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Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to

global mortality, with three million deaths reported annually. This impact is

expected to increase over the next 40 years, with approximately 5 million

people predicted to succumb to COPD-related deaths annually. Immune

mechanisms driving disease progression have not been fully elucidated. Airway

microbiota have been implicated. However, it is still unclear how changes in the

airway microbiome drive persistent immune activation and consequent lung

damage. Mechanisms mediating microbiome-immune crosstalk in the airways

remain unclear. In this review, we examine how dysbiosis mediates airway

inflammation in COPD. We give a detailed account of how airway commensal

bacteria interact with the mucosal innate and adaptive immune system to regulate

immune responses in healthy or diseased airways. Immune-phenotyping airway

microbiota could advance COPD immunotherapeutics and identify key open

questions that future research must address to further such translation.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) has been

characterized by persistent respiratory symptoms and airflow

limitation due to distal airway abnormalities (1). This is usually

caused by exposure to noxious particles or gases and is influenced

by several host factors (1). Chronic airway inflammation drives small

airway changes and destruction of lung parenchymal tissue (2–5).

Individuals diagnosed with COPD have varying degrees of chronic

bronchitis, distal airway disease, and parenchymal destruction (6).

COPD is the third leading cause of death worldwide, with several

epidemiologic studies reporting a global prevalence of approximately

11.7% (95% CI: 8.4-15%) (1). According to recent projections, the

prevalence is expected to rise over the next 40 years, with

approximately 5 million people succumbing to COPD-related death

annually (1). The prevalence in Africa has been reported as overall

similar to other regions (1, 7).

The mechanisms driving COPD progression have yet to become

fully known. The airway microbiome has been implicated in several

respiratory diseases, such as COPD, bronchiectasis, and asthma (8).

However, it is still unclear how changes in airway microbiota drive

persistent immune activation and consequent lung damage in COPD.

Whereas N. subflava has been recently demonstrated to drive

bronchiectasis, only indirect inference is presently possible for

COPD (9, 10). Because of the existence of a well-documented

overlap between COPD and bronchiectasis (11–15), it is plausible

that N. subflava could contribute to COPD pathogenesis. This,

however, needs further investigation. Several studies published

elsewhere have also described the airway microbiome in COPD and

health (16–30). Dysbiosis (defined as an unhealthy microbial

compositional state) in the airways among COPD patients has been

associated with disease progression and poor outcomes (23, 29, 31–

37). Immune activation of the airways drives COPD progression (38–

46). However, it is still unknown how dysbiosis fuels such persistent

airway immune activation in COPD. In this review, we examine how

dysbiosis may mediate COPD-associated airway inflammation.

Although the mechanisms of airway microbiome-immune crosstalk

have not been thoroughly investigated, we give a detailed account of

how airway commensal bacteria interact with the mucosal innate and

adaptive immune system to regulate immune responses in diseased

airways. Furthermore, borrowing a page from gut microbiome-

immune interactions published elsewhere (47–53), we suggest

possible mechanisms worth investigating that could be contributing

to COPD disease.

Upon microbial interaction with mucosal immune cells,

metabolic and epigenetic changes occur (54–66), inducing

immunologic tolerance aimed at minimizing damage potentially

arising from responses against invading bacteria (67–69). Several

researchers have highlighted the salience of microbiome-mediated

immune regulation (50, 70–78). One of the earliest pieces of evidence

for this immune regulation was the observation of gene

reprogramming following colonization with a bacterial commensal

in germ-free mice (79). Such changes are mediated via the activity of

bacterial metabolites, discussed in detail in a separate section in this

review. Remarkably, most of them (62, 80) attenuate pro-

inflammatory responses via epigenetic changes in immune cells,

inducing a switch from transcriptionally active to silent chromatin
Frontiers in Immunology 02
states (67). For instance, butyrate, a short-chain fatty acid, suppresses

the activity of NF-kB, consequently inhibiting the production of pro-

inflammatory cytokines (81, 82). Similarly, ethionine suppresses the

activity of NF-kB and TNFa following stimulation with

lipopolysaccharide (LPS) (83), while lactate promotes histone

acetylation at the IL10 promoter, enhancing IL10 transcription in

macrophages (84). The metabolite deoxycholate alters H3K4me3 and

H3K27me3 in bone marrow granulocyte progenitor cells, leading to

neutrophil proliferation (85). In germ-free and antibiotic-treated

mice, dendritic cell activation and the consequent production of

type 1 interferons is impaired, a response driven by reduced levels

of H3K4me3 on transcriptional start sites of pro-inflammatory

response factors irf-3 and -7 (86). Immune reprogramming has also

been noted among adaptive immune cells. Treg cells are induced via

the activity of HDAC at the locus of the Foxp3 transcription factor

(87–89). In contrast, Th17 differentiation is inhibited (90–92).

Comparative analysis of metabolites shows a differing degree of

HDAC inhibit ion, epigenetics , and immune functional

consequences (80).

Epigenetic modifications in germ-free mice have been

characterized by methylation patterns on inflammatory genes such

as those encoding Toll-like receptors, chemokines, and cytokines (93).

In neonatal mice, the microbiome induces decreased methylation of

the chemokine-encoding gene Cxcl16, which is critical in recruiting

iNKT cells into the mucosa (94). Consequently, this change

ameliorates inflammation in the gut and the airway mucosa (94). In

another scenario, comparative epigenetic analysis of myeloid cells,

derived from microbiome-colonized germ-free mice, shows a

trimethylation pattern of histone H3 at lysine 4 of the loci of pro-

inflammatory genes such as the genes encoding type 1 interferons,

which as a result inhibits pro-inflammatory signals (95). Indeed, the

role of epigenetics in mucosal immunity has been confirmed by a

resultant loss in barrier integrity following the deletion of the histone

deacetylase-3 gene from epithelial cells (96). In a nutshell, these

findings support the role of microbiota in reprogramming mucosal

immune cells, as illustrated in Figures 1, 2. Although the gut

microbiome in these studies provides reprogramming signals,

available studies further implicate airway microbiome initiating and

mediating immune reprogramming locally at the mucosa. As

supporting evidence, intranasal administration of a bacterial lysate

abrogates experimental allergic asthma by targeting dendritic cells,

epithelial cells, and type 2 ILCs (97). Whether similar findings occur

in the setting of COPD remains to be investigated.

Mechanistically, microbiome-derived signals such as

lipopolysaccharide (LPS) and bacterial DNA stimulate alveolar

macrophages and dendritic cells via surface and intracellular

sensors, producing several activating signals (chemokines and

cytokines) (Figure 3). In the next section, we elaborate on such

responses and describe how they activate other immune cellular

players, i.e., innate lymphoid cells, gd-T cells, neutrophils,

monocytes, and lymphocytes (Figure 4). A well-coordinated

immune response from this cellular network maintains a robust

immune barrier at the respiratory mucosa, which preserves the

microbial ecology (98, 99). In diseased airways, however, repeated

insults such as respiratory infections, cigarette smoke, and particulate

matter alter microbiome composition, reducing microbial diversity

(100). Consequently, the ensuing dysbiosis triggers immune
frontiersin.org
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activation, potentially propagating inflammation and tissue damage

observed in COPD (Figure 5) (101, 102). Several observations

highlighting this concept have been published. They are

summarized here as follows. Infection of distal airways during early

childhood with pathogenic bacteria has been reported to cause severe

lung damage associated with impaired lung growth and a consequent

reduction in lung function (FEV1/FVC) in adult life (103–105).

Although these studies do not establish specific bacterial species

orchestrating this damage, several studies report organisms such as

S. pneumoniae, H. influenzae, M. catarrhalis, S. aureus, and K.

pneumoniae as culprits (106–110). Besides bacterial-induced early

childhood-lung injuries and associated COPD in adult life, an

interesting hypothesis termed the vicious circle was described,

stating that once bacterial pathogens have successfully colonized the

airways following impaired mucociliary clearance secondary to a

primary insult, they persist, inducing chronic airway inflammation

(111). Following the publication of early reports in 2010 describing

the lung microbiome (112–115), authors revised the vicious circle to

suggest that insults such as tobacco smoke exposure, which impair

airway mucosal defenses mediate dysbiosis, leading to dysregulated

immune response, further impairment of mucosal defense and

ensuing dysbiosis, inducing inflammation and further dysbiosis

(99). In distal airways, this inflammation contributes to tissue

damage and progressive obstruction, as is the case for P. aeruginosa

and N. subflava (9, 116, 117). These effects are mediated via the

release of bacterial outer membrane vesicles harboring extracellular

products, such as LPS, a potent inflammatory stimulus demonstrated

by earlier studies to induce lung emphysema in hamsters (118).

Several COPD human studies have supported this hypothesis,

showing that bacterial colonization of the airways induces

inflammation (111, 115–117, 119–121) and impairs lung function

(FEV1) (122).
Airway bacterial colonization

Airway mucosa houses niche-specific bacterial communities

varying in biomass density and diversity as one transition from the

upper to lower respiratory tract (123). A physiological gradient

primarily drives this difference as a consequence of a gradual

increase in the relative humidity (124) and temperature (125), a

decrease in the partial pressure of oxygen (pO2), an increase in the

partial pressure of carbon dioxide (pCO2), and a gradually increasing

pH along the respiratory tract (126, 127). pO2/pCO2 gradient is

further determined by airway ventilation and the environmental air

quality (126, 127). These physiological parameters determine niche-

specific selective growth conditions that ultimately shape the

microbial communities along the respiratory tract. Therefore,

changes in airway physiological conditions directly impact airway

microbial composition. During inhalation, bacteria-containing

particles are deposited into the respiratory tract. Particles larger

than 10mm in diameter remain in the upper respiratory tract,

whereas particles smaller than 1mm in diameter reach the alveolar

spaces (128). Pili and fimbriae facilitate the attachment of deposited

bacteria on the respiratory mucosa (129). Most bacteria fail to attach

to the mucosa and are cleared via mucociliary action of the

respiratory tract (130); some become neutralized by mucosal
FIGURE 1

Microbial interaction with the innate immune system activates and
reprograms immune cells: Airway microbiome-derived products such
as lipopolysaccharide are detected by surface and intracellular
immune sensors such as Toll-like receptors (TLRs). In a MyD88-
dependent manner, airway epithelial cells, alveolar macrophages, and
dendritic cells become activated and upregulate the expression of
pro-inflammatory cytokines such as IL-1b, IL-18, TNFa, IL-6, and IL-2.
These activated cells orchestrate immune inflammation. Microbicidal
activity of alveolar macrophages is also potentiated through increased
gene expression of antimicrobial peptides and other lytic proteins. The
microbiome has also been shown to potentiate macrophage-bacterial
killing and clearance via GM-CSF signaling. Furthermore, depletion of
commensal bacteria has been shown to reprogram alveolar
macrophages from classical (M1) to alternative (M2) phenotype
characterized by the expression of higher levels of Arg1, CCL24, IL-13,
IL-10, IL-6, and IL-1b. In addition to MyD88-dependent activation,
intracellular sensing of microbial-derived products by NOD1, NOD2,
and NLRP6 in the epithelial cells set the pace for a pro-inflammatory
signal along the mucosa. This restricts mucosal colonization by
pathogenic bacteria via the secretion of IL-1b and IL-18. Microbiome-
driven-type-I-IFN responses dependent on cGAS-STING activation
have also been described. Created with BioRender.com.
FIGURE 2

Airway microbiome-driven immunomodulation: Airway microbiome
downregulates pro-inflammatory signals via interference with immune
signaling machinery. For instance, R. mucilaginosa has been shown to
inhibit immune activation via NF-kB dependent mechanisms. As an
immune evasion strategy, pathobionts have been described to inhibit
TRIF and NFAT signaling, phagolysosomal fusion and acidification, as
well as inflammasome activation. In other scenarios, gene methylation
may promote transcriptional repression of pro-inflammatory genes.
Created with BioRender.com.
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surface IgA (131, 132) while others are broken down by mucosal

antimicrobial peptides (133). The implication of these immune

protective mechanisms in COPD is further elaborated in separate

sections. Successfully attached bacteria colonize the airway mucosa,

replicating rapidly to establish dense biological niches along the

respiratory tract (134) (Figure 3). These bacteria thrive in well-

balanced ecosystems, reaching saturation above which competition

for space and nutrients limits their growth (135–142). Under

physiological conditions, an ecosystem characterized by high

bacterial numbers and diversity promotes the utilization of a

versatile pool of metabolites. It favors competition for nutrients

(135–142), making it difficult for pathogenic bacteria to invade and

colonize these niches. In diseased airways, deranged physiological

conditions promote the overgrowth of specific bacterial species,

decreasing community complexity and increasing preference for the

consumption of particular metabolites (129). As a result, reduced

competition for nutrients makes it easier for pathogenic bacteria to

survive and colonize the respiratory mucosa (143, 144).

Similarly, the depletion of specific bacterial species, for instance,

following prolonged antibiotic use, reduces pressure on the

ecosystem, creating space and nutrients for other bacterial species

to invade and colonize the mucosal field (145). Successful

colonization and subsequent mucosal invasion by pathogenic
Frontiers in Immunology 04
micro-organisms trigger immune activation, inflammation, tissue

damage, and further dysbiosis, creating a positive feedback loop

that sustains airway inflammation. Evidence from several human

airway microbiome studies summarized in a recently published multi-

omics meta-analysis supports dysbiosis in inducing immune

activation, inflammation, and tissue damage. Although the role of

airway microbiome in COPD causation cannot be directly deduced,

these findings show a difference in the bacterial communities in

healthy and diseased states (24). During the early stages of COPD,

airways are predominantly colonized with H. influenzae, M.

catarrhalis, and S. pneumoniae. These bacterial species drive

inflammation and tissue damage as previously described (111, 115–

117, 119–121). Mechanisms of tissue damage induced by these

bacteria are discussed further in the following sections. In advanced

disease, impaired mucosal defense and reduced O2 tension in the

airways favor the growth of P. aeruginosa, which promotes further

inflammation and a vicious circle of tissue damage (146). Exposure

and successful airway colonization by new strains of these bacteria

trigger inflammation associated with exacerbation (108, 110, 146,

147) and impaired lung function (122).

Cell-to-cell communication between microbes also influences

composition along the respiratory mucosa (134) (Figure 3).

Interaction between different bacterial species along the airway
FIGURE 3

Airway microbiome immune crosstalk in alveoli: Following successful colonization of the respiratory tract, bacterial species replicate rapidly and establish
dense biological communities (1). Some bacteria inhibit other species via the secretion of antimicrobial peptides and lytic enzymes(1). Alveolar
macrophages engulf bacteria(2) and become activated via MyD88-dependent and -independent mechanisms(3). Airway microbiome sensing potentiates
bacterial killing(3). Some intracellular pathobionts infect alveolar macrophages and access the lung interstitium (4). Activated macrophages secrete
chemoattractants and promote the migration of other cellular players, such as monocytes, neutrophils, and adaptive immune response cells, into the
airways to clear pathobionts (5). Dendritic cells (DCs) continuously sample airway bacteria that attach and colonize the mucosa via protruding dendrites
(6). Airway microbiome sensing by bronchial epithelial cells, alveolar macrophages, and DCs activate innate lymphoid cells (ILCs) (7), which modulate
other immune cells’ activity. Depending on the type and degree of microbial exposure, DCs induce a wide range of immune responses, from immune
tolerance induced by plasmacytoid DCs (pDCs) to inflammation induced by conventional DCs (cDCs)(8). Continuous microbial sampling and trafficking
by activated DCs, and alveolar macrophages deliver processed microbial antigens to naïve CD4+T and CD8+T cells within mucosa-associated lymphoid
tissue (MALT) and draining lymph nodes (8). Created with BioRender.com.
frontiersin.org
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mucosa determines microbial diversity with implications for COPD

(108). Interspecies interactions have been observed among COPD

patients colonized with bacterial species such as H. influenzae, M.

catarrhalis, S. pneumoniae, and P. aeruginosa (110). Their

composition significantly varies as individuals transition from stable

disease to COPD exacerbation (147). In stable COPD, S. pneumoniae

enrichment positively correlates withH. influenzae enrichment, while

P. aeruginosa enrichment negatively correlates withH. influenzae and

M. catarrhalis and positively correlates with S. pneumoniae

enrichment (108). In the exacerbation state, the relationship

between S. pneumoniae and H. influenzae enrichment disappears

with the persistence of a correlation between P. aeruginosa, H.

influenzae, and M. catarrhalis (108). These observations reveal

extensive bacterial interactions among many unculturable bacterial

species colonizing the airways. Most likely, this complex interaction is

driven by underlying bacterial cell-to-cell communication as

individual species establish their niche in the airways. Studies

describing the molecular basis of this interaction in the airways are
Frontiers in Immunology 05
limited. A few illustrate bacterial interactions between selected species

following nasopharyngeal colonization (110, 148–151). As described

below, extensive studies performed on the gut microbiome illuminate

these molecular mechanisms. We believe these pathways are shared.

Gut microbiome studies have described bacterial species which

directly inhibit other species within the same ecological niche

through the secretion of antimicrobial peptides and lytic enzymes.

Mechanistically, these factors impede the growth of adjacent bacterial

cells via inhibition of peptidoglycan wall synthesis, pore formation,

bacterial lysis, and nucleic acid degradation (152). A group of AMPs

termed bacteriocins such as microcin, thuricin, and lantibiotics

inhibit gram-negative bacteria such as E.coli, S. enterica, C. difficile,

and E. faecalis (153–156). Other bacterial species deploy Type VI

secretion system (T6SS) through quorum sensing to transport toxic

cargo into their micro-environment or other bacterial cells (157–159).

Consequently, this kills potentially pathogenic bacteria, maintaining a

balanced ecosystem in the respiratory mucosa. For instance, the

uptake of nucleic acids from commensal Neisseria species induces
FIGURE 4

Airway microbiome immune crosstalk in the lung interstitium: Some intracellular pathobionts infect alveolar macrophages and access the interstitium.
Activated macrophages secrete chemoattractants and promote neutrophilic infiltration into the airways to clear pathobionts (1). Upon bacterial sensing,
neutrophils become activated, degranulate and release NETs (2). Continuous sampling and trafficking by activated DCs, and alveolar macrophages deliver
processed microbial antigens to naïve CD4+T within mucosa-associated lymphoid tissue (MALT) and draining lymph nodes (4). Under a steady state,
mature lung cDCs are preferentially programmed to induce a Th2 immune response. However, following immune sensing and activation, the production
of IL-12, IL-23, IL-27, and notch ligand by airway DCs, alveolar macrophages, and epithelial cells induce a Th1 response (5). Among CD4+T cell
phenotypes, microbiome-mediated mucosal inflammation has been strongly linked to aberrant Th17 (6). Besides the Th17 phenotype, microbial
interaction with mucosal CD4+T cells induces immune tolerance (7). MyD88-dependent TLR2 activation by capsular polysaccharide A induces the
expansion of Foxp3+T cells within the mucosa (7). Foxp3+T cells drive IL-10 production, facilitating mucosal immune tolerance (7). In another
mechanism, microbial-induced Tregs promote mucosal memory B or plasma cells’ IgA secretion (8). Created with BioRender.com.
frontiersin.org
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cell death of pathogenic N. gonorrhea (160). This is caused by the

misrecognition of the DNA’s methylation pattern in N. gonorrhea

(160). Similarly, the injection of a defective enzyme into a nearby

bacterial cell by P. aeruginosa depletes the target cell’s ATP resulting

in microbial cell death (161). B. fragilis secretes a ubiquitin-like

protein via T6SS with potent inhibitory activity against coresident

strains of B. fragilis (162). Besides secretion systems, bacteria utilize

nanotubes to transport plasmids from bacterium to bacterium and

extract nutrients such as iron from mammalian host cells (163, 164).

As previously stated, a few airway microbiome studies have reported

such complex bacterial ecosystem behavior. We hope that with the

advent of enriched microbiology culture techniques such as mucin-

enriched media, detailed investigations focusing on cell-to-cell

interactions between airway bacterial species can be pursued. Such

interactions occur in the respiratory mucosa shaping the airway

microbiome. As elaborated previously, in diseased airways, the

depletion of a single commensal species promotes the replication of

another potentially pathogenic species. Disruption of such a balance

in the ecosystem consequently triggers and sustains mucosal

inflammation and bystander tissue damage (147) (Figures 3–5), as

detailed in the following sections. This phenomenon has been

described in COPD when the distal airway is colonized with

bacterial species such as P. aeruginosa, depleting species such as H.

influenzae and M. catarrhalis, and enriching other bacteria such as S.

pneumoniae. We believe that the differential changes in the

abundance of unculturable bacterial species inhabiting the airway

following colonization with new strains or species occur, driving

dysbiosis, which triggers acute inflammation associated with

exacerbation (108, 110, 146, 147). Other possibly interacting

bacteria that induce exacerbations, including Chlamydia spp, L.
Frontiers in Immunology 06
pneumophilia, Mycoplasma spp, and Non-typable H. influenzae,

have been described elsewhere to drive immune inflammation (165)
Microbiome-derived metabolites

A recent focus and comprehensive investigation of the

microbiome metabolites, geared towards illuminating microbiome

cell-to-cell communication and microbe-host cell immune crosstalk,

has drastically improved our understanding of the mechanisms of

microbiome mediated immune-modulation in health or

dysregulation in disease. Microbial metabolites and their receptors

have been described in detail elsewhere (80, 166, 167). Worth

mentioning are metabolites of carbohydrates, amino acids, lipids,

bile acids, and nucleic acids. In-depth characterization of microbial

species based on their ability to produce specific metabolites shows

that members of the Bacteroidetes phylum are good producers of

acetate (C2) and propionate (C3). In contrast, Firmicutes are efficient

producers of butyrate (C4). Other molecules, such as lactate and

succinate, are converted to propionate (C3) by several species (168–

173). C1-C4 molecules comprise the classical short-chain fatty acids

(SCFAs). They can be transported systemically from their production

site to other sites, for instance, from the gut to the liver, muscles,

lungs, and brain, acting in an endocrine manner (80). These

metabolites act on cognate G protein-coupled receptors (GPR43,

GPR41, GPR109A, and Olfr78) (174, 175), widely distributed on

several immune cells including but not limited to epithelial cells,

neutrophils, macrophages, and dendritic cells to induce immune

responses (176–180). Signaling via these GPRs generates pro-

inflammatory responses via activation of MAP/PI3K kinases and
FIGURE 5

Airway microbiome-immune crosstalk in healthy versus diseased lungs (COPD): 1. Initial crosstalk between airway microbial communities and the
mucosal innate and adaptive immune cell activation sets the tone of airway mucosal immune responses. 2. Infected macrophages from the distal airways
and alveolar spaces migrate into the interstitium in an IL-1R-dependent manner. 3. Intracellular bacteria replicate within macrophages. 4. Some
intracellular pathobionts induce infected macrophage apoptosis and expression of host lytic proteins in an ESX-1-dependent manner. 5. Newly recruited
macrophages engulf infected cell debris. 6. Neutrophils infiltrate the airways to orchestrate inflammation, engulf dying infected cells, and kill bacteria
through NETosis and the release of lytic enzymes. 7. Microbial-specific T cells arrive in airways and produce cytokines such as IFN-g, which enhance the
microbicidal activity of alveolar macrophages, monocytes, and DCs 8. Macrophage and neutrophil necroptosis lead to the release of lytic proteins such
as MMPs, defensins, and cathepsin G into the extracellular space. Subsequent induction of lytic proteins causes extensive tissue damage. 9. Over time,
with attempted healing and subsequent inflammation, extensive lung damage, fibrosis, and reduced lung function ensue. 10-11. Extensive fibrosis further
reduces lung compliance and worsens lung function. 12. Sustained dysbiosis driven by periodic insults such as bacterial, viral, and fungal infections and
air pollution or smoking orchestrate more damage and susceptibility. 13. In contrast, in healthy airways, robust innate and adaptive immune
reprogramming promotes a highly modulated immune microenvironment with balanced lethal and resolving inflammatory states. This is optimal to
contain airway commensals and pathobionts hence maintaining healthy lungs seen in 14. Created with BioRender.com.
frontiersin.org
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mTOR (181). Anti-inflammatory responses are also generated when

intracellular b-arrestins are engaged, inhibiting NF-kB (182–184).

Both GPR41 and 43 promote proinflammatory responses, whereas

only GPR43 can alternatively generate an anti-inflammatory signal

(182–184). It is yet to become known which pathways are

preferentially selected by SCFAs. To achieve an efficient immune

modulatory program, phased engagement of both receptors would be

expected to occur under physiological conditions. Failure of this to

happen most likely, results in immune dysregulation, as could be the

case for airway dysbiosis. As previously described, SCFAs induce

epigenetic changes reprogramming mucosal immune cells to tolerate

commensal bacteria.

In dysbiosis, SCFAs induce several defense mechanisms aimed at

maintaining mucosal integrity, such as goblet cell activation, mucus

hypersecretion (185, 186), replenishment of mucosal surface IgA levels

(187–191), production of RegIIIg (192) and NLRP3 inflammasome

activation with the secretion of pro-inflammatory cytokines (193).

Whereas these mechanisms have been demonstrated in the gut,

parallel mechanisms could exist in the airways. Due to limited data

supporting airway accumulation of SCFAs (194), the direct role of SCFAs

on airway mucosal immune response cannot be deduced. Several

investigators argued that peripheral immune cell activation and

subsequent recruitment into the airways drove immune crosstalk (194).

Indeed, several studies confirmed this hypothesis. Using animal models,

authors demonstrated that the systemic effects of SCFAs were mediated

via the bone marrow in a mechanism similar to trained immunity (195–

199). In an allergic airway inflammation model, systemic acetate and

propionate induced the production of macrophage and dendritic cell

progenitor cells (MDPs) as well as common dendritic cell progenitor cells

(CDPs) in the bone marrow, which subsequently migrated to the airways

to form mature DCs (200–205). In another study, it was demonstrated

that although the effects of SCFAs on bone marrow were context-

dependent, they ultimately primed myeloid cell proliferation and

subsequent migration into the airways, modulating immune responses

in an airway influenza infection model (200, 206–208). The relevance of

this crosstalk in the context of COPD pathogenesis is supported by

evidence of the high prevalence of pulmonary impairment among

individuals with chronic inflammatory bowel disease (50%) and

individuals with irritable bowel syndrome (33%). Additionally,

individuals with COPD are 2 to 3 times more likely to be diagnosed

with irritable bowel disease and increased intestinal permeability (209–

211). These observations warrant further investigation to underpin

mechanisms of lung damage secondary to SCFAs.

Besides carbohydrate metabolism, other genera such as

Clostridium, Bacillus, Lactobacillus, and Streptococcus metabolize

amino acids including but not limited to glycine, lysine, arginine,

leucine, isoleucine, and valine (212). Their biogenic derivatives, such

as ammonia, monoamines, polyamines, histamines, agmatine, and

cadaverine, induce immune responses via G protein-coupled

receptors (213). Furthermore, the metabolism of branched-chain

amino acids yields branched-short SCFAs such as isobutyrate,

valerate, and isovalerate, which like C4 molecules, induce histone

deacetylation, consequently regulating immune responses, as

previously elaborated (214, 215). Of critical importance to immune

activation and function is the molecule indole produced from

tryptophan metabolism (216). Its derivatives, kynurenine, indole-3-

acetic acid, and tryptamine, activate the aryl hydrocarbon receptor
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(AhR) (217), inducing ILC3 and Th17 immune responses (213, 218).

A plethora of microbial species metabolizes bile acids as well. Bile

acids induce immune cell responses via their receptors (FXR, VDR,

PXR, and TGR5) (219, 220). Similarly, these metabolites induce

several immune responses to preserve mucosal integrity (221–224)

(73, 80, 200). In dysbiosis, metabolites are significantly altered,

dysregulating immune activation networks locally and systemically

with persistent inflammation. In COPD, this persistent inflammation

drives tissue damage with reduced lung function and enhanced

respiratory symptoms. Recently, several metabolites such as

polyamines, xanthine, glycosphingolipids, and glycerophospholipids

have been correlated with enhanced respiratory symptoms and

reduced lung function (225). In another recent study, a

microbiome-derived metabolic COPD signature comprising 46%

lipid, 20% xenobiotic, and 20% amino acid-related metabolites has

been reported (29). With recent advances in omics technology, there

is a need to further characterize microbiome-derived metabolites as

mediators of airway inflammation in COPD.
Local versus systemic immune
crosstalk: The role of the gut-lung axis

From the previous section, we can deduce that diverse

metabolites’ activity drives the microbiome to impact immune

responses locally and systemically. Several authors have referred to

this crosstalk as the gut-lung axis to highlight the existence of

communication between the gut microbiome and airway immune

mucosal system as previously described (194, 226–230). Sufficient

data indeed supports the role played by the gut microbiome in driving

airway inflammation to cause COPD, as previously described (227,

231, 232). However, the mechanistic underpinnings of the gut-lung

axis are yet to be fully deciphered in the context of COPD.

Furthermore, whether a bidirectional lung-gut axis exists remains to

be answered. Chronic airway diseases such as COPD, asthma, and

cystic fibrosis show airway dysbiosis and induce gastrointestinal

disturbances such as irritable bowel disease (227). However, this is

most likely a result of oral intake of exogenous molecules such as

antibiotics and other therapies for chronic respiratory diseases that

ultimately cause gut dysbiosis and associated conditions. Mechanistic

research utilizing parabiosis animal models is needed to decipher the

gut-lung axis fully.
Microbe-host immune interactions

Besides mucosal immune modulation via microbiome derived-

metabolites, airway microbiome pathogen-associated molecular

patterns (PAMPs) are sensed by the host pattern recognition

receptors (PPRs) upon successful attachment to the mucosa (233)

(Figure 1, 2). Toll-like receptor TLR2, in conjunction with TLR1/6,

recognizes bacterial lipoproteins, whereas TLR4 recognizes bacterial

lipopolysaccharide (LPS) (234, 235). Via MyD88-dependent TLR

signaling, mucosal epithelial cells secrete AMPs which inhibit bacteria

by targeting cytoplasmic and cell-wall components (192, 236)

(Figures 1, 2). The significance of such a response has been
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demonstrated in mouse models where microbial depletion via

antibiotic exposure significantly diminishes the mucosal secretion of

AMPs (237), with a consequent reduction in the clearance of

pathogenic bacteria (237). This is reversed upon mucosal

replenishment with a bacterial cocktail, which activates epithelial cells

to produce more AMPs (237). In addition to MyD88-dependent

activation, sensing of microbial-derived products by nucleotide-

binding oligomerization domain-containing receptors such as NOD1,

NOD2, and NOD, LRR- and pyrin domain-containing 6 (NLRP6)

inflammasome in the epithelial cells sets the pace for a pro-

inflammatory signal along the mucosa (238–240). This response

restricts mucosal colonization by pathogenic bacteria via secretion of

IL-1b and IL-18 cytokines, which are processed from their precursors

upon NLRP6 inflammasome activation (238) (Figures 1, 2). In an

animal model, authors showed by using mice deficient in IL-18 that

activation of the NLRP6 inflammasome induced IL-18 secretion by

epithelial cells and prevented gut colonization by pathobionts (238). A

recent study has described a microbiome-mediated type I interferon

immune response, dependent on cGAS-STING activation irrespective

of MyD88-dependent signaling or direct host-bacteria interactions

(241) (Figures 1, 2). This study demonstrated that bacterial-derived

outer membrane vesicles (OMVs) delivered into distal host cells

activated the cGAS-STING-IFN-I axis, promoting clearance of both

DNA and RNA viruses (241). Whether such findings can be applied to

respiratory mucosa remains to be answered. Given similarities in

embryonic origin, structure, and the immune responses mounted in

the gut and airway mucosa (227, 242), we believe that a similar response

is orchestrated along the airway to maintain mucosal integrity. Indeed,

in one animal study, authors demonstrated the induction of a robust

and broad innate immune protection of the airways following S.

pneumoniae infection, effective against Gram-positive and Gram-

negative bacteria and the fungus A. fumigatus (243). The response

was characterized by activation of NF-kB, Type I/II IFNs, and Card9-

Bcl-Malt pathways associated with upregulated expression of

antimicrobial peptides (243). Amidst dysbiosis, sustained immune

signaling results in aberrant immune response and inflammation

along the mucosa, with bystander tissue damage. Earlier studies

demonstrated the tissue-damaging effects of bacterial infection with

non-typable H. influenzae using models of nasal turbinate epithelium

(244). Similar observations have been recently reported for N. subflava

(9). In dysbiosis, bacterial components such as lipoproteins,

lipopolysaccharide, and peptidoglycans are released, inducing innate

immune responses. These sustain inflammation and tissue damage

associated with progressive obstruction observed in COPD.
Mucins and the microbiome

The airway microbiome maintains the integrity of the mucus

layer along the respiratory mucosa, preventing massive contact

between microbes and the epithelial cells (134). Mucus along the

respiratory airway is a major innate immune barrier that, to a

significant extent, traps bacteria and clears the airway of these

bacteria via mucociliary mechanisms (130). Goblet cells produce a

variety of glycosylated mucin proteins along the mucosa (245).

Mucins are secreted from the submucosal glandular and goblet cells

lining the epithelium (246). Under homeostasis, the airway epithelial
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lining contains a few goblet cells and a moderate number of

submucosal glands (247). Upon activation by bacterial products,

environmental toxins, and proinflammatory cytokines, TNF-a, IL-
1b, IFN-g, IL-17A, IL-4, IL-9, and IL-13, goblet cells expand

drastically, and submucosal glands increase in frequency, secreting

several mucins (248). MUC5AC and 5B are the most predominant

among mucin glycoproteins so far described, with MUC2 being the

pioneer member characterized (248, 249). Further studies revealed

that the gene encoding MUC2 is located next to the MUC5A on

chromosome 11p15.5 (250), and its expression occurs early during

goblet cell hyperplasia preceding that of the MUC5AC gene (248).

Early studies demonstrated that bacterial-derived products such as

LPS induced MUC2 expression in vitro using intestinal models via the

Ras-MEK1/2-ERK1/2 signaling (251–253). Furthermore, the

involvement of TLRs and NF-kB in mucin gene expression has

been demonstrated (246). H. influenzae lysates upregulate MUC2

expression via the NF-kB activation (246). Other mechanisms

reported to date include signaling via the TGF-b/Smad

pathway (246).

Predominantly, mucin-2 is secreted in copious amounts on the

mucosa following TLR2/4 and NOD1/2 activation (134). Together

with other mucin proteins, mucin 2 forms an impervious layer that

prevents massive contact between microbes and the epithelial cells.

This barrier prevents potentially exaggerated immune responses. In

the well-studied gut microbiome, bacterial species such as B.

thetaiotaomicron and F. prausnitzii induce mucin gene expression,

protein glycosylation, and mucus-secreting goblet cell differentiation

(254). In addition to mucus production, F. prausnitzii maintains

mucosal integrity by strengthening epithelial cell tight junctions in an

IL-10-dependent manner (255, 256). Therefore, such bacterial

species’ depletion reduces mucosal integrity and increases

susceptibility to colonization by pathogenic bacteria (Figure 5).

Once pathogenic bacteria successfully establish infection in the

airways, mucus hypersecretion is induced as part of the acute

inflammatory response (257–259). Early studies demonstrated some

species, such as H. influenzae, S. pneumoniae, and P. aeruginosa, as

potent mucin inducers (260). These studies further described P.

aeruginosa as a proteolytic mucin-inducer in contrast to H.

influenzae and S. pneumoniae as non-proteolytic mucin-inducers

(260). Therefore, it is plausible that in the setting of dysbiosis

predominated by known culprits (H. influenzae, M. catarrhalis, S.

pneumoniae, and P. aeruginosa), sustained inflammation and mucin

gene expression drives mucus production, compounded by impaired

mucociliary clearance, distal airway occlusion, and reduced peak

expiratory flow, typically observed in patients with chronic

bronchitis (257–259). Mucin hypersecretion in COPD patients has

been well-described in several studies (246, 261–270). Its

accumulation in the airways of COPD patients has been reported as

a predictor of mortality, especially among those with a lower baseline

FEV1 (271). Mucus hypersecretion further reduces diffusion and

exchange of gases across narrowed airways, worsening an already

existing ventilation-perfusion mismatch. Furthermore, in dysbiosis,

airway mucociliary activity is severely impaired, further complicating

mucus clearance (111, 272–275). Mechanistically, bacterial pathogens

induce direct epithelial cell injury, significantly disrupt mucociliary

mechanics, and promote hypersecretion of mucus, which creates a

conducive environment for pathogens to thrive (111, 272, 276–278).
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Antimicrobial peptides and
lung damage in microbiome-
immune crosstalk

As previously described, one of the outcomes of airway

microbiome-immune crosstalk is the secretion of diverse cationic

amphipathic peptides, known as antimicrobial peptides (279–281).

These molecules kill invading bacterial pathogens in the mucosa,

preserving microbial ecology (282, 283). In this review, we discuss two

major classes of human-derived antimicrobial peptides: cathelicidins

and beta-defensins (284, 285), and further highlight studies

implicating such molecules in COPD pathogenesis (286, 287). We

acknowledge the existence and role played by other lytic proteins,

such as lysozymes (288–291), lactoferrin (292–294), secretory

leucocyte protease inhibitor (295–298), cathepsins (299–303),

granzymes (304–309), and S100 proteins (310–317). These

molecules have been extensively discussed in the referenced articles.

The CAMP gene transcribes cathelicidin (LL-37) in mucosal

epithelial cells and other cells of the immune system (318, 319). As

elaborated elsewhere, LL-37 induces: (i) microbial killing via cell wall

disruption (320–322), (ii) production of pro-inflammatory cytokines

such as IL-1b, IL-6, and IL-17 (323–327), and anti-inflammatory

cytokine IL-10, which suppresses IL-6, IL-12, TNF, HLA-DR, CD80,

CD83, CD86, and CCR7 expression (326, 328, 329). Furthermore, LL-

37 induces chemokines CCL2 and CCL7 in IFNg-dependent manner

(323) and polarizes macrophage differentiation towards classical (M1)

phenotype and DCs towards cDC1s (330, 331). It also activates the

inflammasome in macrophages and monocytes via the P2X7 receptor

(332) and induces neutrophilic and eosinophilic migration (319).

Other effects, such as angiogenesis, wound healing, and apoptosis,

have also been reported (279). It is worth mentioning that, of all cells

expressing LL-37, epithelial cells express the molecule only upon

activation by inflammatory signals such as infection (318). Vitamin

D3 has been demonstrated to regulate the expression of LL-37 via

several vitamin D3 response elements located in the CAMP gene

promoter region (333). Other than epithelial cells, Vitamin D3

regulates LL-37 expression in monocytes, keratinocytes, and

neutrophils in an LPS-synergistic manner via TLR-1/2 in response

to bacterial infection (319). Mechanistically, LL-37 binds and

activates several extracellular and intracellular receptors (334),

inducing pro-inflammatory genes via the activation of transcription

factors, NF-kB, CREB1, HIF1a, AP-1/2, and EGR-1 (326, 334, 335).

Besides the known protective effects of LL-37 against invading

pathogens at the mucosa, several studies have implicated this peptide

in COPD (289, 315, 336, 337, 337, 338, 338, 339, 339, 340, 340, 341,

341, 342, 342, 343, 343, 344, 344, 345, 345, 346, 346–351).

Investigators have demonstrated its association with poor lung

function (348, 349). In a setting of cigarette-smoke exposure, low

levels of LL-37 have been independently associated with lower FEV1.

This decrease in FEV1 is most significant among individuals with

more deficient vitamin D3 (350) and is sustained at 6 and 18 months

post-recruitment (351). Whereas low LL-37 was associated with a

history of bacterial pneumonia, the inclusion of pneumonia in the

adjusted model did not change the findings (350), implying a direct

role of LL-37 in affecting lung function. It is still unclear whether

increased susceptibility to bacterial infections sets the pace for
Frontiers in Immunology 09
inflammation and ensuing tissue damage in low LL-37 or whether

the peptide directly impacts lung function. However, a recent study

favoring the former demonstrates that inhibition of LL-37 promotes

bacterial infection, dysbiosis, and inflammation (352). In contrast,

earlier in-vitro studies tend to the latter, showing that endogenous

cathelicidin (mCRAMP), a mouse ortholog, reduces emphysema

severity, probably relating to its anti-inflammatory and healing

features (353). Further investigation into the molecular mechanism

of LL-37-mediated-COPD pathogenesis is urgently needed. In the

setting of well-established COPD, the profile of LL-37 completely

reverses, with several studies reporting elevated levels in COPD

compared to healthy controls (349, 354–360). This peptide is

further elevated during acute COPD exacerbations compared to

stable disease due to inflammation secondary to bacterial infection

(296), supported by elevated pro-inflammatory cytokines, IL-6, and

IL-8 (296). Moreover, in stable COPD, high levels of LL-37 predict

acute exacerbation (296, 361). As expected, COPD patients with

vitamin D deficiency have significantly lower LL-37 (362–365). This

association is even more evident among individuals with acute

exacerbation (296, 361). Complex changes in antimicrobial peptides

have been reported in dysbiosis among individuals with. For instance,

following infection of the airways with a new bacterial strain, LL-37

increases, while lysozyme and SLPI decrease (289). These changes in

LL-37 and SLPI are more significant in exacerbation compared to the

stable disease (289). Within COPD stages, LL-37 significantly varies

from one study to another. Several investigators have reported

conflicting results of LL-37 levels based on COPD severity stages

(366). Most studies to date have been limited by small sample sizes,

heterogeneous sampling (induced versus expectorated sputum versus

BAL fluid), and COPD heterogeneity (smoking versus non-smoke-

related COPD). This warrants the careful design of adequately

powered studies investigating LL-37 as a COPD severity biomarker.

Nevertheless, a few studies on COPD stratification based on

exacerbation risk shows that the LL-37 is lower in high-risk

exacerbators compared to low-risk counterparts (361, 366, 367).

Similarly, COPD stratification based on severity shows that LL-37 is

significantly reduced in severe disease compared to mild/moderate

disease (296, 348). Several authors argue that this observation is most

likely driven by a high background of NF-kB activation in severe

disease, which has been reported to inhibit LL-37 (366).

A second family of antimicrobial peptides, called defensins, exists

and contributes to immune protection against pathogenic bacteria, as

described elsewhere (283). Two classes, a- and b-defensins, exist
based on the length of their peptides (368, 369). These molecules

contribute to granulocyte antimicrobial activity, intestinal mucosal

cell defense, and cutaneous host defenses. Six members of the a-
defensin include neutrophil peptides (type1-4 a-defensins) secreted
by neutrophils, monocytes, lymphocytes, and NK cells. At the same

time, types 5 and 6 are expressed and secreted by Paneth cells of the

small intestines, epithelial cells of the airways, and gastrointestinal

and female reproductive tracts (370). In contrast, b-defensins are

widely distributed and expressed in epithelial cells, monocytes,

macrophages, and DCs (370). Whereas type 1 b-defensin is

constitutively expressed in epithelial cells, type 2 b-defensin is

inducible by NF-kB activation (370). Bacteria in the mucosa

stimulate the production of both type 3 and 4 b-defensins (371,

372). TNF has also been reported to stimulate the production of type
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3 b-defensins. Like LL-37, the secretion of b-defensins produces both
pro- and anti-inflammatory signals. For instance, upon activation,

neutrophils secrete a-defensins which increase the expression of TNF

and IFNg, with a consequent increase in the expression of FcgRIIB
and FcgRI (373). These changes ultimately enhance macrophage

phagocytosis. On the contrary, activation of necroptotic neutrophils

induces high levels of a-defensins which antagonize the release of

nitric oxide and pro-inflammatory cytokines from macrophages,

toning down the pro-inflammatory signals (374). Other effects

described elsewhere include chemotaxis, angiogenesis, wound

healing, antitumor, antifungal, antiviral, and less potent

antimicrobial activity (279). b-defensins have been implicated in

COPD pathogenesis and disease progression (297, 315, 375–381).

Reduced lung function has been associated with increased levels of

defensins (380, 382–384). Earlier studies investigating mechanisms of

tissue damage in COPD by neutrophils demonstrated that upon

neutrophilic infiltration of the airways and activation, neutrophils

release defensins which not only play a role in antimicrobial defense

but also induce lung tissue injury in addition to other molecules such

as serine elastases, cathepsin G and proteinase 3 (375). In in vitro

models, these molecules decreased the integrity of the epithelial cell

layer and frequency of ciliary beat, as well as inducing mucus

hypersecretion and mediating immune modulation (375, 385). The

activity of defensins is known to be regulated by the a1-proteinase
inhibitor. This molecule competitively blocks defensin’s cytotoxic and

stimulatory activity toward epithelial cells (375).
Macrophages and the microbiome

Airway microbiota has been demonstrated to mobilize and

reprogram alveolar macrophages, as illustrated in Figures 1, 2. In

antibiotic-treated mice, depletion of commensal bacteria induced

lower frequencies and numbers of alveolar macrophages.

Specifically, these macrophages were reprogrammed to express

higher levels of Arg1, CCL24, IL-13, IL-10, IL-6, and IL-1b,
consistent with the M2 phenotype (386). These macrophages

returned to normal levels following the administration of a

consortium of commensal bacteria in the respiratory mucosa of

animals previously treated with antibiotics (386). In addition, the

microbiome has been shown to potentiate macrophage-bacterial

killing and clearance via granulocyte-macrophage colony-

stimulating factor (GM-CSF) signaling, reported to be driven by the

IL-17/22 axis (387). Models of commensal colonization in antibiotic-

treated and germ-free mice have shown that potent NLR-stimulating

bacteria in the upper airways promote resistance to airway mucosal

colonization by pathogenic bacteria through NOD2 and GM-CSF

signaling (387). Antibiotic treatment has also been associated with

impaired alveolar macrophage metabolism and defective bactericidal

activity (388). Whole-genome mapping of alveolar macrophages

revealed upregulation of metabolic pathways in dysbiosis (389),

correlating with reduced cellular responsiveness (389). Compared

with controls, alveolar macrophages obtained from microbiome-

depleted mice showed a diminished capacity to phagocytose

bacteria (389). In dysbiosis, pathobionts directly infect alveolar

macrophages and use them as vehicles to access the lung

interstitium (Figures 3, 4), attracting neutrophils, monocytes, and
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other inflammatory cells to orchestrate inflammation and lung

damage (9, 390). In dysbiosis, the airway microenvironment drives

the activation of alveolar macrophages, resulting in mixed phenotypes

observed in COPD (391). Colonizing the distal airways with

pathogenic bacteria sets an inflammatory tone characterized by

increased levels of pro-inflammatory cytokines such as TNF-a and

IL-6 (391). The induction of M1/M2 macrophage phenotypes results

in a mixed phenotype of airway inflammation and tissue damage

driven by classical (i.e., M1) phenotype and airway remodeling and

fibrosis driven by alternative (i.e., M2) phenotype. Similar to smoke-

induced COPD, other studies report a gradual transition from

upregulation of M1 genes to downregulation of the same genes

followed by upregulation of M2-related genes (9, 392), which is

usually a typical pattern followed from acute inflammation to

resolution. Chronic inflammation driven by dysbiosis with a

resultant mixed M1/M2 phenotype is the most likely occurrence.

M1-driven lung damage is mediated via matrix metalloproteinase

(MMP) activity, oxidative stress caused by reactive oxygen and

nitrogen species, and many other lytic proteins on parenchymal

tissue as elaborated elsewhere (2, 4, 393–396).
Neutrophils and the microbiome

Whereas airway-based human studies demonstrating the direct

impact of the microbiome on airway neutrophilic responses are

currently scarce, much evidence is inferred from data obtained

from intestinal mouse models, which have been extensively

reviewed and well-elaborated elsewhere (397). Among highlighted

studies, the microbiome has been demonstrated to modulate the

neutrophil function and aging via TLR- and MyD88-mediated

signaling pathways (398). In a germ-free mouse model, the

inflammatory challenge was associated with a reduction in

neutrophil recruitment and cytokine production (399), which

reversed in the setting of lipopolysaccharide pre-treatment. Notably,

this arrest in neutrophilic migration and function was IL-10

dependent (399). In another study, depletion of the microbiome

significantly reduced the quantity of circulating aged neutrophils,

thus considerably reducing neutrophil-mediated tissue damage (398).

Furthermore, the microbiome has been reported to influence the

development and function of neutrophils in several micro-

environments (75). Following the development, immature

neutrophils demonstrate limited functional quality characterized by

reduced proinflammatory activity. However, after microbial sensing

via MyD88-dependent pathways, neutrophils become better at

phagocytosis and execution (Figure 4) (400, 401). In germ-free and

antibiotic-treated mouse models, neutropoiesis in bone marrow is

severely impaired, consequently delaying systemic bacterial clearance

(401). Similarly, microbiome-derived metabolites such as short-chain

fatty acids (SCFAs) drive neutropoiesis via similar mechanisms as

previously described (200). In another study, the same metabolites

and cell-wall components were demonstrated to induce IL-17

cytokine production from type 3 innate lymphoid cells (ILC3s) and

IL-17-producing memory mucosal CD4+T cells, consequently

ramping up neutropoiesis via G-CSF production (402). A

neutrophilic response at the airway mucosa is critical to eliminate

pathogenic micro-organisms, which overcome colonization resistance
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and successfully invade the mucosal barrier. Airway dysbiosis

activates neutrophils via the MyD88-dependent pathway, resulting

in NF-KB and MAPK signaling in airway epithelial cells (403–406).

Through NETosis (407–409), activated neutrophils release serine-

proteinases such as elastases, cathepsin G, and proteinase-3 from

primary azurophilic granules. These proteinases cleave elastin,

causing lung tissue damage observed in COPD (395, 410–412).

Furthermore, secondary and tertiary granules release two

metalloproteinases, i.e., collagenases (MMP8) and gelatinases

(MMP9), which degrade lung extracellular matrix (395). Persistent

neutrophil activation and NETosis orchestrate bystander tissue

damage (407–409). (Figure 4, 5). In dysbiosis, LPS and TNF-a
induce the production of neutrophilic chemoattractants by activated

epithelial cells such as CXCL1 and CXCL8 (413), which promote

neutrophilic infiltration into the airways, further driving neutrophilic

inflammation and tissue damage (413). As discussed in the

proceeding sections, Th17 activation further augments neutrophilic

inflammation and tissue damage (414, 415).
Innate lymphoid cells and
the microbiome

The innate lymphoid cell family is comprised of cytotoxic cells (the

natural killer cells) and non-cytotoxic subsets (referred to as ILC1, ILC2,

and ILC3, based on similar nomenclature as T helper cellular sub-

phenotypes) (75). Whereas studies investigating the microbiome’s

influence on ILCs within the airway mucosa are few, the effect of the

microbiome on ILC2 and ILC3 cells has been highlighted (416). In one

study, intranasal administration of OM-85 bacterial lysate abrogated

experimental allergic asthma by targeting IL-33/ILC2 axis (97). In the

next section, we focus on findings from the mouse gut to infer

mechanisms influencing ILC-specific immune responses along the

airway mucosa. Studies examining the microbiome’s influence on ILCs

have concentrated mainly on ILC3s. Recently published reports show

that the depletion of ILC3s in mouse models significantly abrogates IL-22

production, with consequent loss of bacterial control within the mucosa,

resulting in disease (417). In another study, authors characterized the

effect of the gut microbiome on ILC regulatory landscape using antibiotic

intervention and germ-free mouse models at the single-cell level. ILCs

differentially integrate signals from the microbial microenvironment and

generate phenotypic and functional plasticity (418). Furthermore, via

ILC3 activation, the microbiome modulates the activity of other immune

cells within the mucosa. For instance, (i) microbiome induces

commensal-specific CD4+T cells to maintain tolerance at the mucosa

(419, 420); (ii) Microbial sensing, inflammasome activation, and the

production of IL-1b by macrophages drives GM-CSF secretion by ILC3s,

required for macrophage function and induction of tolerance (421); (iii)

the production of TNF-b by activated ILC3s drives IgA production at the

mucosa (422). (iv) Finally, microbial induction of IL-22 production by

ILC3s induces the expression of antimicrobial peptides from epithelial

cells required for mucosal host defense (423). It is, therefore, plausible

that dysbiosis at the airway mucosa disrupts ILC3-mediated immune

regulation, consequently driving aberrant Th17-mediated damage (424)

(Figure 5). Although the literature on ILCs in COPD is still minimal (425,

426), the role of ILC3s in COPD warrants investigation since IL-17, its
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principal cytokine, has already been described as a known driver of

neutrophilic inflammation, and individuals with COPD have increased

levels of IL-17 (426, 427). Furthermore, IL-17, IL-22, and IL-23-

expressing immune cells have been reported in bronchial biopsies from

COPD patients (428). Gene expression analysis in lung tissue from

COPD patients further provides evidence for the role of ILC3 in

COPD (429).
Dendritic cells and the microbiome

Dendritic cells (DCs) are strategically positioned within the airway

mucosa, residing in mucosa-associated lymphoid tissue (MALT), such as

the Welder’s ring in the upper airways, bronchial lymph nodes in the

distal airways, as well as multiple satellites within the lamina propria

along the airway mucosal tract (430, 431). Using their dendrites, DCs

continuously sample airway bacteria that attach and colonize the mucosa

(432–435) or gain access to the MALT via the epithelial tight junction

barrier (431, 436–438). Extensive work reviewed elsewhere (431, 438,

439) suggests that depending on the type and degree of microbial

exposure, airway DCs induce a wide range of immune responses from

immune tolerance induced by plasmacytoid DCs to inflammation

induced by conventional DCs (cDCs) (439). Phenotypic

characterization of the microbiome based on DC immune responses is

still a work in progress. In a recent study investigating the effect of airway

microbiome-derived bacterial strains on DC activation, CD4+T cell

priming, and cytokine response (440), P. aeruginosa induced high

levels of TNF-a, IL−12, and IL-6 from DCs and primed CD4+T cells

to secrete IFN-g and IL-22 compared to S. pneumoniae and R.

mucilaginosa (440). In another study, it has been confirmed that R.

mucilaginosa inhibits airway immune pro-inflammatory responses via

NF-kB-dependent mechanisms (38). This evidence illustrates the impact

of dysbiosis on mucosal DC activation and eventual T-cell licensing

required to orchestrate inflammation and tissue damage. Studies

describing how activated DCs induced by dysbiosis drive COPD

pathogenesis are minimal or still a work in progress. The role of

activated DCs in driving COPD pathology has been described in the

context of cigarette smoke-induced COPD (441–445), which is outside

the scope of this review. As described above, bacterial species such as P.

aeruginosa, known to predominate in advanced COPD, activate DCs,

inducing high levels of TNF-a, IL−12, and IL-6, priming CD4+T cells to

secrete IFN-g and IL-22 (440). Whereas activated DCs secondary to

cigarette smoke exposure have been reported to skew adaptive immune

response towards Th1 and cytotoxic T cell lymphocyte (CTL) responses

(known hallmarks of chronic inflammation in COPD) (442), currently,

it’s not known how dysbiosis induces DCs into either type 1 or 2 DCs,

which ultimately dictates CD4+T cell phenotypes.
T cells and the microbiome

As previously described, continuous microbial sampling and

trafficking by activated DCs, and alveolar macrophages deliver

processed microbial antigens to naïve CD4+T and CD8+T cells within

MALT and draining lymph nodes (439) (Figures 4, 5). Following

microbial-driven immune sensing and activation, the production of IL-
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12, IL-23, IL-27, and notch ligand by airway DCs, alveolar macrophages,

and epithelial cells induces a Th1 response that regulates mucosal

colonization by potentially pathogenic bacteria (439). The microbiome

is required for optimal mucosal T-cell development, function, and

memory. This role has been demonstrated in intestinal mouse models

where germ-free mice have been observed to have developmental defects

in lymphoid tissues (446, 447). Specifically, these animals display reduced

frequencies of mucosal CD4+ and CD8+T cells and decreased numbers

of TCR-expressing intraepithelial lymphocytes. Among CD4+T cell

phenotypes, microbiome-mediated mucosal inflammation has been

strongly linked to aberrant Th17 and suppressed Treg responses in

COPD. For instance, enrichment of the lungmicrobiome with oral taxa is

associated with Th17 lung inflammation in COPD (39). Similarly, in

bleomycin-induced mouse interstitial pulmonary fibrosis (IPF), airway

dysbiosis induces IL-17 cytokine, which ameliorates following either

specific airway bacterial depletion or IL-17 blockade. Three commensal

bacteria belonging to the genera Bacteroides and Prevotella promote

fibrotic pathogenesis through MyD88-dependent IL-17R signaling via

bacterial exosomes (448). These findings have been replicated in human

studies where Prevotella and Veillonella spp have been associated with

enhanced Th17 inflammatory response in COPD (449). In another

animal-based study, S. mitis, V. parvula, and P. melaninogenica

induced dysbiosis-mediated inflammasome and Th1/Th17 activation

with reduced susceptibility to S. pneumoniae. These data imply an

immunoprotective role of specific bacterial species in the airways (40).

However, chronic Th17 inflammation in persistent dysbiosis promotes

lung tissue damage (448). Besides Th17, microbial interaction with

mucosal CD4+T cells induces immune tolerance. This process involves

several mechanisms extensively described elsewhere (450). We highlight

some of these mechanisms here. MyD88-dependent TLR2 activation by

microbial-derived PAMPs, such as capsular polysaccharide A from B.

fragilis, has been shown to induce the expansion of Foxp3+Tcells within

the mucosa (451). Foxp3+T cells drive IL-10 production, facilitating

mucosal immune tolerance. B. fragilis have also been shown to deliver

antigenic products through bacterial exosomes, which upon phagocytosis

by host immune cells via a non-canonical autophagy pathway, induce IL-

10 expressing Foxp3+T cells (450, 452). In another mechanism,

microbial-induced Tregs promote mucosal memory B or plasma cells’

IgA secretion, epithelial cells’ tight-junction protein expression, and

goblet cells’ mucus production in an IL-10-dependent manner (453,

454). This maintains microbial biomass and diversity and facilitates Treg

expansion through a symbiotic regulatory loop, preventing overt

inflammation (450). Short-chain fatty acids potentiate Foxp3+ cell

differentiation and immunomodulatory activity in the gut mucosa as

previously discussed (87–89, 455). This evidence implies a tight

regulatory role played by mucosal commensal bacteria in maintaining

a robust mucosal Treg response. In dysbiosis, however, a heightened

Th17 immune response increases TGF-b production with consequent

Treg downregulation (456, 457).
B cells, mucosal surface IgA, and COPD

A recently published article describes the role of the microbiome in

shaping B-cell immune responses (63). The authors discuss microbiome-

driven B cell immune activation, antibody class switching from IgM to

IgA, and maintenance of memory B or plasma cells at the mucosal
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surface (63, 458–460). Although studies referenced in this article are

biased toward the gut mucosa, emerging evidence from airway studies

confirms the engagement of similar immune responses (461). Upon

antigenic encounter at the mucosa, naïve B cells, via antigen-specific B

cell receptors, engage the antigen, inducing an activating signal. B cells

proliferate and undergo clonal selection, affinity maturation, and class

switching within mucosal lymphoid tissue and some in lymph nodes,

producing high-quality IgA antibodies (462). This process largely

depends on T follicular helper cells (461). A recent study revealed

increased expression of the cytokine IL-21 among patients with COPD,

primarily in CD4+T cells. IL-21 promotes B cell maturation, antibody

affinity maturation, and differentiation into plasma cells. Without co-

stimulation, B cells exposed to IL-21 undergo apoptosis which controls

bystander B cell immune activation (463). In addition to T cell-

dependent help, evidence shows that bacterial products such as LPS

can induce human IgM+ B cells to directly class switch to IgA-secreting

plasma cells (461). T-independent induction of IgA has been shown to

occur in isolated lymphoid follicles and the mucosal lamina propria,

generating polyreactive IgA with low affinity for commensal bacteria

(462). Upon production by plasma cells, IgA is transported across the

mucosal epithelial cells via transcytosis and secreted onto the mucosal

surface in a process that requires the binding of dimeric IgA to the

polymeric IgA receptor, at least in intestinal models (464). Mucosal

surface IgA preserves microbial ecology at the mucosa in several ways. It

binds and enchains dividing bacteria, limiting their association with the

epithelial cells (465). Selective binding of IgA to some bacterial species

also inhibits bacterial cell growth. Studies have demonstrated the

induction of sustained commensal-specific IgA memory responses,

which become attenuated when a new bacterial strain or species

invades the mucosa (458). This evidence implies a continuous IgA

repertoire modification to match the dynamic changes in the mucosal

microbial communities. This is possible via re-entry and further affinity

maturation by somatic hypermutation of existing B cell memory clones

in the mucosal lymphoid tissue (466). Bacterial coating with IgM and IgG

has also been demonstrated in human intestinal models. Specifically,

IgM-secreting plasma cells recognize mucus-dwelling commensals (467).

Without IgA, a compensatory IgM response ensues to contain the

bacteria (467). It is worth mentioning that microbiome-specific IgA,

IgM, and IgG antibodies produced locally can act systemically in similar

mechanisms as already described in the gut-lung axis (468). Microbiome-

derived metabolites also modulate B cell immune function via induction

of epigenetic changes via HDAC inhibitory activity, which induces

histone acetylation, enhancing gene expression necessary for B cell

differentiation into IgA/G secreting plasma cells (189, 469).

Following the proposition that autoimmunity significantly

contributes to COPD pathogenesis, investigators have concentrated

their efforts on underpinning the role of B cell immune responses in

COPD (470–475). Earlier studies demonstrated the presence of lung

lymphoid follicles and elastin-specific antibodies among patients with

advanced emphysema (476, 477). Furthermore, unbiased gene

expression analysis among emphysema patients revealed a strong

link between airway B cells and emphysema (478). This preliminary

data provided evidence to investigate further the mechanistic role of B

cells in COPD pathogenesis. Studies have additionally demonstrated

B cells’ critical role in promoting COPD immunopathology (479–

491). For instance, enhanced B cell differentiation into IgA-producing

plasma cells has been demonstrated in the airways of COPD patients,
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where the bronchial epithelial cells primarily provide B cell

differentiating signals via the IL-6/IL-6 receptor and BAFF-APRIL/

TACI pathways (492). IgA-producing B cells are increased in the

distal airways of COPD patients compared to healthy controls and

positively correlate with COPD severity scores (461). Results are

similar in animal models following infection with P. aeruginosa, a

known pathogen in COPD (461). Mechanistically, the direct role of

mucosal IgA in inducing lung damage has not yet been fully

elucidated (493). The non-inflammatory nature of IgA highly

suggests that this molecule is less likely to contribute to COPD

pathogenesis directly. However, evidence from known pathological

consequences of IgA, such as IgA nephropathy (494), warrants

further investigation into the direct role of IgA in COPD pathology.

In airway dysbiosis, increased mucosal surface IgA is associated with

airway inflammation in COPD (495–499).
Conclusion

This review highlights numerous airway microbiome-mediated

immune pathways, mostly in animal models, that drive COPD

pathogenesis. Such responses are characterized by alveolar

macrophage, dendritic cell, neutrophil, monocyte, innate lymphoid

cell, and Th1/Th17 cell activation phenotypes whose interaction with

airway epithelial cells culminates into sustained lung inflammation

and tissue damage. Although a few human-based COPD studies have

also been highlighted, more research is needed to test and validate

these findings in human COPD cohorts. Immunophenotyping

microbiome habitats has the potential to advance microbiome-

based therapeutics. Microbiome-resulting local immunophenotypes

are, however, thus far poorly characterized. Accordingly, deep

immune phenotyping of the airway host-microbiome interface,

possible through multi-omics approaches, may meaningfully inform

far more precise interventions in COPD (500).
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commensals restore colonization resistance to vancomycin-resistant enterococcus
faecium. Cell Host Microbe (2017) 21(5):592–602.e4. doi: 10.1016/j.chom.2017.04.002

238. Papatriantafyllou M. Inflammasome shapes the microbiota. Nat Rev Immunol
(2011) 11(7):439. doi: 10.1038/nri3012

239. Hara H, Seregin SS, Yang D, Fukase K, Chamaillard M, Alnemri ES, et al. The
NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen
infection. Cell (2018) 175(6):1651–64.e14. doi: 10.1016/j.cell.2018.09.047
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