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Ischemic stroke is a major cause of death and disability around the world.

However, ischemic stroke treatment is currently limited, with a narrow

therapeutic window and unsatisfactory post-treatment outcomes. Therefore, it

is critical to investigate the pathophysiological mechanisms following ischemic

stroke brain injury. Changes in the immunometabolism and endocrine system after

ischemic stroke are important in understanding the pathophysiological

mechanisms of cerebral ischemic injury. Hormones are biologically active

substances produced by endocrine glands or endocrine cells that play an

important role in the organism’s growth, development, metabolism,

reproduction, and aging. Hormone research in ischemic stroke has made very

promising progress. Hormone levels fluctuate during an ischemic stroke.

Hormones regulate neuronal plasticity, promote neurotrophic factor formation,

reduce cell death, apoptosis, inflammation, excitotoxicity, oxidative and nitrative

stress, and brain edema in ischemic stroke. In recent years,many studies have been

done on the role of thyroid hormone, growth hormone, testosterone, prolactin,

oxytocin, glucocorticoid, parathyroid hormone, and dopamine in ischemic stroke,

but comprehensive reviews are scarce. This review focuses on the role of

hormones in the pathophysiology of ischemic stroke and discusses the

mechanisms involved, intending to provide a reference value for ischemic stroke

treatment and prevention.
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Introduction

Ischemic stroke is a neurological disorder caused by the disturbance of blood supply

to the brain (1). Globally, stroke was the third leading cause of death after neonatal

diseases and ischemic heart disease in 2019, accounting for more than half of new strokes

(2). Low-income countries bear a greater disease burden than high-income countries (2).
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From 1990 to 2019, the incidence of ischemic stroke has

increased significantly in China (3). Treatment options include

tissue plasminogen activator (tPA) and mechanical

thrombectomy (MT) (4). However, these are limited by the

narrow treatment-t ime window (4) . Endovascu lar

thrombectomy and intravenous thrombolysis (IVT) combined

with drug therapy have been popular treatment regimes in

recent years (5–7). However, less than 5% of acute ischemic

stroke patients receive IVT within the eligible treatment window,

and fewer than 100,000 MTs were performed worldwide in 2016

(8). Nevertheless, complications such as cerebral hemorrhage,

vessel re-occlusion, and cerebral edema arise after MT (9).

Therefore, further research is required on the prevention and

treatment of stroke.

Hypothalamus serves as an endocrine organ. It secretes

regulatory factors, acts on the pituitary anterior lobe cell, and

stimulates the secretion of hormones that control the endocrine

glands (10). Hormones transmit information to intracellular by

binding to specific receptors inside the cell or on the plasma

membrane (11). In the 1970s, there were some reports about the

role of dexamethasone in ischemic stroke (12, 13). However,

these reports were primarily negative, probably because the

concentration of dexamethasone at the site of action was too

small to achieve a therapeutic effect (14). Success can only be

expected if a sufficiently high dose of dexamethasone is

administered immediately after an ischemic attack (14). Since

the 1990s, the study of hormones in an ischemic stroke has

become popular. Insulin (15), estrogen (16), progesterone (17),

testosterone (18), arginine vasopressin (19), and thyroid

hormone (20) have been reported successively in ischemic

stroke, which gradually fills the gap of hormones in the field of

ischemic stroke research. Specific hormonal changes are a risk

factor for ischemic stroke (21). Moreover, ischemic stroke can

cause hormonal changes (22). Brain damage after stroke results

from a complex series of pathophysiological events like

excitotoxicity, oxidative and nitrative stress, inflammation, and

apoptosis (23). Our study describes the mechanism of the

hormones involved in the pathophysiological process of

ischemic stroke and gives ideas on the prevention and

treatment of ischemic brain injury.
Thyroid hormone and
ischemic stroke

Meta-analysis studies associate the thyroid hormone with

the prognosis of ischemic stroke (24). Patients with low initial

triiodothyronine (T3) are linked with worse acute ischemic

stroke outcomes (25). At the same time, serum thyroid

stimulating hormone levels are negatively correlation to the

risk of post-stroke patient fatigue in the acute phase and

follow-up assessment (26). Thyroid hormone improves
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neurological outcomes after experimental stroke through

different pathways, such as being anti-edema (27), promoting

the expression of neurotrophic factors (28), regulating neuronal

plasticity (29), and increasing adenosine triphosphate (ATP)

production (30). Simultaneously, reversing T3 (rT3) increases

neuronal survival after ischemia-reperfusion injury in rat models

since it reduces brain metabolism (31). Published review has

demonstrated that thyroid hormone-regulated genes are

associated with neuronal plasticity after ischemic stroke (32).

Recent data suggest that astrocytes are sensitive to T3, and their

response to T3 is related to their maturity, for a total of 117 genes

are regulated by T3 transcription (33, 34). Astrocytes play a

significant role in thyroid hormone deiodination (35), a process

affected by ischemic stroke (36). Type 2 iodothyronine

deiodinase (D2) is the primary source of plasma T3 in normal

thyroid function (37). In the astrocytes, D2 deiodinases T4 to

form T3, exerting thyroid hormone effects on other nerve cells in

the brain (38). The D2 mRNA expression was upregulated in the

ipsilateral striatum after 6h of rat middle cerebral artery

occlusion and disappeared after 24h (36). In the ipsilateral

cortex, the D2 mRNA was induced at 6h; increased at 24h and

decreased at 72h (36). A similar situation was found in the rat

traumatic brain injury, where the astrocytes’ D2 mRNA

expression was upregulated (39).

Retrospective studies show that Low T3 predicts poor

functional prognosis in patients with acute ischemic stroke

and is more significant in the elderly (40, 41). Further, T3

infusion promoted D2 gene expression in risk areas in cardiac

ischemia-reperfusion models (42). After T3 infusion, serum T3

levels in the tested risk area are the same as the basal level (42).

We hypothesize that ischemic stroke promotes D2 expression in

astrocytes, thereby promoting the deiodination of T4 to T3. T3

then promotes D2 expression, forming a positive feedback loop.

This cascade contributed to the recovery of T3 levels, and the

protective effect of T3 was exerted in ischemic stroke.
Thyroid hormone derivatives and
ischemic stroke

3-Iodothyroamine (T1AM) is a derivative of endogenous

thyroxine (43). T1AM is derived from the enzymatic digestion

and decarboxylation of T4 (43). Studies indicate that T1AM

biosynthesis depends on the sodium-iodine transporter and

thyroid peroxidase (44). In the mice’s intestinal tissues, T4

forms T1AM by decarboxylation of ornithine decarboxylase

and subsequent deiodination (45). In a mouse model, T1AM

reduced the infarct size by inducing hypothermia (46).

Meanwhile, T1AM was used as an antecedent treatment to

induce neuroprotection from subsequent ischemia (46).

Hypothermia is believed to be due to peripheral vascular

dilation and subsequent heat loss (47). T1AM induced tail
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vessel dilation in male mice through the hypothalamus signaling

pathway (47).

Hypothermia is a feasible treatment for stroke (48).

Preclinical studies have recognized the protective role of

hypothermia in ischemic stroke (49). Moderate hypothermia

reduces the inflammatory response Interleukin 1 beta (IL-1b)
and Tumor Necrosis Factors alpha (TNF-a), oxidative stress

(50), and energy consumption (51) after an ischemic stroke.

Recent progress has been observed in studies involving low

temperature combined with other neuroprotective measures

(anesthetics, psychotropic agents, antibiotics, oxidative stress

scavengers) (52). Reducing the surface temperature to 35°C

was possible in conscious patients with acute ischemic stroke,

but cooling was associated with the risk of pneumonia (53).

Combining intra-arterial recanalization with isotonic saline

infusion (4°C) in the ischemic area using an angiographic

catheter reduced the ischemic area temperature by at least 2°C;

the body temperature decreased slightly (up to 0.3°C) (54). No

intracerebral complications associated with hypothermia were

observed (54). Intravascular hypothermia circumvented the core

hypothermia and reduced the risk of pneumonia associated with

systemic hypothermia. Preclinical studies indicate the protection

offered by T1AM on ischemic stroke by inducing hypothermia.

However, further studies are required to determine the

clinical utility.
Growth hormone and
ischemic stroke

Additional clinical investigations are required to conclude

the effects of growth hormone (GH) on ischemic stroke. Patients

with a stroke are at risk for growth hormone deficiency (55).

Agonistic analogs of growth hormone-releasing hormone are

beneficial in mouse ischemic stroke (56). Low GH is common

after severe ischemic stroke patients, and GH may be related to

the prognosis of ischemic stroke (57).
Growth hormone improves motor
function after ischemic stroke

Growth hormone (GH) has a nutritional effect on the nerves

(58). It functioned as an effective neurotrophic factor for the inner

ear neurons and significantly increased neurite extension and

neuronal branching of rat spiral ganglion cells (59). It also

repaired nerves (60). In the chronic denervation injury model,

GH showed robust nerve regeneration through axon density, axon

diameter, and myelin sheath thickness (61). At the same time, GH

improved muscle innervation and reduced muscle atrophy (61).

Randomized controlled trials demonstrated that human growth

hormone improves quadriceps atrophy and deficiency drop after

Anterior Cruciate Ligament (ACL) reconstruction and increases
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quadriceps strength in patients (62). GH improved motor

function after an experimental stroke, as demonstrated by the

cylinder and grid walk tests (63). This is associated with GH

promoting increased cell proliferation, neurogenesis, synaptic

plasticity, and angiogenesis within the peri-infarct region (63).

GH also increased insulin growth factor 1 (IGF-1). After GH

treatment, a significant positive correlation existed between

plasma IGF-1 levels and cylinder task performance (63). In an

ischemic stroke rat model, IGF-1 plays multiple roles in increasing

sensorimotor function, improving cognitive function, and

reducing infarct size (64–66). Patients with higher serum IGF-1

were significantly associated with a lower risk of ischemic stroke

(67). Compared with the same shuttle vector, female rats carrying

the IGF-1 gene exhibited better sensorimotor function in the early

and late acute stages of stroke (68). In conclusion, GH improves

motor function after stroke through its neuromuscular nutrition

and repair function. Additionally, it improves motor function by

increasing IGF-1.
Growth hormone improves cognitive
function after ischemic stroke

The prevalence of cognitive impairment in stroke survivors

ranges from 20% to 80%, depending on country, ethnicity, and

diagnostic basis (69). Stroke was associated with a sharp decline

in cognitive performance that accelerated and continued over

the next few years (70). At the same time, patients with cognitive

impairment have a higher risk of future stroke than those with

normal cognitive function (71). Post-stroke cognitive

impairment as an independent predictor of ischemic stroke

recurrence (72). Hippocampal atrophy was related to cognitive

impairment in Alzheimer’s disease (73), Lewy’s dementia (74),

small vascular disease (75), type 2 diabetes (76), and Parkinson’s

dementia (77). The hippocampal atrophy rate was higher in the

stroke participants than in the control group, and the

hippocampal atrophy rate was higher in the early stage than in

the late stage (78). Also, more severe atrophy was observed in the

CA1 region of the hippocampus and caudal hippocampus in

ischemic stroke patients (79). However, a study demonstrated

that long-term cognitive impairment in ischemic stroke patients

was associated with hippocampal deformation, not atrophy (80).

Resting-state functional magnetic resonance imaging has shown

that reduced hippocampal-subparietal lobule connectivity is

associated with cognitive impairment in patients with ischemic

stroke (81). In summary, cognitive impairment after ischemic

stroke was closely related to the hippocampus.

GH therapy may play a role in improving cognitive function

(82). In patients with an isolated growth hormone deficiency,

white matter abnormalities in the corpus callosum and

corticospinal tracts and reduced thalamic and globus pallidus

volumes are associated with deficits in cognitive function and

motor function performance (83). In older rats, age-related
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reductions in growth hormone lead to cognitive decline, partly

through changes in short-term hippocampal plasticity (84). GH

treatment enhanced the regulation of excitatory synaptic

transmission and plasticity in the aged rat hippocampus by

activating N-methyl-D-aspartate receptor (NMDAR)-

dependent basal synaptic transmission and alpha-amino-3-

hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPA-R)-

dependent basal synaptic transmission, which altered the course

of cognitive decline (85). GH increases the density of dendritic

spines in the hippocampus, thus strongly influencing

hippocampal plasticity and memory (86, 87). Randomized

controlled trials demonstrated the beneficial effects of

recombinant human growth hormone on cognit ive

impairment after stroke (88). Mice treated with GH after a

stroke had a more remarkable ability to complete paired

associative learning tasks (89). This ability was associated with

GH increasing the neurotrophic factors (IGF-1, Vascular

endothelial growth factor (VEGF)) and promoting synapses,

myelin, and brain vascular network formation (89). GH also

increased hippocampal-dependent visual discrimination in male

mice after experimental cortical stroke, which was associated

with GH stimulation of neural progenitor cell proliferation,

increased synaptic plasticity in the hippocampus, and

increased plasma IGF-1 levels (90). Thus, GH improved

cognitive function after ischemic stroke via the hippocampus.
Sex hormones and ischemic stroke

Testosterone and ischemic stroke

Serum testosterone was reduced after acute ischemic stroke in

men, and total testosterone negatively correlated with infarct size

(18). Low testosterone levels were associated with an increased risk

of ischemic stroke in older men (91, 92) and possibly higher all-

cause mortality after acute ischemic stroke (93). Also, anger

tendencies and emotional incontinence after ischemic stroke

were related to low testosterone levels (94). However, in the

pediatric population, increased testosterone elevates the risk of

stroke (95). The effect of testosterone on ischemic stroke was age-

dependent. Testosterone exacerbated ischemic brain injury in

young adult mice, while testosterone supplementation reduced

cortical infarction in middle-aged mice (96). This protection was

mediated by androgen receptors (AR) and unrelated to the brain

aromatase (96). AR expression was reduced after cerebral ischemia,

and overexpression of AR reduced the infarct size after ischemic

stroke (97). Interestingly, exposure to testosterone during neonatal

life in adult male rats increased their resistance to ischemic stroke

(98). The upregulated testicular aromatase expression increased the

serum estradiol levels, which exerts a protective effect by increasing

X-linked apoptosis inhibitors (98). Also, supplementation of

testosterone in middle age rats to the normal physiological levels

of young male rats reduced infarcts (96).
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However, testosterone can be detrimental to ischemic stroke.

Dihydrotestosterone (DHT) suppresses peripheral immunity

after ischemic stroke (99). DHT eliminates the presence of

immature neurons in the ischemic region and reduces the

repair of damaged tissue after ischemia (100). More research is

required for applying testosterone replacement therapy (TRT) to

ischemic stroke (101). In older men with low testosterone levels,

TRT increases the risk of cardiovascular events, especially in the

first two years of use (102). However, TRT reduced the risk of

cardiovascular outcomes in androgen-deficient men during a

median follow-up of 3.4 years (103). Further research on

testosterone is warranted, including its therapeutic effects on

different age groups, the mechanism of its protection, and its role

as a prognostic predictor of ischemic stroke.
Estrogen and progestin with
ischemic stroke

The Women’s Health Initiative (WHI) showed that estrogen

(E) plus progestin (P) increased the risk of ischemic stroke in

generally healthy post-menopausal women (104). However,

altering the route of hormone administration and the type of

hormone may remedy this drawback. Encouraging hormone

therapy users to switch from oral to transdermal estrogen and

from synthetic to micronized progesterone reduced the risk of

ischemic stroke by ≤ 3000 per million hormone therapy users

per year (105). Meanwhile, using E and P in combination has

progressed in the preclinical study of ischemic stroke. Combined

E and P treatment reduced cortical infarct size in rats suffering

from ischemic stroke (106–108). Combined E and P treatment

inhibited ischemia-induced neuronal apoptosis by suppressing

Calpain-1 upregulation and caspase-3 activation in rat cortical

infarct areas (109). E plus P also reduced the extracellular

glutamate levels by inducing the glutamate transporter protein

(glutamate transporter 1 (GLT-1) and amino-acid transporters

(EAAT3)) expression in an ischemic stroke rat (110). The

neuroprotective role of E and P in stroke may be due to

reduced phosphorylation of the heat shock protein 27 (HSP27)

in rat ischemic areas (111). 17b-estradiol plus P displayed anti-

inflammatory effects by selectively reducing absent in melanoma

2 (AIM2) and NLR family CARD domain-containing protein 4

(NLRC4) inflammasomes in primary cortical astrocytes and

microglia after ischemic stroke in rats (112).

After transient middle cerebral artery occlusion in rats, E

plus P regulated chemokine-microglia/lymphocyte interactions,

a mechanism associated with cytoprotection (113). E plus P

attenuated the expression of ischemic stroke-induced

proinflammatory chemokines chemokine ligand 2 (CCL2),

chemokine ligand 5 (CCL5), and interleukin 6 (IL-6) (113).

Moreover, the local expression of microglia/macrophage/

lymphocyte markers (ionized calcium -binding adapter

molecule 1(Iba-1), cluster of differentiation 8 (CD8), and
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cluster of differentiation 3 (CD3)) in the penumbra areas was

significantly reduced after hormone treatment (113). In a rat

model, E plus P indirectly regulated pro-apoptotic and

inflammatory gene translation by selectively inhibiting miR-

223 and miR-214 and further enhancing miR-375 (114).

Further, few studies report the relation between the

estradiol/testosterone ratio and ischemic stroke, and they are

less optimistic. Increased estradiol and decreased testosterone

levels were associated with acute ischemic stroke in male patients

(115). For post-menopausal women with a body mass index < 25

kg/m2, a higher estradiol/testosterone ratio was associated with a

significantly higher risk of ischemic stroke among the patients

currently treated with exogenous hormones (116).
Oxytocin and ischemic stroke

Clinical studies of oxytocin (OT) use in ischemic stroke are

scarce, but experimental studies have robust progression

(Figure 1). OT reduces brain damage after experimental stroke

(117–119). Compared with the ischemia control group, OT

significantly reduced the infarct volume in the cerebral cortex

and striatum (117), thus, improving the spatial memory function

(118). Meanwhile, OT pretreatment significantly reduced the

number of hippocampal neuronal deaths after focal cerebral
Frontiers in Immunology 05
ischemia (119). The protective effect of OT on brain injury after

ischemic stroke was correlated with the increased expression of

VEGF, Aquaporin 4 (AQP4), and Brain-derived neurotrophic

factor (BDNF) proteins, reduced leakage from the blood-brain

barrier (BBB), decreased inflammatory mediators TNF-a and

IL-1b, and reduced cell death and apoptosis (117, 118). In

addition, OT ameliorated ischemic stroke by attenuating

Calpain-1 (117). Calpain-1 and caspase-3 were positively

correlated in ischemic stroke, suggesting that down-regulating

calpain-1 inhibited apoptosis (109). Calpain-1-specific inhibitor

PD151746 promoted phosphorylated signal transducer and

activator of transcription 3 (p-STAT3) expression and was

auxiliary to the proliferation and functional recovery of neural

precursor cells in the subventricular zone after stroke (120).
Prolactin and ischemic stroke

Studies on prolactin (PRL) and ischemic stroke are scarce,

but reports on brain injury (121) and neuroprotection (122, 123)

have seen some advances. PRL mainly exerts neuroprotective

effects by inhibiting excitatory toxicity (124, 125) and

neuroinflammation (126, 127). In the cerebral ischemia model,

PRL reduced the cerebral infarction area and cerebral water

content and restored the physiological status (128). Transient
FIGURE 1

Schematic illustration of oxytocin and ischemic stroke. OT decreased ischemia-induced Caipain-1 overexpression to inhibit apoptosis.
Pretreatment with OT before ischemic stroke promoted the expression of BDNF and VEGF. OT suppressed inflammation (TNF-a and IL-1b) by
inhibiting the expression of NF-kB. These are beneficial for the recovery of cognitive function after an ischemic stroke. In addition, OT
attenuated blood-brain barrier leakage and cerebral hematoma by promoting the expression of AQP4, which may be associated with the
inhibition of NF-kB. BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor; TNF-a, tumor necrosis factor-a; IL-1b,
Interleukin-1 beta; AQP4, Aquaporin 4. The illustration was supported by BioRender (https://biorender.com).
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ischemic attack increased PRL concentrations and increased

plasma PRL levels were significantly linked with platelet P-

selectin (129, 130). Platelet surface P-selectin expression was

associated with a worsening clinical course in acute ischemic

stroke (131). These results suggested that patients with high

prolactin levels after ischemic stroke may have a worse

prognosis. More research is needed to investigate the prolactin

role in ischemic stroke.
Glucocorticoid and ischemic stroke

Many patients have increased cortisol after acute ischemic

stroke, which negatively impacts organ function (132). Ischemic

injury to neurons in the rat brain was enhanced by exposure to

high physiological titers of glucocorticoid (GC) (133). Pre-

hospital GC use increased the 30-day mortality in patients

with ischemic stroke (134). Also, the current use of GC

increased the risk of myocardial infarction and venous

thromboembolism in the first year of ischemic stroke (135).

However, a clinical study also indicated an improved level of

consciousness in patients with acute ischemic stroke associated

with cerebral edema after giving dexamethasone (136). GC

resistance was associated with poorer functional outcomes

after an ischemic stroke (137).
GC and ischemic stroke

Many studies suggest that GC is involved in immune

regulation in ischemic stroke (138, 139). Intranasal

dexamethasone reduced mortality, neurological deficits, infarct

size, blood-brain barrier permeability, inflammatory cell

infiltration, and glial activation in mice after ischemic stroke

(140). In experimental focal cerebral ischemia, dexamethasone

was neuroprotective by inhibiting the inflammation-dependent

NF-kB-p65 pathway, including the inhibition of inducible nitric

oxide synthase (iNOS), Cyclooxygenase-2 (COX-2), TNF-a, and
IL-1b expression (141). At the same time, inhibiting the

expression of glucocorticoid receptors (GR) significantly

increased the expression of proinflammatory cytokines (IL-6,

IL-1b, and TNF-a) and decreased the brain-derived

neurotrophic factor/pro-myosin receptor kinase B (BDNF/TrkB)

signaling in the mice brain, which can increase the infarct size and

worsen neurobehavioral deficits in ischemic stroke (142).

However, elevated cortisol levels were negatively correlated with

blood lymphocyte counts in 20 patients with acute stroke (143). In

mice, stroke-induced glucocorticoid release significantly triggered

defective B-lymphocyte production (143). Blocking GR prevented

post-ischemic lymphocyte reduction (144). Plasma corticosterone

levels were elevated in diabetic mice after ischemic stroke (145).

Using glucocorticoid synthesis inhibitors reduced the infarct size

and IL-6 expression (145). Glucocorticoids are anti-inflammatory
Frontiers in Immunology 06
and immunosuppressive. Hence, treating ischemic stroke with

glucocorticoids is contradictory and complex. More research is

needed to maximize the protection of glucocorticoids in

ischemic stroke.
Parathyroid hormone and
ischemic stroke

Parathyroid hormone (PTH) and 25-dihydroxyvitamin D levels

together can make important contributions to determination of

stroke risk (21). PTH levels were elevated in patients with acute

ischemic cerebrovascular events (22). In peritoneal dialysis patients,

lower serum PTH levels were significantly associated with an

increased risk of stroke (146). PTH was beneficial in ischemic

stroke. PTH promoted the expression of neuroangiogenesis factors

and increased angiogenesis around the infarction after focal cerebral

ischemia (147).

Additionally, PTH promoted the migration of bone marrow

stem cells (148). Bone marrow-derived endothelial progenitor

cells and endothelial stem cells increased in the peripheral blood

of stroke mice after PTH treatment (147). These cells highly

expressed the migratory chemokine stromal cell derived-factor 1

(SDF-1), which promoted the migration of neuroblasts from the

subventricular region to the ischemic cortical region and increased

the number of cortical neurons around infarction (147).

Meanwhile, parathyroid hormone-related protein (PTHrp)

reduced the cortical infarct area in ischemic stroke animals by

vasodilating and increasing cerebral blood flow (149). More

research is required on parathyroid hormone and ischemic stroke.
Catecholamines and ischemic stroke

Catecholamines have been linked to an increased risk of

infection after stroke (150). Catecholamines increase levels of

the pro-inflammatory cytokines IL-1b and Interferon-g (INF-g)
and decrease levels of the anti-inflammatory cytokine Interleukin

10 (IL-10) after experimental stroke, an immunosuppressive state

that lowers the threshold for infection and increases the risk of

infection (151). Dopamine release occurs in the early stage of

ischemia, and the amplitude of dopamine release correlates with

the duration of ischemic injury (152). Reperfusion induces more

striatal dopamine release (152). Levodopa is a dopamine

precursor, and studies have shown that levodopa is expected to

enhance motor recovery after stroke (153–159). Levodopa also

enhanced post-stroke plasticity (160). The combination of

dopamine precursors significantly reduced the infarct size,

proinflammatory cytokine levels, oxidative stress levels, and

neurological deficits in the striatum of rats with cerebral

ischemia-reperfusion injury (161). Meanwhile, amantadine, a

drug promoting dopamine release, improved cognitive and

functional recovery after a stroke (162).
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b-adrenergic receptors and
ischemic stroke

Pharmacological inhibition of b-adrenergic receptors, but not
steroid inhibition, effectively reduced infection and improved

clinical outcomes in experimental stroke (163). In a

retrospective series of studies, b-blocker use was associated with

reduced risk of early death in patients with ischemic stroke (164).

b-blocker was negatively associated with the incidence of

nosocomial pneumonia before and during the stroke (165). b1
adrenergic receptor of neutrophils is associated with migration

during increased inflammation, and b1 adrenergic receptor

blocking improves brain damage by targeting neutrophils (166).

The b-blocker carvedilol may protect the ischemic brain in the rat

by inhibiting apoptosis and attenuating the expression of TNF-a
and IL-1b (167). Interestingly, in stroke models, Augmented b2-
adrenergic signaling has also been reported as neuroprotective.

Unlike systemic administration, central administration of

norepinephrine lowers blood pressure and exerting anti-

inflammatory and neuroprotective effects (168). Increased b2-
adrenergic signaling after an experimental stroke typically inhibits

microglial/monocyte-derived macrophage response and reduces

the upregulation of pro-inflammatory and anti-inflammatory

cytokines (TNFa and IL-10) (169). In mice, increased b2-
adrenergic signaling after stroke inhibited post-stroke

pneumonia but increased post-stroke infarct size (170).
Dopamine receptors and ischemic stroke

Cerebral ischemia affects dopamine receptors in the striatum

(171, 172) and hippocampus (173). Ischemic dopamine release

in the striatum was associated with early transient changes in

dopamine receptor-mediated dopamine neurotransmission

(172). Cerebral ischemia reduced the number of dopamine D1

receptors (D1R) (171) and also their affinity for receptor ligands

(172). Cerebral ischemia slightly affects D2 receptors (D2R) in

the striatum for up to seven days (171). Subsequent studies have

shown that D2R continued to bind ligands in the first week after

cerebral ischemia, declining sharply from day 14 to day 28 (174).

These results suggested the critical role of D1R and D2R in the

recovery from ischemic stroke.
D1R and ischemic stroke

D1R activation inhibits the excitatory postsynaptic currents in

post-ischemic striatal neurons because it activates Cyclic

Adenosine Monophosphate (cAMP)-dependent protein A and

adenosine A1 receptors (175). Systemic D1R agonists

significantly reduced ischemia-induced striatum cell death after

ischemia (175). D1R in astrocytes was also associated with GNDF

expression. In the transient middle cerebral artery occlusion
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(tMCAO) model, adding selective D1R agonists increased GNDF

expression, while D1R inhibitors significantly reduced GNDF

expression (176). After 2h of ischemia stroke in rats, endogenous

tissue fibrinogen activator (tPA) increased in the region of BBB

injury, and intrastriatal D1R antagonists significantly reduced

ischemia-induced endogenous tPA upregulation and BBB injury

(177). Experimental stroke in the dorsolateral striatum induced

alcohol preference, enhancing glutamatergic energy input to D1-

neurons in the dorsomedial striatum (178). Inhibition of D1R

mitigated the stroke-induced increment in the self-intake of

alcohol (178).
D2R/D3R and ischemic stroke

Resident microglia do not express D2R in healthy brains, but

this population expresses D2R after cerebral ischemia (179).

Dopamine acts as a regulator of microglial function during

neuroinflammation, and the D2R/D3R agonist pramipexole

enhances nitrite secretion in response to proinflammatory

stimuli (179). The D2R agonist bromocriptine prevented

ischemia-induced neuron damage in the gerbil by preserving

superoxide dismutase (SOD) (180). In the middle cerebral artery

occlusion (MCAO) mouse model , Sino suppresses

neuroinflammation after ischemic stroke by upregulating D2R/

aB-crystallin (CRYAB) expression (181). Also, agonistic D2R

induces neurological recovery in ischemia/reperfusion injury

following rats via the mitochondrial pathway (182). Pramipexole

inhibited the transfer of cytochrome C from mitochondria to

cytosol, thereby inhibiting the mitochondrial permeability

transition pore (182). In the tMCAO rat model, Sumanirole

repaired mitochondrial dysfunction by reducing mitochondrial

reactive oxygen species production, increasing mitochondrial

membrane potential and the activity of protective mitochondrial

complexes and histological changes, thereby alleviating ischemic

injury (183). Meanwhile, Sumanirole reduced the infarct size,

restored behavioral changes, and promoted neuronal survival

(183). D2/D3 receptor activation was associated with ischemic

preconditioning (IPC), and IPC was beneficial against ischemic

reperfusion injury in mice (184). However, compared with D1R on

astrocytes, agonistic D2R on astrocytes did not affect the GNDF

levels (176).
Conclusion and future direction

Abnormal hormone levels are typical after an ischemic stroke.

Growth hormone and testosterone levels decrease while prolactin,

corticosterone, parathyroid hormone, and dopamine levels increase.

Also, hormone changes have an effect on the prognosis of ischemic

stroke (Table 1). Hormones are involved in various

pathophysiological mechanisms of ischemic stroke, including

cerebral edema formation, neuroplasticity regulation, neurotrophic
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factor formation, cell death reduction, apoptosis, inflammation, and

oxidative stress (Tables 2 and 3). It is essential to understand the role

of hormones in the pathophysiology of brain injury in ischemic

stroke for preventing and treating ischemic stroke.

Hormones, hormone derivatives, hormone receptors, and

hormone combinations should be the focus of future studies.
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Hormone research has significantly advanced in preclinical

studies of ischemic stroke, and most results are beneficial.

However, the use of hormones in the clinical management of

ischemic stroke is scarce, and the available results present a

contradictory picture because of the complexity of the brain

injury process in ischemic stroke. Recently, pyroptosis have
TABLE 2 Effects of hormones on ischemic stroke.

Hormone/
Hormone
derivative

Tissue/Cell data Mechanism Result Reference

T3 Brain animals Suppresses the expression of aquaporin-4 (AQP4) water
channels

Anti-edema and reduction of infarct
size

(27)

T3 Hippocampal
CA1 region

animals Increases the neurotrophic factors (BDNF, GDNF) Significantly improved learning and
memory

(28)

T3 Brain animals Homeostatic mechanisms regulating the excitability-inhibition
ratio in the post-ischemic brain

Enhanced recovery of lost neurological
functions

(29)

T3 Astrocytes animals Stimulates oxidation of fatty acids and increases the formation
of ATP

Increased astrocyte survival (30)

rT3 Brain animals Induces a hypometabolic state of the brain Reduced markers of neuron injury,
infarct size, and neurological deficits

(31)

T1AM Brain animals Induces hypothermia Less infarct area (46)

MR-409 Brain animals Enhances proliferation of neural stem cells
Inhibits apoptosis
Stimulates endogenous neurogenesis
Improves loss of neuroplasticity
Activates AKT/CREB and BDNF/TrkB pathways

Enhanced endogenous neurogenesis and
neuroprotection

(56)

GH Brain animals Increases cell proliferation, neurogenesis, synaptic plasticity,
and angiogenesis in the peri-infarct region

Decreased infarct size and
improved motor function

(63)

GH Hippocampus animals Increases GLUR1 receptor protein Enhanced hippocampal plasticity and
cognitive recovery

(90)

Testosterone dentate gyrus animals suppressed maturation of newborn neurons Reduced cellular repair in injured (100)

Estrogen and
progesterone

Cerebral
cortex

animals Up-regulates calpain-1 and activates caspase-3 Reduced neurological deficits and
infarct volume

(109)

Estrogen and
progesterone

Brain animals Increases the expression of GLT-1 and EAAT3 Increased behavioral scores and reduced
infarct volume reduced

(110)

Estrogen and
Progesterone

Brain animals Increases Hsp27 phosphorylation Decreased astrocytosis and increased
neuron survival

(111)

17b-estradiol and
Progesterone

Brain animals Selectively reduces AIM2 and NLRC4 in primary cortical
astrocytes and microglial cells

Decreased infarct sizes and neurological
impairments

(112)

17b-estradiol and
Progesterone

Cortices animals Attenuates proinflammatory chemokines CCL2, CCL5, and
interleukin 6
Significantly reduces local expression of microglia/
macrophage/lymphocyte markers (Iba1, CD68, and CD3)

Reduced cortical infarct area and
promoted the recovery of motor
sensory function

(113)

(Continued)
fro
TABLE 1 Effect of hormone changes on the prognosis of ischemic stroke.

Hormonal change data Prognosis Reference

Low initial T3 patients Worse acute ischemic stroke outcomes (25, 41)

Depressed TSH patients Higher risk of post-stroke fatigue (26)

Low testosterone (in older men) patients Increased risk of developing ischemic stroke (91)

Low testosterone patients Associated anger-proneness and emotional
incontinence

(94)

Increased testosterone (in the pediatric population) patients Elevated risk of stroke (95)

Lower iPTH (in continuous ambulatory peritoneal dialysis
patients)

patients Increased risk of stroke (146)
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TABLE 2 Continued

Hormone/
Hormone
derivative

Tissue/Cell data Mechanism Result Reference

17b-estradiol and
progesterone

Brain animals Inhibits the increase in the miR-375 target genes Bcl-2 and
RAD1
Reverses the miR-223 regulated target genes and reduces
NR2B and GRIA2

Indirect control of pro-apoptotic and-
inflammatory gene translation

(114)

Prolactin Brain animals Reduces the levels of the neurotransmitters, cerebral calcium,
and nitrate

Reduced cerebral infarct, brain water
content
Restored physiological conditions

(128)

Oxytocin Cerebral
cortex and
striatum

animals Decreases Calpain-1 expression
Reduces the apoptosis of neurons

Reduced infarct volume (117)

Oxytocin Brain animals Inhibits apoptotic and NF-kB signaling pathways and
increases the expression of VEGF, AQP4, and BDNF proteins

Reduced BBB leakage and infarct size
and improved spatial memory function

(118)

Oxytocin CA1, CA3,
and dentate
gyrus

animals Reduces cell death, apoptosis, and inflammatory mediators
TNFa and IL-1b

Reduced ischemic damage and
improved neurological function and
spatial memory

(119)

Dexamethasone Brain animals Inhibits NF-kB p65 expression
Suppresses the expression of iNOS, COX-2, TNF-a, and IL-
1b

Reduced infarct size and improved
neurological deficits

(141)

GR siRNA Brain animals Enhances the expression levels of proinflammatory cytokines
(IL-6, IL-1b, and TNF-a)
Suppresses BDNF/TrkB signaling

Increased infarction size and
neurobehavioral deficits exacerbated

(142)

PTH Brain animals Promotes the expression of nutrient regeneration factors
(VEGF, SDF-1, BDNF)
Induces the generation of blood vessels
Increases the migration and generation of nerve cells

Promoted recovery of sensory and
motor functions

(147)

PTHrP Cortex animals Dilates the arterioles and increases blood flow to the ischemic
area

Reduced cortical infarct size (149)

Levodopa Brain animals Expresses D1R, D2R, dopamine, and cAMP-regulated
neuronal phosphoproteins in areas around infarction in
astrocytes

Enhanced recovery of sensory and
motor functions

(154)

Levodopa Brain animals Down-regulates the Nogo-A-positive oligodendrocyte
number, Nogo-A, and Nogo-A receptor levels
Increases the number of oligodendrocyte transcription factor
2 positive cells

Increased plasticity (160)

Levodopa/
Carbidopa

Striatum animals Decreases proinflammatory cytokines levels and oxidative
stress

Ameliorated neurological deficits and
reduced infarct size

(161)
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TABLE 3 Mechanism of D1R and D2R/D3R agonists and antagonists on ischemic stroke.

Drug Agonist
or

antagonist

Tissue/Cell Mechanism data Result Reference

D1R D1R agonist Agonist Striatal Activates PKA and adenosine A1 receptors animals Reduced excitatory
synaptic transmission

(175)

(R)-(+)-SKF-38393
hydrochloride

Agonist Reactive
astrocytes

Upregulates GDNF levels animals Enhanced recovery of
lost brain function

(176)

SCH23390 Antagonist Brain Decreases ischemia-induced upregulation of
endogenous tPA

animals Reduced BBB injury (177)

D2/
D3R

Bromocriptine Agonist Hippocampal
CA1 neuron

Decreases copper/zinc superoxide dismutase and
manganese superoxide dismutase

animals Reduced neuronal
damage

(180)

(Continued)
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attracted more and more attention in the study of cerebral

ischemia (185). However, there are few studies on the

relationship between hormones and pyroptosis in ischemic

stroke. Studies have shown that hormone enhances the

therapeutic effect of plasma exosomes against cerebral

Ischemia-Induced pyroptosis through the Toll-like receptors/

nuclear factor kappa-B (TLR/NF-kB) Pathway (186). Other

modes of cell death besides apoptosis, such as ferroptosis and

necroptosis, may be a good area for further research. In

conclusion, we need to explore the mechanisms of brain

damage in ischemic stroke and provide methods for treating

and preventing ischemic stroke.
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