebo recipients

(Figure 6C). Similar to CD4+ T cells, the proportion of

polyfunctional spike-specific CD8+ T cells was higher among

vaccinees compared to placebo recipients (Figure 6D).

At ILL-D14 spike-specific T-cell frequencies and the

proportion of responders were increased in both groups

(Supplemental Table 4), however, elevated responses were

generally maintained in vaccinees (Figures 6E, F). Although

the ancestral strain of SARS-CoV-2 accounted for nearly all
Frontiers in Immunology 07
breakthrough infections in this analysis, we wanted to

determine whether the responders in (Figures 6A, B) were

also capable of generating a T-cell response to an Omicron

VoC lineage BA.1. Stimulation of vaccinee PBMCs with either

ancestral SARS-CoV-2 or Omicron BA.1 spike peptide pools

revealed equivalent CD4+ and CD8+ T-cell responses

(Figures 6G, H) indicating that AZD1222 vaccination

induces broad recognition of the SARS-CoV-2 spike protein

as previously demonstrated (18). T cells from placebo

participants were also able to recognize Omicron BA.1 spike

peptides indicating natural infection can also induce a broad T-

cell response.

Correlations between ILL-D1 T-cell and humoral responses

and virologic outcomes were assessed. ILL-D1 nAb titers in

vaccinees directly correlated with CD4+ (Spearman rank: 0.65;

p=0.02) but not CD8+ (Spearman rank: 0.05; p=0.85) T-cell

responses (Supplemental Figure 3). Among participants with

matched PBMCs and virology samples, CD4+ T-cell responses

inversely correlated with nasopharyngeal viral loads with strong

correlations observed in vaccinees (Pearson: AZD1222 –0.881;

placebo 0.796) (Supplemental Figure 4). However, trends were

inconsistent between groups for durations of shedding (Pearson:

AZD1222 –0.421; placebo –0.344) and shedding titers in saliva

(Pearson: AZD1222 –0.681; placebo 0.126). CD8+ T-cell
FIGURE 4

Initial breakthrough SARS-CoV-2 spike-binding antibody titers are influenced by the interval since second dose primary series vaccination. Levels of
anti-SARS-CoV-2 spike-binding antibodies by time since second dose of primary series vaccination. The bottom and top edges of the box indicate
the first and third quartiles, the difference is the IQR, the line inside the box is the median, and the marker inside the box is the mean. The whiskers
that extend from the box indicate the minimum and maximum after removing outliers (i.e., datapoints >1.5 x IQR from the box).
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responses also inversely correlated with virologic outcomes, with

strong correlations observed with quantitative viral loads

(Pearson: AZD1222 –0.932; placebo –0.805), and the duration

of shedding (Pearson: AZD1222 –0.926; placebo –0.899) in both
Frontiers in Immunology 08
groups (Figure 7). Similar to CD4+ T cells, moderate

correlations were observed between ILL-D1 CD8+ T-cell

responses and viral shedding titers in saliva (Pearson:

AZD1222 –0.513; placebo –0.169) for vaccinees but not
B

C

A

FIGURE 5

Illness visit day 1 SARS-CoV-2 nAb titers display low-moderate negative correlations with SARS-CoV-2 virologic outcomes. Scatterplot analysis
depicting the relationship between (A) SARS-CoV-2 viral load in nasopharyngeal swabs (B) SARS-CoV-2 viral load in saliva samples, and
(C) duration of viral shedding in saliva (y-axes) and illness visit day 1 nAb titers (x-axes) in vaccinees and placebo recipients. Blue and red shading
denotes 95% CI. Dotted line denotes 95% prediction limits. Clustering of participants along the y-axis occurs due to levels of serum anti-SARS-
CoV-2 neutralizing antibody falling below the assay lower limit of quantification (LLOQ). LLOQ= 40 ID50. 50% of LLOQ =20 ID50.
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placebo recipients. However, the numbers of data points

were limited in these analyses and findings should be

interpreted accordingly.
Discussion

The immune response to COVID-19 vaccination has been

extensively studied in SARS-CoV-2-seronegative populations

during randomized placebo-controlled studies (23). Beyond

their immediate implications for further immunization

campaigns, studies of immune responses to breakthrough

SARS-CoV-2 infection are invaluable due to the insights they
Frontiers in Immunology 09
can provide for infection control, disease attenuation, and the

design of future COVID-19 vaccines (24). In this context, we

have comprehensively evaluated immuno-virologic outcomes in

symptomatic baseline-seronegative vaccinees and unvaccinated

controls to characterize the recall response to AZD1222

vaccination. Our findings are strengthened by our sample size

(N=380) and the range of paired virologic, serologic, and cellular

outcomes assessed in light of self-reported COVID-19

symptoms. Collectively, these data provide an invaluable

insight into crucial aspects of effective SARS-CoV-2 immunity.

Retrospective case studies (8, 9) and real-world symptomology

studies (10) have shown a reduced COVID-19 disease burden in

vaccinees upon breakthrough infection. Our dataset suggests a
B

C

D

E F

G H

A

FIGURE 6

AZD1222 vaccinees possess an enriched SARS-CoV-2 spike-specific T-cell response upon symptomatic SARS-CoV-2 infection compared with
placebo recipients. T-cell responses from vaccinees and placebo recipients were assessed following stimulation of PBMCs with SARS-CoV-2
spike peptide pools. Frequencies of SARS-CoV-2 spike protein-specific CD4+ T cells (A) expressing CD154, interferon gamma (IFNg), IL-2, and
tumor necrosis factor alpha (TNFa), or any combination of all four (Any Response), and CD8+ T cells (B) expressing IFNg, IL-2, and TNFa, or any
combination of all three (Any Response) are shown. Illness visit day 1 cytokine profiles and frequencies of (C) CD4+ and (D) CD8+ T cell
populations upon breakthrough infection in vaccinees and placebo recipients. Spike-specific CD4+ (E) and CD8+ (F) T-cell frequencies (Any
Response) from participants at ILL-D1 and ILL-D14 are shown. Bars indicate median values within each group. Frequencies of spike-specific
CD4+ (G) and CD8+ (H) T-cells (Any Response) against ancestral SARS-COV-2 and Omicron BA.1 variant spike proteins from vaccinee and
placebo recipient “responders” at illness visit day 1. In the box and whisker plots the horizontal line represents median, boxes represent IQR,
whiskers extend to minimum and maximum, and each symbol represents a participant. Dotted line indicates “responder” threshold. Statistical
evidence between groups were determined by two-tailed Mann-Whitney tests. Not significant (NS), P>0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
An. = Ancestral; O = Omicron.
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similar trend towards disease attenuation; illness e-Diary responses

illustrate that vaccinees experienced fewer and a shorter duration

of COVID-19 symptoms – particularly for systemic symptoms

such as chills, fatigue, muscle aches, and body aches – compared
Frontiers in Immunology 10
with unvaccinated participants. A lower magnitude and quicker

decline of SARS-CoV-2 viral load has previously been linked with

reduced COVID-19 disease severity (25, 26). We observed lower

mean viral loads in vaccinee nasopharyngeal swabs and saliva
B

C

A

FIGURE 7

Illness visit day 1 CD8+ titers display strong negative correlations with SARS-CoV-2 virologic outcomes. Scatterplot analysis depicting the
relationship between (A) SARS-CoV-2 viral load in nasopharyngeal swabs (B) SARS-CoV-2 viral load in saliva samples, and (C) duration of saliva
viral shedding (y-axes) and illness visit day 1 spike-specific CD8+ T cell frequencies (x-axes) in vaccinees and placebo recipients. Blue and red
shading denotes 95% confidence limits. Dotted line denotes 95% prediction limits.
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samples compared with those from placebo recipients across all

illness visit timepoints and a shortened duration of viral shedding,

supporting the symptomologic profile of disease attenuation in

vaccinees. Viral loads in samples from early illness visits were lower

in vaccinees versus placebo recipients overall, and for the ancestral

SARS-CoV-2 virus and the Alpha variant. Collectively, these data

suggest that the recall response following AZD1222 vaccination

enables vaccinees to exert quicker and overall greater control of

breakthrough infections than the unvaccinated and are consistent

with similar analyses of breakthrough infection in other COVID-

19 vaccinees (11, 27, 28).

ILL-D1 spike-binding and nAb titers in vaccinees were

comparable to peak titers observed post-primary series (13).

Median spike-binding and nAb titers were higher than those

observed in placebo recipients across all timepoints as

documented in other serological studies of breakthrough

infection (29, 30). We observed differences in the kinetics and

magnitude of anti-SARS-CoV-2 nucleocapsid antibody

responses between vaccinees and placebo recipients. We

hypothesize these differences may be due to effective anti-spike

memory responses resulting in lower viral loads in vaccinees

later in the illness period, thus attenuating their exposure to

nucleocapsid antigen compared with placebo recipients.

Additionally, spike-specific memory B cells would be more

numerous than naïve lymphocytes in vaccinees and would be

activated by lower antigenic thresholds with affinity matured

memory B cells potentially outcompeting naïve B cells for T

follicular helper cell stimulation (31, 32).

Real-world serological studies have demonstrated that spike-

binding antibody titers begin to wane as early as 4–6 months

post-primary series vaccination (33, 34). ILL-D1 spike antibody

titers were lower in vaccinees who were 60–120 days and

>120 days post-second dose primary series. However,

immunological waning did not affect the overall magnitude or

kinetics of the recall response following AZD1222 vaccination,

with similar overall responses seen by the end of the illness

period regardless of interval since primary series vaccination –

potentially enabling longer intervals between booster doses.

These data could provide important insights to inform policy

decisions on further immunization campaigns.

ILL-D1 spike-binding and nAb IgG responses inversely

correlated with virologic outcomes, with moderate correlations

observed for viral shedding titers and for the duration of shedding

in saliva – particularly in vaccinees. As SARS-CoV-2 is

transmitted via salivary droplets (35), these findings underscore

the importance of vaccination in limiting onward transmission.

Induction of oronasal anti-spike IgM, IgG, and IgA has been

observed following natural SARS-CoV-2 infection (36–41), with

several studies suggesting that secretory IgA levels inversely

correlate with susceptibility to breakthrough infection (30, 40,

42). We have previously examined nasal immunogenicity

following AZD1222 vaccination in a separate exploratory

analysis (22), therein we observed that intramuscular AZD1222
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vaccination elicits anti-spike IgG responses in nasal epithelial

lining fluid (NELF), likely reflecting transudation of serum IgG

to the nasal mucosa. AZD1222 vaccinees who experienced

breakthrough infections displayed robust anamnestic IgG

responses, which correlated with reduced viral loads and

durations of viral shedding in saliva. Although we and others

have observed transient increases in NELF IgA levels from

vaccinees with prior SARS-CoV-2 infection (22, 41, 43),

intramuscular vaccination with adenovirus- and mRNA-based

COVID-19 vaccines does not appear to induce anamnestic NELF

IgA responses in SARS-CoV-2-seronegative vaccinees despite

eliciting IgA responses in serum (43–45). These findings suggest

that different approaches (e.g., use of adjuvants, other delivery

routes) will be required to improve mucosal immunogenicity for

currently licensed COVID-19 vaccines (46). nAb titers have

previously been proposed as a SARS-CoV-2 correlate of

protection based on the reduced vaccine efficacy observed

against symptomatic Beta and Omicron VoC infection, the

restoration of waning vaccine efficacy by booster doses, and

insights gained from serological studies of convalescent

individuals and COVID-19 vaccinees (47–53). In vitro serum

testing demonstrated the breadth of nAb response elicited by

primary series AZD1222 vaccination across contemporary VoC

with expected reductions for SARS-CoV-2 Beta and Omicron

variants (54). These nAb evasive properties, coupled with waning

immunity over time, could lead to an increased frequency of

breakthrough infections mediated by Omicron. However, studies

of related coronaviruses SARS-CoV-1 andMiddle East respiratory

syndrome coronavirus (MERS-CoV), and the enduring protection

against Beta- and Omicron-mediated severe disease in vaccinees

(6, 55), suggest that the cellular immune response is an equally

important mediator of COVID-19 disease severity (56–59).

Frequencies of spike-specific CD4+ and CD8+ T cells were

enhanced in vaccinees compared to placebo recipients at ILL-

D1, likely due to pre-existing memory cells in vaccinees.

Surprisingly, these enhanced responses were maintained 2

weeks post-ILL-D1. It is possible that vaccinee spike-specific

memory T cells continued to expand over this period, however,

it is also likely that the addition of de novo spike-specific CD4+

and CD8+ T cells contributed to this disparity. We

demonstrated that at ILL-D1 nucleocapsid-specific CD4+ and

CD8+ T cell responses were equivalent between vaccinees and

placebo recipients indicating that AZD1222 vaccination did not

impact the de novo antiviral response. As studies of SARS-CoV-

1 suggest that nucleocapsid-specific T-cell responses can persist

for up to 17 years post-infection, and can potentially provide

protection against other betacoronaviruses (57), it is

encouraging that vaccinees’ nucleocapsid-specific T-cell

response is not majorly impeded by prior spike-directed

immunological memory. Therefore, AZD1222 vaccination

leads to a combined anamnestic and de novo T cell response

which gives rise to faster, stronger antiviral immunity following

breakthrough infection.
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Vaccinee T cells displayed a greater proportion of

polyfunctional markers compared with placebo recipients.

Polyfunctional T cells are most abundant in individuals with

mild COVID-19 (25) and are proposed to impede the

development of moderate and severe disease. Curiously, a

proportion of spike-specific CD4+ T cells in vaccinees and

placebo recipients expressed CD154+ in the absence of canonical

Th1 cytokines (although the proportion was higher in placebo

recipients) indicating that they may perform other undetected

antiviral effector functions such as cytotoxicity (60, 61).

One limitation to this study is that data were obtained prior

to and during a global SARS-CoV-2 Alpha variant wave and thus

breakthrough infections were caused by circulating SARS-CoV-2

variants that are no longer VoCs. Would the vaccinees have been

imparted with a similar antiviral cellular advantage had they been

infected by an Omicron variant? We and others have observed

that primary series AZD1222 vaccination induces durable,

diverse T-cell responses with minimal viral escape from VoC

including Omicron BA.1 (18, 62). However, it was still unknown

whether these diverse T-cell responses were maintained following

breakthrough infection. In this study we showed that spike-

specific T cells from vaccinees can recognize ancestral and

Omicron BA.1 variants equivalently.

Cellular immune responses inversely correlated with virologic

outcomes, which is in line with observations that effective viral

clearance by cellular immunity correlates with milder COVID-19

disease severity (63, 64). Stronger correlations with reduced viral

titers in saliva were observed in vaccinees compared with placebo

recipients, underscoring the role of vaccination in limiting onward

SARS-CoV-2 transmission. Our data supports the hypothesis that

ILL-D1 T-cell responses display stronger correlations with

virologic outcomes than nAb levels due to differential kinetics of

the cellular and humoral response following breakthrough

infection as demonstrated by the high level of ILL-D1 CD4+

and CD8+ T-cell response observed in vaccinees compared with

placebo (CD4+ 93% versus 50%; CD8+ 67% versus 25%). Others

have observed CD8+ T cells as early as 1 day post-symptom onset

in unvaccinated individuals (65) and the rapid induction of CD4+

and CD8+ T-cell responses within 1 week of symptom onset has

been associated with milder COVID-19 disease (66). Preliminary

estimates of the longevity of cell-mediated immunity to SARS-

CoV-2 have been documented by others following vaccination

(67) and natural infection (68, 69). Although the longevity of cell-

mediated immunity to SARS-CoV-2 is currently undetermined, T

cells from convalescent individuals following SARS-CoV-1 (57)

MERS-CoV (56) infection suggest that cellular responses are

robust and can persist for several years following infection.

Limitations of this analysis include the low numbers

of participants >65 years of age who experienced breakthrough

infection, and the small sample size for the T-cell correlative

analyses. As described in Sobieszczyk et al. (21), we

have previously observed evidence of under-reporting of non-

study COVID-19 vaccination in the placebo arm. As participants
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aged ≥65 were among the first groups who were eligible to

receive a non-study COVID-19 vaccination, this may in part

explain the increased spike-binding and nAb responses we

observed in this cohort of the placebo group during the

serology analyses.

In summary, breakthrough infection in AZD1222 vaccinees

was characterized by a lower symptom burden, lower viral loads,

and more robust humoral and cellular responses compared with

unvaccinated participants. Our findings are intriguing in light of

other studies with vaccinees who received primary series

mRNA-based COVID-19 vaccines, wherein a similar

attenuated disease profile with reduced viral loads (11, 27, 28)

and robust humoral (29, 30, 70) and cellular immune responses

(70–72) have also been observed following breakthrough

infection. While direct comparisons between studies is

confounded by differences in time since breakthrough

infection, circulating VoCs, and study design, these studies

demonstrate a consistent pattern of disease attenuation in

vaccinated individuals.

Although sample numbers were limited, cellular immune

responses displayed strong inverse correlations with viral

endpoints upon breakthrough infection, emphasizing the

importance of cellular immunity in protective immune

responses against COVID-19. Limiting SARS-CoV-2 viral

transmission is a key step to overcoming the COVID-19

pandemic. Our data also indicate that the induction of T-cell

recall responses early following breakthrough correlated with

reduced viral loads in saliva compared to unvaccinated

individuals. Of note, COVID-19 vaccines designed using the

ancestral SARS-CoV-2 spike protein continue to confer

protection against severe disease, likely arising from the

conservation of T-cell epitopes in previous and contemporary

VoCs (62, 73–77). This enduring protection – despite an increase

in breakthrough infections – has led to a new era of “hybrid

immunity” , which will have ramifications for future

immunization strategies as new antigenically distinct

SARS-CoV-2 VoCs continue to evolve (78). Collectively,

these observations underscore the central and essential role

of vaccination in attenuating COVID-19 disease, limiting

onward SARS-CoV-2 transmission, and mitigating the

COVID-19 pandemic.
Materials and methods

Study design

As previously reported (13, 21), NCT04516746 was designed

as a double-blind, placebo-controlled, phase 3 study of the safety

and efficacy of 28-day primary series AZD1222 for the

prevention of symptomatic COVID-19 in participants ≥18

years of age whose conditions were medically stable and who

were at increased risk for SARS-CoV-2 infection. Participants
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were recruited from 88 sites in the United States, Chile,

and Peru. The study was conducted in accordance with the

principles of the Declaration of Helsinki and the International

Council for Harmonization Good Clinical Practice guidelines.

All participants provided written informed consent

before enrollment.

Study participants were randomly assigned in a 2:1 ratio to

receive two injections of AZD1222 (5×1010 viral particles), or

saline placebo administered 4 weeks apart on days 1 and 29

(−3 to +7 days). Randomization was stratified according to age

(≥18–64 years and ≥65 years), with a target of ≥25% participants

being ≥65 years of age.
Qualifying COVID-19 symptoms for
initiating illness visits

Study participants who experienced any duration of fever,

shortness of breath, difficulty breathing, ≥2 days of chills, cough,

fatigue, muscle aches, body aches, headache, new loss of taste,

new loss of smell, sore throat, congestion, runny nose, nausea,

vomiting, or diarrhea were requested to contact their study site

to initiate illness visits (13, 21).
Illness visits

All participants with qualifying symptoms underwent an

initial illness visit for confirmatory SARS-CoV-2 RT-PCR

testing and provided nasopharyngeal swabs, self-collected

saliva samples (US-sites only), sera, and PBMCs (select-sites

only) for analysis. Participants were also trained to operate an

illness e-Diary to document their symptoms (Supplemental

Methods). Only participants with confirmed SARS-CoV-2

infection continued the full 28-day illness visit course, which

comprised an “at home” period with self-collection of saliva

samples on days 3, 5, 8, and 11, and additional site-visits with

collection of nasopharyngeal swabs, saliva samples, sera, and

PBMCs (day 14 illness visit only) on days 14, 21, and 28. Some

saliva samples were collected at home based upon investigator

preference. If a participant had multiple sets of illness visits, the

first set of illness visits with positive RT-PCR test result was used

for the summary.
Illness e-Diary responses

Participants were trained by site staff on how to record their

symptoms in an illness e-Diary during the day 1 illness visit.

Participants who tested positive for SARS-CoV-2 continued

recording their symptoms until symptom resolution or until
Frontiers in Immunology 13
the day 28 illness visit. Site staff monitored the health status of

participants via Illness e-Diary responses and called participants

as needed based on their responses.
Illness visit sample availability

Not all participants contributed data at every illness visit. Of

the 380 participants (AZD1222, n=177; placebo, n=203) with

symptomatic infection, nasopharyngeal swabs, and saliva samples

from 201 (AZD1222, n=97; placebo, n=104) and 222 (AZD1222,

n=89; placebo, n=133) participants, respectively, were available for

virologic assessments, sera from 323 (AZD1222, n=151; placebo,

n=172) participants were analyzed for anti-SARS-CoV-2 serologic

responses, and PBMCs from 47 (AZD1222, n=15; placebo, n=32)

participants were analyzed by ICS to evaluate SARS-CoV-2 spike-

specific CD4+ and CD8+ T-cell responses.
SARS-CoV-2 virologic assessments

As previously described (13, 21), SARS-CoV-2 viral load was

assessed in nasopharyngeal swabs and saliva samples using the

TaqPath™ SARS-CoV-2 RT-PCR Assay (ThermoFisher

Scientific, Waltham, MA, USA). Nasopharyngeal swabs were

analyzed by Labcorp, Indianapolis, IN, USA, while saliva

samples were analyzed by Infinity Biologix, Rutgers, NJ, USA.

SARS-CoV-2 genomic assessments are detailed in full in

Supplemental Methods. Assessments of viral titer and

sequencing were only performed on participants from whom

sample was available after the completion of a central RT-PCR

assay, thus limiting the availability for results in all participants.
Anti-SARS-CoV-2 serology analyses

Serum anti-SARS-CoV-2 spike-binding and nucleocapsid

IgG antibody titers were tested at PPD® in a validated

multiplex electrochemiluminescence serology assay using the

MSD V-PLEX® SARS-CoV-2 Panel 2 (IgG) as outlined in (79).

nAbs were assessed in a validated lentivirus-based SARS-CoV-2

phenosense pseudovirus assay (Monogram Biosciences, South

San Francisco, CA, USA) as described previously (13). nAbs

titers are reported as the reciprocal of the serum dilution

conferring ID50 of pseudovirus infection.

Formulae to enable conversion from arbitrary units per

milliliter (AU)/mL to the WHO international standard

(National Institute for Biological Standards and Control

[NIBSC] 20/136) binding units (BAU/mL) and ID50 to the

WHO international standard (NIBSC 20/136) International

units (IU/mL) are detailed in Supplemental Methods.
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T-cell stimulation and analysis

An ICS assay was used to evaluate T-cell responses, as

previously described (18). Please refer to Supplemental Methods

for full details on T cell stimulation with SARS-CoV-2 spike

peptides, ICS antibody staining, and the flow cytometry gating

strategy used in these analyses.
Statistics

The analyses presented in this manuscript are restricted to

baseline-seronegative participants with PCR-confirmed SARS-

CoV-2 infection ≥15 days after dose 2 of AZD1222 or placebo

per the protocol definition of breakthrough infection (13).

Definitions of the study populations (i.e., the FVS and

immunogenicity analysis set [IAS]) used to compile the

participant demography (Supplemental Table 2) and participants

with illness visits e-Diary data (Figure 1; Supplemental Table 3)

tables are included in Supplemental Material. For ethical reasons,

study participants could be unblinded and receive non-study

COVID-19 vaccinations once available through emergency-use

authorizations. The censoring implications of allowing

participants to receive non-study COVID-19 vaccinations are

detailed in Supplemental Methods GMTs were calculated and

summarized at each illness visit for viral load assessments in

nasopharyngeal swabs and saliva samples, and for anti-SARS-

CoV-2 spike-binding, neutralizing and nucleocapsid antibodies in

AZD1222 and placebo groups. SARS-CoV-2 spike-binding,

neutralizing, and nucleocapsid antibodies were also assessed by

participant age and time since second dose of primary series. GMT

endpoints were analyzed on the natural log scale by separate

ANOVA models including treatment and age as categorical

covariates. On the log scale, the models were used to estimate a

mean response for the vaccine and control groups and the

difference (vaccine – control), with corresponding 95%

confidence limits. Descriptive statistics for GMTs included the

number of participants, geometric mean, 95% CI, minimum, and

maximum. A GMT was calculated as the antilogarithm of S(log
base 2-transformed titer/n), i.e., as the antilogarithm transformation

of the mean of the log-transformed titer, where n is the number of

participants with titer information. The 95% CI was calculated as

the anti-logarithm transformation of the upper and lower limits for

a two-sided CI for the mean of the log-transformed titers.

SAS 9.4 procedure SGPANEL was used to create the scatter

plots for the correlative analyses. The REG statement generated

the fitted regression line along with confidence limit intervals

(CLI) and confidence limit for the mean (CLM) options to create

the prediction limits and confidence limits respectively.

Informal comparisons between groups were done by post-

hoc two-tailed Mann-Whitney tests and categorized as: not

significant (NS), p>0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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Study approval

The protocol and amendments for this trial (ClinicalTrials.gov

number, NCT04516746) were approved by the ethics committee

or institutional review board at each center, and the trial was

conducted in compliance with the principles of the Declaration of

Helsinki and the International Council for Harmonization Good

Clinical Practice guidelines. Prior to enrolment all participants

provided informed consent.
Data availability statement

Data associated with this study are available in the main text

or the supplementary materials, excluding data underlying the

clinical findings. Data underlying the clinical findings described

in this manuscript may be requested in accordance with

AstraZeneca’s data sharing policy described at https://

astrazenecagrouptrials.pharmacm.com/ST/Submission/

Disclosure. AstraZeneca Group of Companies allows researchers
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data request platform.
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provided their written informed consent to participate in

this study.
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