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Application of individualized
multimodal radiotherapy
combined with immunotherapy
in metastatic tumors
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Radiotherapy is one of the mainstays of cancer treatment. More than half of

cancer patients receive radiation therapy. In addition to the well-known direct

tumoricidal effect, radiotherapy has immunomodulatory properties. When

combined with immunotherapy, radiotherapy, especially high-dose

radiotherapy (HDRT), exert superior systemic effects on distal and

unirradiated tumors, which is called abscopal effect. However, these effects

are not always effective for cancer patients. Therefore, many studies have

focused on exploring the optimized radiotherapy regimens to further enhance

the antitumor immunity of HDRT and reduce its immunosuppressive effect.

Several studies have shown that low-dose radiotherapy (LDRT) can effectively

reprogram the tumor microenvironment, thereby potentially overcoming the

immunosuppressive stroma induced by HDRT. However, bridging the gap

between preclinical commitment and effective clinical delivery is challenging.

In this review, we summarized the existing studies supporting the combined

use of HDRT and LDRT to synergistically enhance antitumor immunity, and

provided ideas for the individualized clinical application of multimodal

radiotherapy (HDRT+LDRT) combined with immunotherapy.
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Introduction

Radiotherapy has long been the cornerstone of cancer

treatment for curative purposes as well as palliative relief of

symptoms, thereby improving quality of life (1–4). In addition to

inducing irreparable DNA damage with direct cytotoxic effects

on cancer cells, there is growing evidence that radiotherapy can

modulate the immune system, resulting in systemic antitumor

immunity (5, 6). This systemic response is called abscopal effect,

that is, radiation targeting one tumor lesion can induce in situ

vaccination by killing tumor cells, and then lead to the regression

of distant unirradiated tumors (7–9). Although radiotherapy

alone rarely induces abscopal effects, the potential systemic

antitumor ability provides a good basis for radiotherapy

combined with immunotherapy.

Immunotherapy has been recognized as an effective

oncologic therapy. In particular, immune checkpoint inhibitors

(ICIs) have achieved surprising clinical efficacy in the treatment

of advanced solid tumors (10–12). However, only a minority of

patients with advanced cancers can experience persistent and

stable benefit from ICIs alone (13). As a result, many clinical

trials are exploring the synergistic effect of radiation therapy

combined with immunotherapy to enhance antitumor

immunity (14–18). The updated data of PACIFIC Trial

demonstrated robust and sustained overall survival (OS) and

durable progression free survival (PFS) benefit with durvalumab

after chemoradiotherapy in patients with unresectable, stage III

non-small-cell lung cancer (NSCLC) (19). These compelling

clinical evidences provide a basis for further exploration of the

best combination regimen.

The stereotactic body radiation therapy (SBRT, also known

as stereotactic ablative radiotherapy [SABR]) is increasingly used

to deliver highly targeted high doses with fewer fractions,

because of the high rates of local tumor control with tolerable

toxicity (20–22). In addition, high-dose radiotherapy (HDRT,

such as SBRT) is more immunogenic than conventional

radiotherapy. HDRT can mobilize innate and adaptive

immunity against tumors (23–26). Therefore, scholars focused

on the combination of HDRT with immunotherapy to enhance

the antitumor immunity of patients. Several clinical studies have

shown that SBRT combined with ICIs can significantly improve

the response rates in metastatic tumors with well tolerated (27–

29). Despite previous progression on anti-PD-1 therapy, SBRT

has reinvigorated a systemic response (30). Nevertheless, in

some cases, SBRT in conjunction with ICIs may not eliminate

distant tumors, and benefit only a small fraction of patients (31,

32). HDRT can sometimes have inhibitory effects on antitumor

immunity, such as recruiting immunosuppressive cells and

increasing the secretion of immunoregulatory cytokines (33,

34). It is urgent to overcome the immune-suppressive barriers

to increase the beneficiary population of immunotherapy.
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Many studies have shown that low-dose radiotherapy

(LDRT), i.e., lower than 2 Gy/fraction, can effectively

reprogram the stroma from an immunosuppressive to

immunostimulatory and synergize with immunotherapy

(35–37). Interestingly, the mechanisms by which HDRT and

LDRT regulate the antitumor immune system appear to be

complementary (38). Therefore, the use of the multimodal

radiotherapy regimen, such as HDRT and LDRT, can achieve

optimal antitumor effects. We first proposed the concept of

multimodal radiotherapy, that is, the combination of different

radiotherapy modalities, such as SBRT combined with

intensity modulated radiotherapy (IMRT), SBRT combined

with LDRT, HDRT combined with LDRT, etc. Savage et al.,

compared a single-dose ablative fractionation of 24Gy with

22Gy followed by 4 fractions of 0.5Gy targeting the local

tumor in C57BL/6 mice. They found that the addition of

LDRT delayed local tumor progression and significantly

improved survival. In addition, survival was significantly

increased after whole-lung radiated by low dose (0.5Gyx4f),

12 days after completion of the primary tumor radiation

(20Gyx3f) (39). Furthermore, some preclinical and clinical

studies showed that the multimodal radiotherapy (HDRT and

LDRT) combined with immunotherapy can enhance systemic

anti-tumor immune responses (40–44). However, there are

many problems about this novel combination therapy

strategy. For example, the selection of immunotherapy

agents, the sequence of multimodal radiotherapy combined

with immunotherapy, the dose of radiation, the number of

fractions, the site of high-dose irradiation, and the site of low-

dose irradiation.

In this review, we discussed the optimal radiotherapy

regimens for enhancing antitumor immunity. First, we

investigated the modulation of radiation on the immune

system, including immunoenhancing and immunosuppressive

effects. Furthermore, we described the different mechanisms of

HDRT and LDRT in immune regulation. Finally, we studied the

rationale for combining multimodal radiotherapy (HDRT and

LDRT) with immunotherapy to enhance antitumor

immune responses.
The direct killing effect of radiation
on tumor cells

Radiation therapy has been widely used to treat malignant

tumors since the discovery of X-ray by Roentgen in 1895 (45).

Approximately 60-70% of cancer patients require radiation

therapy during treatment (7). In 1911, Regaud et al. proposed

the concept of fractionated radiotherapy, in which a large

doses can be divided into fractions over days or weeks (46).

Nowadays, the conventional fractionated radiotherapy
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regimen is usually 1.8-2 Gy daily, 5 fractions/week.

Hypofractionated radiotherapy refers to increasing the single

irradiation dose >2 Gy, which has the advantage of shortening

the treatment time span of patients and avoiding accelerated

tumor proliferation after radiotherapy. Over the past few

decades, the field of radiation has undergone tremendous

technological innovations that can significantly reduce

radiat ion damage to heal thy t issues with modern

radiotherapy techniques such as helical tomotherapy, IMRT,

proton radiotherapy, SBRT and FLASH radiotherapy (22,

47–52).

Irradiation can directly cause DNA damage, such as single-

strand breaks (SSBs), double-strand breaks (DSBs), DNA cross-

links, and DNA-protein cross-links, resulting in therapeutic

effects on tumor cells, such as apoptosis, necrosis, senescence,

and mitotic abnormalities (53, 54). Irradiation can indirectly

induce damage to DNA molecular chain in cancer cells by

ionizing water molecules to generate H+ and OH- (55). This

indirect effect requires oxygen. Therefore, some hypoxic tumors

are resistant to radiation, which is one of the reasons for tumor

recurrence after radiotherapy. Hypoxia in hypoxic tumors

causes less DNA damage than in well-oxygenated tumors at

the same dose of radiation. In addition, hypoxia leads to

activation of the hypoxia inducible factor (HIF) signaling

pathway. Activation of HIF1 can affect the expression of

hundreds of genes, including vascular endothelial growth

factor (VEGF) and angiopoietin-1 (ANGPT1), which promote

tumor survival (56). It also drives the expression of key enzymes

in glycolysis, resulting in the accumulation of lactic acid,

pyruvate, and the antioxidants glutathione and NADPH to

limit DNA damage (57). Therefore, radiation alone is not

enough to kill all cancer cells, and it is necessary to study

combination therapy.
Effects of radiation on the
immune system

Traditionally, it is believed that radiotherapy leads to the

death of tumor cells through irreversible damage to DNA.

Many studies have found that the local killing effects of

radiotherapy can be enhanced or reduced by stimulating or

inhibiting the immune response in two different ways (58–60).

Radiotherapy is involved in the modulation of many immune

processes, such as cancer antigens release and presentation, T

lymphocytes priming and activation, T cells recruitment and

accumulation into tumor, T lymphocytes recognition and

killing of tumor cells (61). The regimens of radiotherapy and

the biological characteristics of the tumor also affect changes in

immune responses.
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In situ tumor vaccine induced
by radiation

Radiation results in the release of DNA DSBs from tumor

cells into the cytoplasm (62). Cytosolic DNA is sensed by the

cyclic GMP-AMP synthase stimulator (cGAS–STING) pathway

of interferon genes. cGAS is a pattern recognition receptor that

triggers the production of interferon I (IFN-I) through the

downstream linker stimulator of interferon genes (STING)

(63–65). IFN-I can stimulate dendritic cells (DCs) and T cell

activation. This is critical for converting tumors into in situ

vaccines (66). There is clinical evidence that IFN-I signaling is

activated in spontaneously retreating tumors (67) and in

metastases highly infiltrated by T cells (68, 69).

Radiation can induce immunogenic cell death (ICD), which

can induce (local and/or systemic) release of tumor-associated

antigens (TAAs), especially tumor neoantigens (TNAs) (70, 71).

ICD is defined as a type of regulated cell death characterized by

the release of damage-associated molecular patterns (DAMPs)

after cells lose membrane integrity. DAMPs include calreticulin

(CRT), the chromatin stabilization protein high-mobility group

box 1 (HMGB1), adenosine triphosphate (ATP), and chaperons

of the family of heat shock protein (e.g. HSP70) (72, 73). ICD

leads to an adaptive immune response by favoring DC cross-

presentation of tumor antigens to T cells. This can enhance anti-

tumor immune responses and improve tumor control (72).

DAMPs and cytokines play important roles in radiation-

induced ICD. First, calreticulin (CRT) is translocated from the

endoplasmic reticulum to the cell surface and can act as an “eat-

me” signal to antigen-presenting cells (APCs) (especially DCs

and macrophages), via binding CD91 (a 2-macroglobulin

receptor) (74, 75). This induces the subsequent release of

cytokines, such as interleukin-6 (IL-6) and tumor necrosis

factor alpha (TNF-a) (76). The CRT-CD91 interaction also

mediates the recruitment of APCs to tumors, followed by DC

phagocytosis of tumor cells and efficient presentation of tumor

antigens to T cells. This ultimately leads to the activation of anti-

tumor immune responses (77). Radiation can further enhance

the endocytic activity of APCs by interfering with the CD47-

signal regulatory protein a (SIRPa) phagocytic checkpoint

pathway (78–81). CD47 is a marker of self-”don’t eat me

signal”, and its loss on senescent or damaged cells leads to

homeostatic phagocytosis (82). Importantly, CD47 is

overexpressed in many tumors, and CD47 blockade has been

identified as an attractive immunotherapeutic target (83, 84).

Radiation induced loss of CD47 has been reported to enhance

immune-mediated tumor clearance (78). Second, high-mobility

group box 1 (HMGB1) is released from dying, necrotic, damaged

tumor cells into the immune milieu and exerts robust

immunomodulatory effects by binding to Toll-like receptor
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(TLR)-4 and TLR-9 (85, 86). HMGB1 can promote DCs

maturation and migration to lymph nodes for antigen cross-

presentation to naive T cells (87). Third, the release of ATP,

which binds to the purinergic receptor P2X7, acts as a “find me”

signal for monocytes and DCs, leading to the activation of

NLRP3/ASC/caspase-1 inflammasome, and ultimately induce

the production of IL-18 and IL-1b (88). IL-1b promotes the

activation of IFN-g-producing tumor antigen-specific CD8+ T

cells (89). Fourth, HSP70 can be translocated from the cytoplasm

to the extracellular matrix under conditions of radiation-

induced cellular stress (90). HSP70 can activate monocytes,

macrophages, and DCs by binding to CD14, CD40, CD91,

Lox1 and Toll-like receptors (TLR2 and TLR4) (91). These

results showed that the release of danger signals is critical for

activating of antigen-presenting cells and for enhancing the

immune response to tumor cells.

The cumulative effects of these molecular signals promote

DCs phagocytosis of tumor cells, thereby facilitating DCs

processing of tumor-derived antigens and subsequent DC-

mediated cross-presentation to CD8+ cytotoxic T lymphocytes

to release or induce type I interferons. Overall, radiation can

induce ICD, an important pathway for activating antitumor

immunity, which can transform tumors into an “in situ vaccine”.
Abscopal effect induced by radiation

In 1953, the abscopal effect was first described as the

regression of unirradiated tumors in a patient receiving

radiation therapy (92). Over past decades, the abscopal effect is

of great interest among radiation oncologists, but it remains a

rare and poorly understood phenomenon in the clinic. In the era

of cancer immunotherapy, many studies have found that

radiotherapy combined with immunotherapy can enhance the

abscopal effect (93–95). The key mechanism of this abscopal

effect is radiation-induced in situ vaccination through liberating

TAAs (7, 96). These neoantigens are then taken up by APCs,

which are involved in the cross-priming of naive CD8+ T cells.

Activated tumor-specific CD8+ cytotoxic T cells can move to the

primary tumor and the metastatic lesions, activate systemic

immunogenicity, induce abscopal effects, and control the

growth of irradiated and non-irradiated tumors (60, 97).
Reprogramming the tumor
microenvironment through radiation

The tumor microenvironment (TME) is the internal

environment on which tumor survival and development

depends, and is associated with tumor growth, progression,

and metastasis (98, 99). The dynamic changes in the TME lead

to tumor cell variant selection. This results in the complexity of
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cancer heterogeneity and influences responses to different

therapeutic strategies (100–102). TME can be segregated into

four immune phenotypes based on tumor mutational burden

and the presence of an inflammatory gene signature enriched for

IFN-g response genes (103). Chen et al. (61) classified TME into

three types: an immune-inflamed, an immune-deserted and an

immune-excluded. The TME of inflamed type, a “hot”

phenotype with highly infiltration of CD4+ and CD8+ T cells,

is accompanied by myeloid cells and monocytic cells. In

addition, the immune cells are located in proximity to the

tumor cells. Excellent responses to anti-PD-L1/PD-1 agents

are most often in patients with inflamed tumors (104–106).

On the contrary, the TME of deserted type refers to a “cold”

phenotype lacking T lymphocytes infiltration in either the

parenchyma or the stroma of the tumor. These deserted

tumors rarely respond to therapeutic PD-L1/PD-1 antibodies

(104). The TME of the immune-excluded type is an intermediate

state characterized by the presence of abundant immune cells.

However, the immune cells do not penetrate the tumor

parenchyma, but instead remain in the stroma surrounding

tumor cell nests (107, 108). Clinical responses are uncommon

after anti-PD-L1/PD-1 treatment of these immune-excluded

tumors. There is evidence of stroma-associated T cell

activation and proliferation, but no infiltration (109). It is not

clear how radiotherapy induces an immune-activating TME and

radiotherapy leads to an immunosuppressive TME.
Immune-enhancing effects of
radiation in TME

More and more evidences indicated that radiotherapy can

enhance innate and adaptive immune responses to tumors,

thereby enhancing tumor responsiveness to radiation (110–

113). Radiation therapy can induce the in situ tumor vaccine,

thereby promoting the activation and maturation of DCs. DCs

take up TAAs from damaged tumor cells and move to draining

lymph nodes, and then present TAAs to T cells. Activated T cells

can move to tumors to kill tumor cells. In addition, radiotherapy

can upregulate the NK pathway to mediate tumor cells killing.

The in situ vaccination effect of radiation contributes to the

uptake, processing and presentation of TAAs by DCs (such as

CD11c+CD11b+ APCs) (114, 115). DCs (specialized APCs) can

cross-presenting extracellular antigens, especially cell-associated

antigens, to CD8+ T cells (116, 117). Many studies have shown

that radiation can increase the levels of tumor-associated DCs,

enhance the mobilization of these cells into draining lymph

nodes, augment DCs maturation, and promote the ability of DCs

(59, 60, 118). CD40 agonists are known to enhance DC function

by increasing the surface expression of major histocompatibility

complex (MHC) molecules and the production of

proinflammatory cytokines (119). The cross-priming process
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requires the cognate T-cell receptors (TCR) to recognize the

peptide major histocompatibility complex (MHC), which

requires the costimulatory molecules CD80/86-CD28/cytotoxic

T lymphocyte-associated protein 4 (CTLA4) and CD40L-CD40.

Radiation can upregulate MHC-I molecules on tumor cells,

thereby enhancing TAA presentation (120). This enhances

tumor cells recognized by cytotoxic T cells specific to tumor

antigen, and lysis of tumor cells by cytotoxic T cells. Radiation

induces an increase in MHC I antigen presentation through

three different mechanisms: (1) a proteasome-dependent

increase in cytosolic peptide levels; (2) activation of the mTOR

pathway leads to increased translation of proteins; (3)

an increased generation of radiation-specific peptides

(120). In addition to these cell intrinsic mechanisms of

MHC-I induction, radiation-induced IFN-g induces MHC-

I upregulation (121). Therefore, radiation can increase MHC-I

levels in some tumors with low endogenous MHC-I, thereby

increasing immune-mediated attack. Furthermore, radiation

upregulates the NK pathway by activating natural killer group

2D (NKG2D) ligands, and increasing NK cell cytotoxicity,

tumor infiltration, and the production of many cytokines (112,

122). In addition, radiation can upregulate Fas expression by

tumor cells, resulting in increased cytotoxic T cell lysis through a

Fas/FasL-dependent mechanism (123). Radiation can induce the

expression of cytokines and chemokines, such as CXC-motif

chemokine (CXCL) 9, CXCL10, CXCL11 and CXCL16, thereby

promoting the recruitment of effector CD8 and T-helper 1 CD4

T cells (124, 125). Radiation induces increased expression of

vascular cell adhesion molecule 1 (VCAM-1) and intercellular

adhesion molecule 1 (ICAM1) in tumor vessels, thereby

promoting tumor infiltration by T lymphocytes (7, 126). Many

studies have indicated that the presence of tumor-infiltrating

lymphocytes, especially effector T cells, before therapy is

associated with better survival in cancer patients (127, 128).

Anitei et al. found that the densities of CD3+ T cells and

cytotoxic CD8+ T lymphocytes were significantly correlated

with disease-free survival and overall survival in patients with

rectal cancer treated with chemoradiotherapy (129). Therefore,

radiation induces the release of chemokines that subsequently

enrich the T−cell infiltrate, and enhance priming of infiltrating T

cells, thereby providing a positive immunological outcome.

It is clearly that radiation can act on multiple tumor

compartments to stimulate the tumor immune system. The

antitumor immune-enhancing effects of radiotherapy were

shown in Figure 1.
Immunosuppressive effects of
radiation in the TME

In addition to modulating the TME to generate antitumor

immune responses, radiation can lead to immunosuppression
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of the TME and induce the expression of molecules that

prevent DCs from cross-presenting tumor antigens and/or T

cells to kill tumor cells. It is necessary to study this topic,

because the suppression of the immune microenvironment

leads to worse prognosis, and it may also be a legitimate

therapeutic target.

Many studies have shown that radiation can lead to the

recruitment of regulatory T cells (Tregs), myeloid derived

suppressor cells (MDSCs) and tumor associated macrophages

(TAMs) in the tumor microenvironment (123, 130, 131). Tregs

are a subset of CD4+ T cells characterized by the expression of

the transcription factor fork head box P3 (FOXP3). Tregs

produce the cytokines transforming growth factor beta (TGF-

b) and IL−10. This suppresses effector-T−cell activation and

stimulates the suppressive functions of MDSCs (132). These

results indicate that Tregs in tumors develop enhanced

immunosuppressive properties after radiotherapy. Many

studies indicate that the presence of highly suppressed Tregs

in the circulation may represent a highly immunosuppressive

environment induced by chemoradiotherapy, at least

temporarily, in patients with glioblastoma and head and neck

or cervical cancer (133–135). Therefore, targeting Tregs and/or

their immunosuppressive effector molecules may be the key to

reversing immunosuppression (136–138). After radiation

therapy, the increased MDSCs can suppress the activation of

both CD4+ and CD8+ T-cell responses in the TME via

secretion of arginase-1 (ARG1) and nitric oxide synthase 2

(NOS2) (139, 140). In addition, MDSCs promote blood vessel

formation and tumor regrowth (141, 142). Many studies in a

variety of tumor models have shown that radiotherapy induces

the recruitment of macrophages into tumor sites (123, 143).

Radiation-induced recruitment of TAMs was dependent on

increased expression of the chemokine CSF-1 (144). Although

M1 macrophages can promote inflammation and antitumor

immune responses, the M2 phenotype can promote tumor

growth, angiogenesis, and metastasis after radiation (145,

146). Irradiated tumor cells release oxygen and nitrogen

radicals that promote the polarization of macrophages from

an inflammatory M1 phenotype into a tumor-supporting M2

phenotype. These M2 macrophages secrete the anti-

inflammatory cytokines IL-10 and TGF-b, as well as the

enzyme arginase-1, which lead to T cell suppression (147,

148). TGF-b can promote extracellular matrix production and

angiogenesis, resulting in tumor cell proliferation, adhesion

and metastasis (149, 150). TGF-b can impede anti-tumor

immunity post-radiation by suppressing the effector

functions of T-cells and natural killer cells, inhibiting DC

maturation, promoting M2 macrophage polarity and the

conversion of CD4 + T-cells into immunosuppressive Tregs

(151). Radiation can stimulate the upregulation of immune

checkpoint inhibitory molecules, such as programmed cell

death ligand 1 (PD-L1) on tumor cells and PD-1 or CTLA-4
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on cytotoxic T cells (CTLs). This can directly inhibit cytotoxic

immune cell effector functions (152, 153). Therefore, when

radiotherapy is combined with immune checkpoint inhibitors

(such as anti-PD-1 antibody, anti-PD-L1 antibody and anti-

CTLA4 antibody), T cell activity directed against tumor cells

can be increased.
In summary, radiation can promote the recruitment and

activation of DCs and cytotoxic T cells through a variety of

mechanisms, but this may be counteracted by the migration of

suppressive immune cells. This presents an opportunity to

combine radiation with immunomodulatory agents to improve

tumor control. The immunosuppressive effects of radiotherapy

were shown in Figure 2.
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The best combination of radiation
therapy and immunotherapy

Radiation is increasingly used to control tumors locally,

especially SBRT, with high rates of local control and significant

benefits in terms of overall survival in many randomized trials (20,

154, 155). However, local tumor recurrence and distant tumor

metastasis frequently occur when radiation therapy is used alone

(156). Therefore, it is necessary to combine radiation therapy with

other treatment options.

Immunotherapy has attracted great interest, and has

become an established pillar of cancer therapeutics (99,
FIGURE 1

Antitumor immune enhancement of radiotherapy. Radiation therapy causes DNA DSBs in tumor cells and is sensed by the cGAS–STING
pathway, resulting in the production of interferon I (IFN-I). In turn, IFN-I can stimulate dendritic cells (DCs) and T cell activation. Radiation
therapy can induce immunogenic cell death. This releases danger-associated molecular patterns that promotes the activation and maturation of
dendritic cells. DCs take up tumor-associated antigens (TAAs) from damaged tumor cells and travel to draining lymph nodes, and then present
the TAAs on major histocompatibility complex class I (MHCI) to T cells through the T-cell receptor (TCR). Activated T cells move to the
irradiated tumor and non-irradiated tumors through the blood circulation. Radiation can upregulate Fas and MHC-I molecules expression on
tumors, and increase the release of cytokines and chemokines by tumor cells. This promotes the recruitment of activated T cells to kill tumor
cells. In addition, radiation can upregulate the NK pathway to mediate tumor cells killing.
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157). Unfortunately, most immunotherapeutic strategies are

not effective in inducing tumor regression when used alone,

and a large number of patients do not respond or become

refractory to immunotherapy (106, 158, 159). The overall

response rate to anti-CTLA-4 antibody is around 15%, while

the response rate to PD-1/PD-L1 antibodies was < 25% (160).

There are serval reasons to prevent immunotherapy from

reaching its full potential. First, the priming of tumor

antigen-reactive T cells is insufficient. Second, the

infiltration of antitumor effectors into the tumor was weak.

Th i r d , t h e t umo r m i c r o e n v i r onmen t i s h i g h l y

immunosuppressive. Fourth, cancer cells effectively evade

recognition by immune effectors with impaired tumor-

associated antigen presentation (101, 161, 162). It is a great

clinical challenge to overcome immunotherapy resistance.

Many studies showed that radiotherapy and immunotherapy

are complementary. Irradiated tumors exhibit distinct patterns of

immunogenicity, thereby improving response to immunotherapy

(93). In addition, tumors with immunotherapy are more sensitive

to radiotherapy. This can promote the localized treatment of
Frontiers in Immunology 07
tumors. Many studies found that radiation with ICIs can

successfully treat metastatic cancers. This not only induced a

local response, but also significantly regressed distant lesions

outside the irradiation field (163–167). Theelen et al. pointed

out that the addition of radiotherapy to pembrolizumab

immunotherapy significantly improved abscopal responses and

survival in patients with metastatic non-small-cell lung cancer

(NSCLC), compared with pembrolizumab alone (29). This

indicates that radiotherapy can convert non-responders to ICIs

into responders.

Although radiotherapy combined with immunotherapy can

improve the immune response, not every combination of

radiation and immunization has been validated in clinical

trials (32, 168). To further improve the anti-tumor ability, we

need to select the appropriate patient population, explore the

optimal radiotherapy regimens (dose, fractionation and

volume), immunotherapy regimens (such as CTLA-4

inhibitors and PD-1/PD-L1 inhibitors), the sequence of

radiotherapy and immunotherapy, and reduce the

immunosuppressive effects and toxicity of radiotherapy.
FIGURE 2

Immunosuppressive effects of radiotherapy. Radiation induces the recruitment of regulatory T cells (Tregs), myeloid derived suppressor cells
(MDSCs) and tumor associated macrophages (TAMs) in the tumor microenvironment (TME). Tregs produce transforming growth factor beta
(TGFb) and IL-10, which suppress effector-T-cell activation. MDSCs can suppress the activation of T-cell responses via secretion of arginase-1
(ARG1) and nitric oxide synthase 2 (NOS2). Radiation can promote the polarization of macrophages from an inflammatory M1 phenotype into a
tumor-supporting M2 phenotype. These M2 macrophages secrete IL-10 and TGFb and the enzyme arginase-1, which suppress T cell. TGFb can
suppress the effector functions of T-cells and natural killer (NK) cells, inhibiting DC maturation, and promoting M2 macrophage polarity.
Radiation stimulates upregulation of immune checkpoint inhibitory molecules, such as programmed cell death ligand 1 (PD-L1) on tumor cells
and PD-1 or CTLA-4 on cytotoxic T cells, which down regulate T cell activation. These effects suppress the antitumor immunity and promote
tumor cell regrowth.
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The appropriate radiotherapy
regimens in combination
with immunotherapy

Radiotherapy is a double-edged sword that is associated with

immune activation and immune suppression. Therefore, it is

necessary to study the optimal dose and fraction of radiotherapy

to achieve optimal anti-tumor effects in combination

with immunotherapy.
High-dose radiotherapy promotes
tumor immunogenicity

Many studies have shown that HDRT (such as SBRT) in

combination with ICIs is more likely to cause tumor cell

necrosis, enhance anti-tumor immunity, and lead to significant

tumor control (94, 169). HDRT has showed a more potent

immunogenic effect against cancer cells than conventional

radiotherapy (usually 1.8–2 Gy per day) (23, 25). The

conventional radiotherapy usually lasts for several weeks.

Therefore, lymphocytes can be rapidly cleared from the

irradiated field, reducing tumor antigen-specific T cell

populations through sustained site-specific cytotoxicity. HDRT

takes advantages over traditional radiation therapy when

combined with immunotherapy.

Exposed tumor to a radiation dose ranging from 5 and 12 Gy

per fraction, the number of infiltrated CD8+ cytotoxic T cells and

NK cells were increased, while the number of Tregs was

decreased. This is associated with the release of more anti-

cancer cytokines, such as IFN-g and TNF-a, and less immune

suppressor cytokines, such as TGF-b and IL-10 (93, 170).

Morisada et al. used hypo-fractioned radiation (8Gy*2f) or

low-dose daily fractionated radiation (2Gy*10f) combined with

anti-PD-1 antibody to treat mice bearing established syngeneic

MOC1 oral carcinomas or MC38-CEA colon adenocarcinomas.

They found that high-dose and low-dose fractionated radiation

alone showed similar primary tumor control. However, anti-PD-

1 antibody plus 8Gy*2f radiation rather than 2Gy*10f radiation,

statistically significant enhanced CD8+ cell dependent primary

and abscopal tumors control by inducing expression of IFN and

IFN-responsive genes on tumor cells (171). Lan et al. compared

ablative hypo-fractionated radiotherapy (AHFRT, 23Gy/2f/9d)

versus conventional fractionated radiotherapy (36Gy/9f/9d) in

mice bearing tumors from Lewis lung carcinoma or melanoma

B16F10 cells, under the same conditions with biological

equivalent dose (BED). They showed that AHFRT combined

with anti-PD-L1 antibody presented a superior efficacy in

controlling tumor growth and augmenting systemic anti-

cancer immunity. The mechanism is that AHFRT suppressed

the recruitment of MDSCs into tumors by regulating the VEGF/
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VEGFR axis, reduced MDSC-associated PD-L1 expression and

increased the cytotoxicity of CD8+ T cells (25).

Many studies have shown that the abscopal effect was mainly

observed in the combination of hypo-fractionated radiation

regimens with ICIs. Dewan et al. used TSA and MCA38 cells

to construct mouse tumor models. They found that fractionated

radiation (8 Gy*3f or 6 Gy*5f) combined with anti-CTLA-4

antibody rather than single-dose radiation (20 Gy*1f) can induce

an abscopal effect. In addition, 8 Gy*3f was more effective than 6

Gy*5f in eliciting systemic anti-tumor immunity combined with

anti-CTLA-4 antibody (172). They further found that 20 Gy and

30 Gy single dose can attenuate cellular immunogenicity by

inducing the DNA exonuclease Trex1 in various cancer cells,

thereby degrading cytoplasmic DNA in irradiated cells (24).

Cytosolic DNA stimulates secretion of IFN-b by cancer cells

following activation of the DNA sensor cGAS and its

downstream effector STING, which mediates optimal in situ

vaccination (173). In fact, it was observed that the higher the

dose per fraction, the more Trex1 was induced, resulting in

significant DNA degradation. Therefore, the fractionated dose

above the threshold (varies between 12 and 18 Gy in different

cancer cells) for inducing Trex1 can result in downstream

abrogation of IFN-b production, reducing DC recruitment and

activation. Finally, it fails to induce systemic antitumor immune

response (24). These results provide references for better

selection of the radiotherapy regimens. However, these results

also need to be validated clinically.

However, like conventional radiotherapy, HDRT can

suppress tumor-reactive immunity by increasing the

infiltration of Tregs and MDSCs, inducing an M2-like

phenotype, and releasing TGF-b and IL-10 (143, 174). Lin

et al. studied the effects of HDRT (8Gy/f) with and without

anti-Gr-1 using syngeneic murine allograft prostate cancer

models. They demonstrated that HDRT induced an early rise

of MDSCs, followed by an increase of functionally active CD8

tumor-infiltrating lymphocytes. However, systemic depletion of

MDSCs by anti-Gr-1 did not augment the antitumor immunity

of HDRT because of the compensatory expansion of Treg-

mediated immune suppression. This indicates that it is

necessary to block MDSCs and Tregs for enhancing

radiotherapy-induced antitumor immunity (33). Monjazeb

et al. found that although HDRT induces an increase in CD8+

T cells and CD8+/PD1+/Ki67+ T-cells in the radiation field,

HDRT may lead to a decrease in the ratio of M1/M2

macrophages in the tumor microenvironment (175).

Furthermore, HDRT can inhibit the anti-tumor immune

response by inducing tumor vascular damage. This can limit

the infiltration of cytotoxic T lymphocytes into the tumor, and

increase the hypoxic area (176, 177). Therefore, it is necessary to

study the suppression of HDRT on the immune system, because

it leads to poor prognosis, and it may be a reasonable

therapeutic target.
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In clinical practice, the combination of HDRT and

immunotherapy is sometimes not superior to immunotherapy

alone. Theelen et al. conducted a multicenter, randomized phase

2 study in advanced NSCLC patients who were treated with

pembrolizumab either alone or after SBRT (8Gy*3f). They found

that the overall response rate at 12 weeks was 18% in the

pembrolizumab alone arm vs 36% in the pembrolizumab plus

SBRT arm without statistical difference. In addition, no

improvement in PFS or OS was achieved after the addition of

SBRT (168). McBride et al. conducted another randomized

clinical trial of nivolumab versus nivolumab plus SBRT (9

Gy*3f) in patients with metastatic or recurrent head and neck

squamous cell carcinoma. The addition of SBRT to nivolumab

did not statistically improve the objective response rate, OS or

PFS, and there was no evidence of an abscopal effect in

unselected patients (32). Therefore, ICIs and SBRT have

synergistic local effects, but rare abscopal effects.

In conclusion, HDRT combined with immunotherapy does

not always induce immune-enhancing antitumor effects and is

only effective in a small subset of tumor patients. Tumor

progression can still occur even if the complete remission is

achieved. It is necessary to explore the best comprehensive

treatment strategy.
Low-dose radiotherapy reverses
tumor-suppressing immune system

Although HDRT in combination with ICIs shows promising

efficacy for clinical application, the treatment outcome still needs

to be further optimized. A recent theory proposed that LDRT

can modulate the TME, perhaps revolutionizing tumor

treatment efficacy. LDRT usually refers to doses below a

threshold, that is, the amount of doses less than that can

physically damage DNA or kill cancer cells directly (178). The

most common LDRT doses are 0.5-2 Gy/fraction, with total

doses up to 1-10 Gy (179, 180). According to previous reports,

LDRT modulated the immune suppressive stroma by

downregulating TGF-b, repolarizing macrophages to favor the

M1 over the M2 phenotype, and significantly enhancing the

infiltration of effector CD4 T cells and NK cells. LDRT improved

the efficacy of anti-PD1 and anti-CTLA4 agents, thereby

promoting the overall systemic antitumor response (41). We

will describe the ways that LDRT modulates the immune system

in detail.

First, LDRT promotes the differentiation of macrophages to

an M1-like phenotype. M2 macrophages can suppress antitumor

immunity, and promote a radioresistant phenotype by secreting

immunosuppressive mediators, such as IL-10 and TGF-b (181).

Therefore, transforming the type of macrophages is critical to

improve the immune enhancing effect. Felix Klug et al. (179)

demonstrated that LDRT (0.5-2 Gy) can effectively transform
Frontiers in Immunology 09
M2 macrophages to iNOS+ M1 phenotypes, resulting in strong

CD4+ and CD8+ T cells infiltration into human pancreatic

carcinomas. After application of 0.5 Gy, the irradiated tumors

contained the highest number of T cells, accompanied by an

increase in CD4+ FoxP3+ T cells. In addition, LDRT can induce

vascular normalization through crosstalk between macrophages

and T cells. LDRT promoted T cell-mediated tumor eradication

and prolonged survival (179). Prakash et al. irradiated advanced

tumor-bearing Rip1-Tag5 mice with LDRT (2Gy*2f). They

found profound changes in the inflammatory tumor

microenvironment, characterized by induction of M1-related

effecter cytokines as well as reduced cytokines of tumor-

promoting and M2-related effecter cytokines (182).

Furthermore, LDRT can program macrophages differentiation

to anM1-like phenotype by ameliorating the hypoxia problem of

tumors. Tumor hypoxia is known to be performed by

angiogenesis-promoting HIF-1. This promotes angiogenesis,

thereby interfering with tumor infiltration of CD8+ T cells and

retuning of M1 phenotypic macrophages across the inert

endothelium. Finally, it results in immunosuppressive effects

(183–185). Nadella et al. demonstrated that LDRT (2 Gy) can

downregulate HIF-1 in irradiated tumors, thereby supporting

the differentiation of naive macrophages toward the M1

phenotype (186). Therefore, solving the hypoxia problem of

bulk tumors can enhance the immune efficacy. LDRT has also

been clinically observed to promote the differentiation of M1-

type macrophages (175). Monjazeb et al. conducted a

multicenter phase 2 study of 20 patients with histologically

confirmed metastatic microsatellite-stable colorectal

adenocarcinoma who had received at least one line of

chemotherapy. These patients were randomly assigned to

repeated LDRT or HDRT with PD-L1/CTLA-4 inhibition.

They found that LDRT has the potential to increase the ratio

of M1/M2 macrophages (175).

Second, LDRT can promote anti-tumor cytotoxicity of NK

cells. LDRT can augment the direct expansion and cytotoxicity

of NK cells through the P38-MAPK pathway (187). In addition,

Sonn et al. found that when purified NK cells were irradiated

with 0.2 Gy, the toxicity of NK cells was enhanced, while cell

proliferation and apoptosis were unaffected (188). Cheda et al.

(189) compared BALB/c mice that received or did not receive

LDRT (single dose of 0.1 or 0.2 Gy), which were then injected

with sarcoma cells. They found that the number of pulmonary

tumor colonies was significantly reduced, and the cytolytic

function of NK cells was significantly stimulated in the

irradiated mice compared with the control group. In addition,

NK-inhibitory anti-asialo GM1 antibody can totally abolish the

tumor suppressive effect of LDRT. These results indicate that

LDRT suppresses the development of experimental tumor

metastases by stimulating the cytolytic function of NK cells.

Third, LDRT enhances T-cell infiltration. Herrera et al. (190)

reported that LDRT of murine tumors promoted T-cell

infiltration and responded to combinatorial immunotherapy in
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an IFN dependent manner. The mechanism is that LDRT

induces CD4+ cells with characteristics of exhausted effector

cytotoxic cells. One subset expressed NKG2D and exhibited

proliferative capacity, as well as a unique subset of activated DCs

expressed the NKG2D ligand RAE1. Zhou et al. established an in

vivo lung cancer model. They found that LDRT activated T cells

and NK cells, and promoted splenocyte cytotoxicity and T cell

infiltration in the tumor tissues (191). Hashimoto et al. found

that low-dose total body irradiation (0.2 Gy) increased the

proportion of CD8+ cells in splenocytes, and even tumor-

infiltrating lymphocytes were predominantly CD8+. Low-dose

total body irradiation (0.2 Gy) inhibited lung and lymph node

metastasis in tumor-bearing rats (192). In addition, low-dose

total body irradiation of 2 Gy represents a powerful tool to foster

CD4+ T cell-based cancer immunotherapies by favoring T helper

1 cells driven antitumoral immunity (193).

Fourth, LDRT can affect the function and activity of

regulatory T cells (Tregs), thereby enhancing antitumor

immunity. Tregs belong to a group of T lymphocytes that

possess a negative immune regulatory function. The increased

numbers of these cells in liver, breast, and ovarian cancer are

closely related to the immune escape, occurrence, and

development of tumor cells. Wang et al. found that LDRT (total

0.45 Gy) of the spleen can shrink tumors and increase the survival

rate of rats with liver cancer. The mechanism by which LDRT

enhances the immune effects may be that LDRT reduces the ratio

of CD4+CD25+Treg/CD4+ in the blood and Foxp3+, IL-10, TGF-b
and cytotoxic T lymphocyte-associated antigen 4(CTLA-4)

expression (194). Liu et al. found that LDRT significantly

reduced the percentage and absolute numbers of

CD4+CD25+Foxp3+ regulatory T cells in naive mice, whereas

CD4+CD44+/CD8+CD44+ effector memory T cells were greatly

increased in naive mice (195). These results indicate that

LDRT is a potential approach to overcome the tumor

immunosuppressive microenvironment.

Finally, LDRT enhances the efficacy of ICIs. Barsoumian

et al. (41) established mouse tumor models and irradiated the

tumors with different doses. They found that LDRT alone

(1Gy*2f) can effectively prolong survival by controlling

tumor growth. The anti-tumor efficacy was further

significantly enhanced when combined with anti-PD1 and

anti-CTLA-4 drugs. This may be because LDRT can

significantly activate CD4 and CD8 T cells, and enhance NK

cell infiltration and M1 macrophage polarization and reduce

TGF-b cytokine. Nowosielska et al. (196) found that LDRT to

the whole-body (0.1 or 1.0 Gy) combined with anti-CTLA-4

antibody and anti-PD-1 antibody and NVP-AUY922

significantly reduced tumorigenesis in mice, and inhibited

the clonogenic potential of Lewis lung cancer cells in vitro.

By using targeted radionuclide therapy to semi-selectively

deliver radiation to mouse tumors, Patel et al. found that

low-dose targeted radionuclide therapy enhances the
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response of immunologically “cold” tumors to ICIs. After the

combination of targeted radionuclide therapy and ICIs, 45-

66% of mice exhibited complete responses and tumor-specific

T-cell memory, while only 0% with targeted radionuclide

therapy or ICIs alone. The reason is that the combination

therapy activates the production of proinflammatory cytokines

in the TME, promotes tumor infiltration and clonal expansion

of effector CD8+ T cells, and reduces spontaneous metastasis

(197). Furthermore, the addition of LDRT to PD-L1/CTLA-4

blockade was feasible and safe in clinical practice (175). In a

phase I clinical study, Herrera et al. found that the adding

LDRT (0.5 or 1 Gy per fraction) to the combination

immunotherapy group showed a therapeutic effect for an

overall disease control rate of 87.5% in patients with immune

desert tumors. In addition, using a single-sample gene set

enrichment analysis approach, they observed that responding

tumors exhibited an increase in Th1, CD8+ and TEM signatures,

whereas non-responding tumors exhibited an upregulation of

M2 macrophage and neutrophil signatures (190). However, in

some cases, LDRT combined with immunotherapy failed to

induce effective antitumor immunity. Schoenfeld et al. (198)

conducted an open-label, multicenter, randomised, phase 2

trial involving 90 patients with metastatic NSCLC resistant to

PD(L)-1 therapy. Patients were randomly assigned to 3 arms,

durvalumab plus tremelimumab alone, or in combination with

LDRT (2 Gy/4f), or in combination with HDRT (24 Gy/3f).

Radiotherapy was delivered at 1 week after initial durvalumab–

tremelimumab administration. They found that neither HDRT

nor LDRT increased the response to combined PD-L1 plus

CTLA-4 inhibition.

The rationale for using LDRT is not necessarily to ablate or

kill the tumors, but to activate the immune system to eliminate

these lesions in concert with other therapeutic approaches.

Clinically, LDRT has the following advantages over HDRT.

First, the toxicity of LDRT is low. If radiotherapy is to be

delivered simultaneously to several lesions within an organ, it

is difficult to meet the dose limit to the organ at risk with SBRT,

whereas dose limits will be easier to meet with LDRT. Therefore,

LDRT is dosimetrically more feasible than SBRT in the

treatment of large tumor volumes, or even a whole organ.

Second, LDRT is safer for patients who have received

radiation in the past. There is a minimal concern about

exceeding normal tissue dose-constraints when re-radiation is

performed by LDRT. Finally, LDRT is easier to be delivered. In

clinical practice, LDRT can be performed through

three-dimensional technology, while HDRT requires

specialized imaging, respiratory gating, and even gold

fiducials implantation.

In sum, LDRT provides an emerging approach to address

limitations of radioimmunity mechanisms. It is necessary to

further study this important method Immunomodulatory effects

of LDRT in tumor microenvironment are shown in Figure 3.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1106644
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ji et al. 10.3389/fimmu.2022.1106644
High-dose and low-dose
radiotherapy synergistically enhance
antitumor immune responses

HDRT and LDRT work differently on the immune system.

We take full advantage of the advantages of HDRT and LDRT to

enhance anti-tumor immune responses. HDRT can increase the

release and presentation of tumor antigen, and stimulate

immune cell activation. However, LDRT can modulate the

TME to stimulate immune cell infiltration into the tumor

stroma and the tumor bed of distant tumors. Next, we will

introduce the preclinical and clinical studies of HDRT combined

with LDRT, i.e., multimodal radiotherapy.

Studies showed that HDRT in combination with LDRT was

superior to HDRT or LDRT alone in tumor control and

activation of anti-tumor immunity (39, 199). Savage et al. (39)

designed a novel radiation scheme (PAM-RT), a single high-

dose radiation (22Gy) followed by post-ablation modulation

with four daily low-dose fractions (0.5Gyx4f). They found that

PAM-RT localized to the primary tumor in 3LL tumor-bearing

mice can significantly delay tumor growth and increase survival.

They treat metastatic breast cancer (4T1) mice with PAM-RT,

where the primary tumor received high-dose irradiation (20

Gyx3f) and metastatic organs received low-dose irradiation

(whole lung, 0.5 Gyx4f). Survival was significantly increased

after whole-lung radiated by low dose compared with primary

tumor ablative radiotherapy alone. The mechanism is that PAM-

RT can promote remodeling of the TME in the primary tumor as
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well as the metastatic site by reducing Tregs, activating

macrophages to an inflammatory phenotype, and promoting

infiltration of CD8+ CTLs into metastatic tumors. Liu et al. (199)

used a combination of hypo-fractionated radiation therapy

(8Gy×3f) targeted primary tumor with low-dose total body

irradiation (0.1Gy) in a syngeneic mouse model of breast or

colon carcinoma. They found that low-dose total body

irradiation alone did not delay the growth of primary or

secondary tumors. Hypo-fractionated radiation therapy led to

a significant growth delay of the irradiated primary tumors, but

did not have a systemic immune related response to secondary

tumors. However, the combination of low-dose total body

irradiation and hypo-fractionated radiation therapy

significantly delayed the growth of both the primary and

secondary tumors, and translated into the best OS with

systemic antitumor response characteristics. The mechanism is

that the combination therapy (HDRT and LDRT) induced

infiltration of CD8+ T cells, IFN-g+ CD8+ T cells and DCs in

unirradiated tumors, reduced granulocytic-myeloid-derived

suppressor cells and M2 macrophages, and increased the

percentage of antitumor eosinophil population. These results

indicate that LDRT can serve as a potential therapeutic agent for

patients with metastatic cancer. Their therapeutic potential is

significantly enhanced when combined with HDRT.

Compared with the combination of ICIs with either LDRT

or HDRT alone, the combination of LDRT and HDRT further

enhanced the response to ICIs, resulting in an enhanced

antitumor response (40–42, 197). Barsoumian et al. proposed

the use of high dose and low dose radiation (RadScopal

technique) with immune oncology agents (anti-TIGIT and

anti-PD1 monoclonal antibodies) to against highly metastatic

lung adenocarcinoma tumors in 129Sv/Ev mice. They found that

the triple therapy can prolong the survival of treated mice, and

halt the growth of primary and secondary tumors,and reduce the

percentages of TIGIT+ exhausted T-cells and TIGIT+ regulatory

T-cells (40). Yin et al. (42) compared HDRT/anti-PD1, HDRT/

LDRT, or LDRT/anti-PD1 double treatments. They

demonstrated that the enhancement of the abscopal response

was achieved by triple therapy consisting of HDRT (8 Gy*3f) to

treat the primary tumor, LDRT (2 Gy*1f) to treat the abscopal

tumor, and anti-PD1 therapy. The enhanced abscopal effect was

associated with increased infiltration of CD8+ effector T cells and

upregulated expression of T cell-attracting chemokines. The

triple treatment also improved the tumor response in patients

with metastatic NSCLC and was well tolerated. In addition,

HDRT combined with LDRT and double agent checkpoint

blockers can effectively control metastatic tumors by

increasing CD4+ effector T cells, enhancing NK cell activation,

and increasing M1 macrophages in secondary tumors. Further

clinical studies have shown that when the tumor burden was

high, it was necessary to use HDRT to priming T cells at the

primary tumor site, and LDRT to modulating the stroma of

secondary (metastatic) tumors (41).
FIGURE 3

Immunomodulatory effects of LDRT in tumor microenvironment.
LDRT modulates the tumor microenvironment by repolarizing
macrophages to favor the M1 over the M2 phenotype, blocking
regulatory T cells, and enhancing the infiltration of effector CD4
T cells and NK cells. Low-dose radiation can improve the
efficacy of immune checkpoint inhibitors.
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Surprisingly, the treatments combining HDRT with LDRT

and immunotherapy have also achieved promising clinical

results. Analyzing 26 cancer patients received LDRT (1-20

Gy in total), Menon et al. found that this was because of the

scatter of HDRT or the intentional treatment at a second

isocenter of LDRT. These patients underwent prospective

clinical trials on the combination of radiotherapy and

immunotherapy. They compared lesions that received LDRT

with without radiation (< 1 Gy). 85% of lesions that received

LDRT achieved PR/CR, while 18% of lesions that received no-

dose (P=0.0001). This indicates that LDRT can increase

systemic response rates of metastatic disease treated with

HDRT and immunotherapy (43). They also conducted a

phase II trial of ipilimumab with concurrent or sequential

SBRT (50 Gy/4f or 60 Gy/10f) for metastatic lesions in the liver

or lung. Some non-targeted lesions received LDRT (5–10 Gy)

because they were anatomically close to another irradiated site.

Further analysis showed that lesions that received LDRT were

more likely to respond than those that did not (31% vs 5%,

P=0.0091) (200). Patel et al. analyzed a phase II trial of HDRT

(3–12.5 Gy/f up to 20–70 Gy total) with or without LDRT (1-10

Gy total; 0.5-2 Gy/f) for patients who had the metastatic disease

that progressed on immunotherapy within 6 months. A total of

74 patients with NSCLC or melanoma were enrolled in the

study. 39 patients received HDRT and 35 patients received the

combination of HDRT and LDRT. There was no significant

difference regarding disease control rate. However, the overall

response rate for HDRT + LDRT vs. HDRT cohorts, lesions

treated by LDRT was significantly improved rates of lesion-

specific responses compared with nonirradiated lesions. This is

because LDRT induced a remarkable increase of T- and NK cell
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infiltration into the irradiated lesions (180). These clinical

studies indicate that HDRT and LDRT combined with

immunotherapy can synergistically generate tumor-specific

immune r e spon se s , t h e r eby enhanc ing s y s t em i c

antitumor effects.

In summary, multimodal radiotherapy, a combination of

HDRT to stimulate T cell priming together with LDRT to

modulate inhibitory tumor microenvironment, can enable

immune cells to infiltrate into tumor bed and trigger

antitumor responses. This provides a new treatment

alternative for patients with advanced cancer after multiple

lines of therapy, and brings immunotherapy into a new field

of systemic disease control. Many clinical trials are

inves t i ga t ing the e fficacy and sa fe ty o f d i ff e r ent

combinations of HDRT and LDRT in patients with

advanced tumors (Table 1).
Challenges in clinical practice

Patient response to immunotherapy or immunotherapy

combined with HDRT can be enhanced by delivering LDRT

to certain tumor sites for the purpose of immunomodulating

the TME, thereby promoting systemic propagation of anti-

tumor immunity and the destruction of tumor by immune

effector cells. However, it is necessary to further study clinical

practices of high-dose and low-dose radiotherapy. For

example, which tumor site should be treated with HDRT or

LDRT? Whether HDRT and LDRT should be delivered to the

same tumor site? What is the best sequence of HDRT

and LDRT?
TABLE 1 Clinical trials of multimodal radiotherapy (HDRT and LDRT) in advanced tumors.

Trial
number

Phase Cancer type Treatment strategy Primary
end
points

NCT02710253 II Single
group

Hematopoietic and
lymphoid cell neoplasm
/ Metastatic malignant
solid neoplasm

SBRT(4f, 5f, or 10f) or EBRT(4f, 5f, or 10f) for any site of metastatic
disease.

Disease
control rate.
Objective
response.
Incidence of
adverse
events.

NCT02416609 Not
applicable

Single
group

Advanced Pancreatic
Cancer

In each cycle, Gem-based doublets will be administered concurrent with
LDRT for a total of 4 cycles. If there is no progress, SBRT will be
performed sequentially.

Progression
free survival

NCT03085719 II Not
applicable

Head and neck cancer Arm 1 is that HDRT (3f) is combined with pembrolizumab.
Arm 2 is HDRT and LDRT in combination with pembrolizumab.

Overall
response
rate

NCT03812549 I Single
group

Stage IV NSCLC SBRT (30Gy/3f) is first delivered to lung, in combination with LDRT
starting from the 2nd day of SBRT, followed by sintilimab monotherapy
starting within 7 days after the completion of radiotherapy. Sintilimab will
be administered at 200mg every 3 weeks.

Safety and
tolerability
fr
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Selection of irradiation sites for high
and low dose radiotherapy

There are few literatures on the targeting volume selection in

studies combing immunotherapy with multimodal radiotherapy

(HDRT and LDRT). Based on existing reports and clinical

experiences, we developed individualized strategies based on

performance status of patients, clinical symptoms, extent of

tumor burden, and the immune type of the tumor

microenvironment (Figure 4). This individualized treatment

regimen can not only control the tumor, but also improve the

patient’s quality of life.
Single site irradiation

For patients with only a single lesion, HDRT can be used to

ablate the tumor for achieving the radical cure. This not only

shrinks the tumor. but also promotes the release of antigens.

Subsequent application of LDRT to modulate the tumor

microenvironment can attenuate the immunosuppressive

effects of SBRT, and increase immune effector cell infiltration,

thereby synergistically enhancing the response to ICIs. However,

it is necessary to study it in the future. At present, only a

preclinical study has reported that HDRT followed by LDRT

to the primary tumor can delay tumor growth and prolong

survival in mice (39).
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Multisite or all sites irradiation

Tumors are heterogeneous (201, 202). This indicates that

tumor associated antigens (TAAs) present in some tumor sites

may be different from those in other tumor sites, or may not be

equally immunogenic. Targeting a single metastatic site in

patients with multiple metastases cannot unmask TAAs in

another site unless those TAAs are shared. Therefore, useful

antitumor immune responses are not activated systemically.

Monjazeb et al. (175) did not observe objective responses

outside the irradiation field. This indicates that irradiating 1-2

lesions in combination with the immune checkpoint blockade is

not sufficient to mediate systemic antitumor immunity in

patients with refractory colorectal cancer. In addition, in the

multicenter, randomized phase 2 study, 76 patients with

recurrent metastatic NSCLC were randomized to either

pembrolizumab alone or pembrolizumab to a single tumor site

after SBRT (3 doses of 8 Gy). The overall response rate of the

added SBRT group was twice that of the control group. However,

the results did not meet the criteria of a meaningful clinical

benefit endpoint (168). Luke et al. conducted a phase I study

enrolling patients with metastatic solid tumors who had

progressed on standard treatment. 69 patients were treated

with SBRT (total of 30-50Gy/3-5f) and at least one cycle of

pembrolizumab. SBRT was delivered to two to four metastases,

but not all metastases were irradiated. They found that multi-site

SBRT can limit the progression of existing metastases, and

enhance anti-tumor immune responses. This improves

outcomes in metastatic patients treated with pembrolizumab
A B C

FIGURE 4

A personalized treatment regimen based on the patient’s performance status, clinical symptom, extent of tumor burden, and the immune
type of the tumor microenvironment. (A) For a single tumor, HDRT can initiate T cell priming, followed by LDRT to modulate the tumor
microenvironment. (B) For oligometastatic disease, HDRT can be delivered to all lesions. If it is infeasible and intolerable, it can be
supplemented with LDRT. (C) For extensive metastatic disease, partial volume HDRT can be delivered to one or a few lesions, followed by
LDRT to other lesions.
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(203). Iyengar et al. (21) found that the addition of SABR to all

severe disease sites significantly improved PFS without

increasing toxic effects. In addition, studies have reported that

multisite SBRT followed by pembrolizumab was safely tolerated

(27, 204). These clinical experiences indicate that irradiation of

multiple sites or all metastatic lesions can maximize

systemic synergy.

Patients classified as having oligo-metastases may be

candidates for HDRT delivery to all lesions for immune

priming and local control. In addition, direct delivery of SBRT

to all tumor sites ensures tumor sterilization. However,

irradiation of all lesions by HDRT may sometimes be

infeasible and intolerable in clinical practice because of dose

volume constraints in normal tissue surrounding the tumors.

Therefore, some tumor lesions can be supplemented with low-

dose irradiation.

In sum, multiple target irradiation tends to induce stronger

antitumor immunity and generate more frequent abscopal

responses than a single target. Therefore, it is necessary to

further study this approach in clinical settings.
Partial irradiation

Systemic therapy is the standard of care in patients with

non-oligometastatic cancers. However, the addition of SBRT can

not only shrink the local tumor to induce an effect of in situ

vaccination, but also relieve local symptoms, such as pain,

obstruction and bleeding, etc. To enhance the systemic efficacy

of immunotherapy, it is necessary to use HDRT to stimulate

immune priming for the bulky or “cold” tumors. The partial

irradiation may be considered in this case because of toxicity.

Preclinical experiments have shown that high-dose partial

irradiation can delay tumor growth through immune activation.

Markovsky et al. (205) treated 50% or 100% of tumors with

radiation in a 67NR Murine Orthotopic Mammary Tumor

Model and the less immunogenic Lewis Lung Carcinoma

mouse model. They found that partial irradiation in

immunocompetent mice resulted in a tumor response similar

to full irradiation. This is because of the CD8+ T cell-mediated

immune stimulation mechanism. Furthermore, a significant

abscopal effect was elicited after hemi-irradiation of the

primary tumor with a single dose of 10Gy in the 67NR model.

Yasmin-Karim et al. (206) found irradiating a field smaller than

the entire tumor volume showed the same or better distal effect

than irradiating the entire tumor volume field, and

significantly reducing healthy tissue damage. This is due to

higher infiltration of cytotoxic CD8+ T lymphocytes in treated

and untreated tumors.

The partial irradiation combined with immunotherapy is

clinically feasible. Luke et al. found that partial irradiation by

SBRT was performed when the metastases were greater than 65

mL. They compared patients with at least one tumor partially
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irradiated to those with fully irradiated tumors, and found no

statistically significant tumor control rate at 3 months (27). They

further found no statistically significant difference in objective

response rate, PFS, and OS between patients who received full

and partial SBRT at multiple sites in the presence of

pembrolizumab. Furthermore, a clinical response at the

irradiated site can be induced without irradiating the entire

metastases (203). Lemons et al. (207) reported that partially

irradiated tumors exhibited similar control as completely

irradiated tumors in patients with metastatic solid tumors

treated with pembrolizumab and SBRT. These indicate that

partial volume SBRT is enough to activate immune priming.

A novel partial irradiation technique, spatially fractionated

radiation therapy (SFRT), can also induce an antitumor immune

response. SFRT can deliver a high dose to a large irradiation field

that is segmented into several small units with steep dose

gradients, which lead to reduce the normal tissue toxicity

(208–211). In the study of Johnsrud et al. (212), whole tumor

irradiation or SFRT (a single dose of 20 Gy) alone or in

combination with ICI were tested in mice using a triple

negative breast tumor. In the group of SFRT, they observed

the abscopal immune response in contralateral tumors with

obviously increased infiltration of both antigen-presenting cells

and activated T cells, followed by an increase in systemic IFNg
production and ultimately a delay in tumor growth.

Further studies are needed to explore the new partial

irradiation technique.

In addition to immunotherapy for those patients with

extensive metastases, it is beneficial to apply partial volume

HDRT to one or several lesions to induce immunogenic cell

death. Then, applying LDRT to other lesions for tumor

microenvironment modulation can enhance abscopal effects,

thereby reducing tumor burden.
The optimal sequence of high and
low dose radiotherapy

HDRT and LDRT combined with immune checkpoint

blockades can improve local and systematic antitumor

responses in advanced tumors. However, the optimal sequence

of these therapies for optimal efficacy remains unclear.

For combination therapy, LDRT can be applied before or

after HDRT. Many existing studies about the sequencing issue

have different results. Savage et al. (39) divided C57BL/6 mice

with palpable subcutaneous 3LL tumors into five treatment

groups: no treatment, 24 Gy on day 1 or 5, four fractions of

1Gy followed by 20 Gy or 20 Gy followed by four fractions of

1Gy, four of which were treated with radiation therapy to the

primary tumor. They found that 1Gyx4f after ablation radiation

(20 Gy) showed the best tumor control and the longest survival.

However, pre-treatment with low-dose radiotherapy resulted in
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minimal tumor control compared with single-dose ablative

radiotherapy. This is due to the rapid growth of 3LL tumors,

and ablative radiation targeting the larger tumors on day 5. This

can affect the efficacy of the priming radiation. Therefore, it is

necessary to control rapidly growing tumors with high-dose

radiotherapy first , and then modulate the immune

microenvironment with low-dose radiotherapy. However,

other scholars found that sequential administration of LDRT

followed by HDRT achieved superior antitumor immunity than

the start of HDRT before LDRT. Liu et al. (199) administered

HDRT to the primary tumor at 48, 72, 96, and 120 h after low-

dose total body irradiation (L-TBI) in mouse tumor models.

Starting HDRT at 72 h after L-TBI can achieve the best overall

survival and the maximum abscopal effect. In addition, they

compared the time of L-TBI 3 days before or after HDRT, or

simultaneously with HDRT. The results showed that HDRT 3

days after L-TBI exhibited the best therapeutic effect, for

example, a significant inhibition of tumor growth and

improved survival of the treated mice. They found that L-TBI

followed by HDRT can induce an adaptive immune response

and protect the immune system of the mice. Zhou et al. observed

that LDRT pretreatment before HDRT was able to ameliorate

the HDRT-induced immune impairment and enhance the

antitumor immunity (191). Therefore, it is necessary to

conduct large preclinical and clinical trials for the optimal

sequencing of HDRT and LDRT.

However, the optimal timing of the addition of

immunotherapy to HDRT and LDRT remains unclear. Some

scholars pointed out that immunotherapy is more effective after

radiotherapy than before. This is because radiotherapy can

promote the release of TAAs and destroy any pre-existing

immune tolerance in the tumor periphery. Wei et al. (213)

demonstrated that the administration of aPD-1 antibody after

local tumor irradiation could induce a potent abscopal response

while the addition of aPD-1 before radiation abrogated the

abscopal effect. This antitumor efficacy was associated with the

expansion of polyfunctional intratumoral CD8+ T cells,

reduction of intratumoral dysfunctional CD8+ T cells, and

expansion of reprogrammable CD8+ T cells. Many studies

showed that the concurrent combination of anti-PD-L1

antibody and radiation achieved better tumor control than the

sequential schedule (214, 215). Bestvina et al. conducted a

randomized phase 1 trial comparing the combination of

nivolumab and ipilimumab with sequential or concurrent

multisite SBRT in patients with stage IV NSCLC. They found

that the median PFS were 18.6 and 13.2 months for concurrent

and sequential therapy, respectively. The concurrent treatment

strategy was not more toxic than the sequential one (216).

However, there are some different views. A phase 1 trial

compared combined pembrolizumab with SBRT administered

either prior to the first pembrolizumab cycle (arm A) or prior to

the third pembrolizumab cycle (arm B). Their results indicated

that ORR of arm B was significantly better than that of arm A
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(44.4% vs 0%) (217). This is because the administration of

immunotherapy prior to SBRT stimulates antigen-presenting

cells and effector T cells, thereby making these cells ready to

respond to the tumor antigen efflux generated by SBRT (169).

Therefore, it is necessary to further study the optimized

sequence of high and low dose radiotherapy combined with

immunotherapy according to the biological characteristics of

tumors, the selection of immunotherapy drugs, and the effects of

radiotherapy on the immune system.
Conclusion

In this paper, we introduced a multimodal radiotherapy

regimen (HDRT combined with LDRT) to synergistically

enhance the local and systemic antitumor immunity, and

improve the response to immunotherapy, thereby achieving

the best anti-tumor effects. HDRT induces in situ tumor

vaccine and primes cytotoxic T cells. LDRT modulates the

tumor microenvironment, which in turn promotes the

infiltration and lethality of immunocompetent cells. This

multimodal radiotherapy regimen can be applied to primary

tumor and metastatic lesions, thereby improving the local

and systemic antitumor immunity. It is even possible to

irradiate the whole organ with LDRT to boost immunity for

widespread organ metastases, such as the lungs or liver. In

clinical practice, it is possible to individually implement

multimodal radiotherapy coupled with immunotherapy

according to the patient’s performance status of patients,

disease burden, and tumor immune microenvironment

phenotypes. It is necessary to conduct a further study to

solve those issues.
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K, et al. Key mechanisms involved in ionizing radiation-induced systemic effects. a
current review. Toxicol Res (2016) 5(1):12–33. doi: 10.1039/c5tx00222b

179. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et al. Low-
dose irradiation programs macrophage differentiation to an Inos+/M1 phenotype
that orchestrates effective T cell immunotherapy. Cancer Cell (2013) 24(5):589–
602. doi: 10.1016/j.ccr.2013.09.014

180. Patel RR, He K, Barsoumian HB, Chang JY, Tang C, Verma V, et al. High-
dose irradiation in combination with non-ablative low-dose radiation to treat
metastatic disease after progression on immunotherapy: Results of a phase ii trial.
Radiotherapy Oncol (2021) 162:60–7. doi: 10.1016/j.radonc.2021.06.037

181. Lin EY, Li J-F, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al.
Macrophages regulate the angiogenic switch in a mouse model of breast cancer.
Cancer Res (2006) 66(23):11238–46. doi: 10.1158/0008-5472.CAN-06-1278

182. Prakash H, Klug F, Nadella V, Mazumdar V, Schmitz-Winnenthal H,
Umansky L. Low doses of gamma irradiation potentially modifies
immunosuppressive tumor microenvironment by retuning tumor-associated
macrophages: Lesson from insulinoma. Carcinogenesis (2016) 37(3):301–13. doi:
10.1093/carcin/bgw007

183. Lapeyre-Prost A, Terme M, Pernot S, Pointet A-L, Voron T, Tartour E,
et al. Immunomodulatory activity of vegf in cancer. Int Rev Cell Mol Biol (2017)
330:295–342. doi: 10.1016/bs.ircmb.2016.09.007

184. Thomas AA, Fisher JL, Hampton TH, Christensen BC, Tsongalis GJ,
Rahme GJ, et al. Immune modulation associated with vascular endothelial growth
factor (Vegf) blockade in patients with glioblastoma. Cancer Immunology
Immunotherapy (2017) 66(3):379–89. doi: 10.1007/s00262-016-1941-3

185. Voron T, Marcheteau E, Pernot S, Colussi O, Tartour E, Taieb J, et al.
Control of the immune response by pro-angiogenic factors. Front Oncol (2014)
4:70. doi: 10.3389/fonc.2014.00070

186. Nadella V, Singh S, Jain A, Jain M, Vasquez KM, Sharma A, et al. Low dose
radiation primed inos+ M1macrophages modulate angiogenic programming of
tumor derived endothelium. Mol carcinogenesis (2018) 57(11):1664–71. doi:
10.1002/mc.22879

187. Yang G, Kong Q, Wang G, Jin H, Zhou L, Yu D, et al. Low-dose ionizing
radiation induces direct activation of natural killer cells and provides a novel
Frontiers in Immunology 20
approach for adoptive cellular immunotherapy. Cancer Biotherapy
Radiopharmaceuticals (2014) 29(10):428–34. doi: 10.1089/cbr.2014.1702

188. Sonn CH, Choi JR, Kim T-J, Yu Y-B, Kim K, Shin SC, et al. Augmentation
of natural cytotoxicity by chronic low-dose ionizing radiation in murine natural
killer cells primed by il-2. J Radiat Res (2012) 53(6):823–9. doi: 10.1093/jrr/rrs037

189. Cheda A, Wrembel-Wargocka J, Lisiak E, Nowosielska EM, Marciniak M,
Janiak MK. Single low doses of X rays inhibit the development of experimental
tumor metastases and trigger the activities of nk cells in mice. Radiat Res (2004)
161(3):335–40. doi: 10.1667/RR3123

190. Herrera FG, Ronet C, de Olza MO, Barras D, Crespo I, Andreatta M, et al.
Low-dose radiotherapy reverses tumor immune desertification and resistance to
immunotherapy. Cancer Discovery (2022) 12(1):108–33. doi: 10.1158/2159-
8290.CD-21-0003

191. Zhou L, Zhang X, Li H, Niu C, Yu D, Yang G, et al. Validating the pivotal
role of the immune system in low-dose radiation-induced tumor inhibition in
Lewis lung cancer-bearing mice. Cancer Med (2018) 7(4):1338–48. doi: 10.1002/
cam4.1344

192. Hashimoto S, Shirato H, Hosokawa M, Nishioka T, Kuramitsu Y,
Matushita K, et al. The suppression of metastases and the change in host
immune response after low-dose total-body irradiation in tumor-bearing rats.
Radiat Res (1999) 151(6):717–24. doi: 10.2307/3580211

193. Sonanini D, Griessinger CM, Schörg BF, Knopf P, Dittmann K, Röcken M,
et al. Low-dose total body irradiation facilitates antitumoral Th1 immune
responses. Theranostics (2021) 11(16):7700. doi: 10.7150/thno.61459

194. Wang B, Li B, Dai Z, Ren S, Bai M, Wang Z, et al. Low-dose splenic
radiation inhibits liver tumor development of rats through functional changes in
Cd4+ Cd25+ treg cells. Int J Biochem Cell Biol (2014) 55:98–108. doi: 10.1016/
j.biocel.2014.08.014

195. Liu R, Xiong S, Zhang L, Chu Y. Enhancement of antitumor immunity by
low-dose total body irradiationis associated with selectively decreasing the
proportion and number of T regulatorycells. Cell Mol Immunol (2010) 7(2):157–
62. doi: 10.1038/cmi.2009.117

196. Nowosielska EM, Cheda A, Pociegiel M, Cheda L, Szymański P, Wiedlocha
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