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Genome engineered natural killer (NK) cell therapies are emerging as a promising cancer
immunotherapy platform with potential advantages and remaining uncertainties. Feeder
cells induce activation and proliferation of NK cells via cell surface receptor-ligand
interactions, supported by cytokines. Feeder cell expanded NK cell products have
supported several NK cell adoptive transfer clinical trials over the past decade. Genome
engineered NK cell therapies, including CAR-NK cells, seek to combine innate and
alloreactive NK cell anti-tumor activity with antigen specific targeting or additional
modifications aimed at improving NK cell persistence, homing or effector function. The
profound activating and expansion stimulus provided by feeder cells is integral to current
applications of clinical-scale genome engineering approaches in donor-derived, primary
NK cells. Herein we explore the complex interactions that exist between feeder cells and
both viral and emerging non-viral genome editing technologies in NK cell engineering. We
focus on two established clinical-grade feeder systems; Epstein-Barr virus transformed
lymphoblastoid cell lines and genetically engineered K562.mbIL21.4-1BBL feeder cells.
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INTRODUCTION

Natural killer (NK) cell-based adoptive cell transfer (ACT) is a promising experimental approach to
cancer immunotherapy. The ability to administer NK cells across HLA barriers, without a risk of
graft-versus-host disease has enabled NK cell products from a variety of cell sources to be evaluated
in clinical trials (1–4). The therapeutic potential of unmodified NK ACT has been most apparent to
date in the setting of hematological malignancy (1, 5, 6). The traditional paradigm that NK cells are
more challenging to genetically engineer relative to T-cells is evolving (7, 8). Clinical scale gene
editing of NK cells is established, most prominently through the addition of a chimeric antigen
receptor (CAR) (3). CAR-NK cells add a potent layer of antigen specific activation to a complement
of NK cell activating and inhibitory receptors which are the basis of innate and alloreactive NK
cell recognition.

Primary NK cells are sourced from donor peripheral blood (PB) or umbilical cord blood (UCB).
Although both sources are the basis of investigational therapies, UCB contains additional NK cell
progenitors and is collected non-invasively or from existing banked material (9–11). Large scale NK cell
production from small initial quantities relies upon feeder cells which naturally, or via further
org February 2022 | Volume 13 | Article 8029061
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engineering, present ligands for NK cell receptors driving profound
ex vivo NK cell expansion when combined with cytokines
(Figure 1) (12, 13). To avoid a risk of proliferation and
contamination, feeder cell lines are g-irradiated prior to use.
While the NK cell yield varies between donors, several
approaches have been used to support clinical trials (6, 14, 15).

Feeder cells are integral to clinical scale, genetically modified
primary NK cell production protocols (3, 16–18). This contrasts
with genome engineered T-cells where antibody conjugated beads
are the typical activating stimulus, induced pluripotent stem cell
(iPSC) derived NK cells (a distinct and promising domain of
investigational NK therapies) which are genetically engineered
prior to differentiation and expansion, and NK cell lines (e.g. NK-
92) with autonomous growth potential (2, 4, 17). The role of feeder
cells in generating genetically modified primary NK cell products
is multifaceted. Initial feeder cell stimulation may enhance the
efficiency of gene editing through simple induction of cell division
or more complex effects reflecting altered gene expression.
Repeated feeder cell stimulation can support cellular recovery
and expansion to clinical scale despite extensive ex vivo
manipulation. This central role for feeder cells in the era of
genome engineering compels us to examine the relationship
between these vital tools. Herein we consider the interface
between feeder cell-based primary NK cell activation and
expansion with gene editing, focusing on prominent clinical-
grade feeder cell approaches, Epstein-Barr Virus transformed
Frontiers in Immunology | www.frontiersin.org 2
lymphoblastoid cell lines (EBV-LCL) and genetically engineered
K562.mbIL21.4-1BBL cells.
PROMINENT FEEDER CELLS FOR
NK EXPANSION

In vitro infection of a mixed lymphocyte population with EBV
creates an immortalized cell line with the characteristics of
proliferating B-cells despite expression of relatively few viral
genes (19). Early reports of preferential expansion of NK cells
which occurs after co-culture of EBV-LCLs with PB
mononuclear cells recognized the importance of both IL-2 and
cell contact (20, 21). EBV-LCLs naturally express 4-1BBL
(CD137L), the ligand for 4-1BB- an inducible stimulatory
receptor on activated NK cells which is also upregulated by
interactions with the Fc portion of antibodies (22, 23).
Stimulation through 4-1BB is an important contributor to
clinical scale NK cell expansion. EBV-LCLs express other
ligands relevant to NK cell activation and expansion, including
CD155, CD48 and CD58, through interactions with the NK cell
activating receptors DNAM-1, 2B4 and CD2 respectively (24,
25). Dr. Richard Childs and colleagues at the National Institutes
of Health (NIH) pioneered the use of EBV-LCL feeder cells as a
clinical-grade NK cell expansion technique (26). Using enriched
NK cell populations, mean 1,000-2,000-fold expansions are
FIGURE 1 | Determinants and characteristics of feeder expanded NK cells. iKIR – inhibitory killer immunoglobulin receptor, EBV, Epstein-Barr Virus; mbIL21,
membrane bound IL-21; TRAIL, TNF-related apoptosis-inducing ligand.
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observed over 14 days and this process was subsequently
automated using the GMP-compliant Miltenyi CliniMACS
Prodigy (12, 27). Robust expansion of UCB NK cells has also
been described from small amounts of starting material (28). The
addition of a single IL-21 exposure at the outset enhances NK cell
proliferation and enables prolonged expansion, overcoming
senescence (29). The EBV-LCL expansion process was used to
support a clinical trial at the NIH of expanded NK cells
combined with Bortezomib, a sensitizing agent to the death
ligand TRAIL, across a range of malignancies (NCT00720785).

Initial descriptions of the immunophenotype and in vitro
function of EBV-LCL expanded NK cells, have been
complemented by gene expression profiling (GEP) (12, 27, 30).
Relative to freshly isolated NK cells, expanded populations adopt
an activated phenotype with increased expression of activating
receptors NKG2D, NKG2C, NKp30, NKp44, DNAM-1 and key
effector molecules TRAIL, FasL and Granzymes. Described
alterations in inhibitory receptors include increases in NKG2A
positive cells and relative increases in both KIR2DL2/3 and
TIGIT (12, 27). The diverse effects that this expansion process
has on NK cells is highlighted by GEP with prominent
upregulation of genes involved in metabolism, cytotoxicity and
cellular growth (30). Many of these beneficial characteristics
appear to be largely dependent on continued IL-2 exposure, and
exogenous IL-2 administration alone may not overcome a loss of
activation characteristics encountered in vivo (29).

An alternative, prominent feeder cell approach to NK cell
expansion began with the recognition that K562, an
erythroleukemia cell line deficient in HLA class I and a
common target cell for in vitro NK cell cytotoxicity assays,
provides a contact dependent expansion stimulus to NK cells
(31). Expression of additional NK cell stimulatory molecules,
primarily 4-1BBL and membrane bound (mb) cytokines (IL-15
or IL-21), introduced by viral transduction or DNA transposons,
greatly enhances the expansion potential of K562 (32, 33).
Frontiers in Immunology | www.frontiersin.org 3
The impact of K562.4-1BBL feeder cell expression of mbIL15 or
mbIL21 on the characteristics of expanded NK cells was reported
by Denman et al. (13). Feeder cell expression of mbIL15 produced
a mean 825-fold NK expansion (day 21), with telomere shortening
relative to non-expanded NK cells and senescence characterized
by loss of proliferation between weeks 4 and 6. Feeder cell
expression of mbIL21 produced a mean 47,697-fold NK cell
expansion (day 21), with an increased telomere length compared
to baseline and sustained NK cell proliferation to week 6. Feeder
cell expression of either mb cytokine was associated with a similar
NK cell phenotype, including high expression of natural
cytotoxicity receptors (NKp30, NKp44, NKp46) and KIR.
Prominent activation and proliferation characteristics including
high levels of granzyme B and perforin were observed by GEP.
Relative to mbIL15, feeder cell expression of mbIL21 produced
expanded NK cells with a similar in vitro cytotoxicity, but greater
cytokine production. Feeder cell expression of mbIL21 has been
shown to enhance NK cell metabolism through STAT3/cMyc
pathway signaling (34). Several groups have reported on the use of
K562.mbIL21.4-1BBL feeder cells to expand NK cells used in early
phase clinical studies across PB and UCB NK cells, including the
most prominent example of a CAR-NK cell therapy reported to
date (3, 6, 14, 35). Membrane particles derived from
K562.mbIL21.4-1BBL feeder cells have also been extracted and
applied to NK expansion, overcoming the risk of viable feeder cell
contamination, despite irradiation (36).

The characteristics of these prominent feeder cell approaches
are summarized and compared in Table 1. Both are being
exploited to facilitate clinical-scale primary NK cell genome
editing, with important benefits of feeder cell stimulation
highlighted in Figure 2. The reliance upon feeder cell
expansion in current gene editing protocols has implications
for the characteristics of these products. Some features may be
synergistic with specific gene edits such as the generation of
CAR-NK cells. For example, death ligands TRAIL and FasL are
TABLE 1 | Comparing two common feeder cells for NK expansion.

Feeder Cells EBV-Lymphoblastoid Cell Lines mbIL21-4-1BBL expressing K562

Source Infection and transformation of B-lymphocytes
with EBV in vitro

Viral/non-viral transduction of parental K562 erythroleukemia cell line.

Ligand (receptor)
candidates favoring NK
expansion

Soluble Cytokines: rhIL-2 ± IL-21
Primary Candidates: 4-1BB Ligand (4-1BB),
CD48 (2B4) (24, 29)

Soluble Cytokines: rhIL-2
Primary Candidates: Low HLA-A and HLA-B expression (iKIR), 4-1BB Ligand (4-1BB),
mbIL-21 (IL-21R) (13)

Additional Candidates: CD58 (CD2), OX40L
(OX40), CD155 (DNAM-1) (25, 37, 38)

Additional Candidates: NKG2D ligands (NKG2D), natural cytotoxicity receptor ligands
(NKp30, NKp44, NKp46) (39)

Selected Fold
Expansion

Purified PB NK cell, 2-weeks: 815-3267 fold
(12), 2900-fold (with IL-21) (29)

Purified PB NK cells, 2-weeks: ~2,000-fold (13)

Characteristics of
Expanded NK Cells

Increased Receptor Expression: NKG2D,
NKG2C, NKp30, NKp44, DNAM-1, NKG2A,
KIR2DL2/3, TIGIT.
Effector Molecule Production: TRAIL, FasL,
Granzymes

Increased Receptor Expression: NKG2D, NKp30, NKp44, NKp46, DNAM-1, CD16,
NKG2A
Effector Molecule Production: Granzyme B, Perforin

Examples of Genome
Editing Combinations

Lentiviral Transduction (40)
TcBuster DNA Transposon (41)

Retroviral Transduction (3, 42)
TcBuster DNA Transposon (43)

Clinical Trial Examples NCT00720785 (multiple malignancies, with
Bortezomib)

NCT01904136 (haploidental donor blood, AML) (44), NCT03056339 (CD19 CAR-IL-5-
iCas9 NK cells, cord blood, CD19+ malignancies) (3), NCT01729091 (cord blood,
multiple myeloma)
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implicated in supporting NK cell serial killing, and subsequent
secretion and/or shedding of TRAIL may trigger apoptosis of
target antigen negative populations as described for CAR-T cells
(45, 46). Alternatively, some characteristics are less desirable,
such as the loss of activation features that may occur in vivo.
Here, rational genome editing targets may overcome these
limitations. Introduction of an IL-15 gene allows for
autonomous production and enhances the functionality and
persistence of CAR-NK cells, without inducing systemic
alterations in IL-15 (42). Knockout of cytokine-inducible SH2-
containing protein (CISH), a negative regulator of IL-15
signaling, has multiple effects relevant to NK cell therapies
including enhanced cytotoxicity, metabolism and persistence
which have been characterized in pre-clinical in vivo models
(47–49). The induction of memory like characteristics, by
transient exposure to IL-12, IL-15 and IL-18 in vitro, offers an
alternative approach to enhancing in vivo NK cell performance.
The beneficial characteristics of these cytokine induced memory
like (CIML) NK cells (including enhanced in vivo persistence)
and CAR triggered activation are synergistic, however the
interaction between CIML-NK features and feeder mediated
expansion is less clear (50).
FEEDER CELLS AND VIRAL
TRANSDUCTION

Retroviral vectors are established gene delivery tools based upon
the principle of reverse transcription of a viral RNA genome into
Frontiers in Immunology | www.frontiersin.org 4
double stranded DNA, which is then integrated into the host cell
genome by the enzyme integrase, allowing for stable transgene
expression (51). Gamma retroviruses efficiently deliver genes to
replicating cells via nuclear membrane breakdown during
mitosis, while lentiviral vectors can also transduce resting cells.
Each of these classes are successfully used in manufacturing
regulatory approved CAR-T products (52, 53). Several groups
have described the role of K562.mbIL21.4-1BBL feeder cells in
facilitating NK cell viral transduction. Using an RD114
pseudotyped retroviral vector Streltsova et al. described the
transduction of feeder activated but not resting NK cells.
Interestingly, the small, mature CD57+ NK cell subset
detectable within the expanded population, failed to proliferate
in response to the feeder stimulus and remained resistant to
transduction, emphasizing the role of cellular division (54). In
another example where feeder-free expansion and
K562.mbIL21.4-1BBL feeder cells were compared, both
facilitated transduction with a baboon envelope pseudotyped
lentiviral vector, however subsequent re-expansion of sorted
populations relied upon feeder cell stimulation (55).
Interestingly, one proposed mechanism for the enhanced
transduction achieved after activation relative to freshly
isolated NK cells was upregulation of the viral entry proteins
ASCT1 and ASCT2. Given the importance of cellular replication
to successful retroviral engineering and the clinical-scale
expansion required, the robust activating and expansion
stimulus delivered by feeder cells has been central to the
clinical translation of retrovirally engineered CAR-NK cells. In
their phase I clinical trial report, Liu et al. describe an UCB
derived, expanded NK cell product which expresses a CD19
FIGURE 2 | Feeder cell stimulation and primary NK cell genome editing.
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CAR, IL-15, and an inducible caspase 9 suicide gene. This multi-
cistronic gene was introduced on day 6 using a retroviral vector,
after initial stimulation of purified UCB NK cells by
K562.mbIL21.4-1BBL feeder cells. Later restimulation allowed
for expansion sufficient to provide multiple clinical doses (3, 42).
This groundbreaking study, which demonstrated clinical
responses in the context of B-cell malignancies and long-term
persistence of CAR-NK cells, established the promise of the
CAR-NK cell platform.

Recently, Allan et al. reported on the optimization of lentiviral
transduction in primary NK cells which further explores the role
that feeder cells play in the delicate balance of gene editing and
expansion potential (40). Notably, while initial activation with IL-2
alone allowed for successful transduction relative to unstimulated
NK cells, subsequent EBV-LCL feeder cell stimulated expansion was
limited. Incorporation of EBV-LCL pre-stimulation modestly
reduced integration rates but provided an overall higher yield of
transduced cells at later timepoints reflecting a maintained
expansion potential. The group went on to demonstrate that 5-7
days pre-activation prior to lentiviral transduction was optimal,
balancing efficiency and fold-expansion, while the purity of
transduced cells could be enhanced by immunomagnetic selection
based on truncated protein selection markers. NK cells rapidly
overwhelm dissipating feeder cells and were harvested for genetic
engineering without repeated selection. In experiments where direct
comparison was made between EBV-LCL and K562.mbIL21.4-
1BBL feeder cells, similar results were obtained for transduction
efficiency and expansion capacity. A distinct lymphoblastoid cell
line, 721.221, engineered to express mb IL-21, has also been
successfully combined with retroviral transduction to create CAR-
NK cell products in a recent pre-clinical report (56).

Viral transduction approaches generally confer less toxicity to
immune cells relative to electroporation with DNA based cargo.
This improved viability, could be the basis of successful
integration of feeder-free expansion approaches in the future.
Feeder-free NK cell expansion relies upon cytokines and
stimulating supplements, or antibodies, but in general results
in a lower fold expansion. Feeder-free approaches offer logistical
benefits and overcome the risk of viable feeder cell
contamination, despite irradiation. Clinical scale examples of
feeder-free expansion from primary NK cells have been reported,
including using the supplement nicotinamide which confers a
multitude of desirable characteristics to the expanded NK cell
product beyond increasing cell number, including enhanced
cytotoxicity and in vivo persistence (57, 58). Feeder-free
approaches tend to rely upon larger volume apheresis product
as a starting material, and to our knowledge have not been
successfully combined with clinical-scale, stable gene editing of
primary NK cells to date (59).
FEEDER CELLS AND NON-VIRAL
GENE EDITING

Non-viral gene editing approaches are increasingly being applied
to NK cells successfully and this field has been recently reviewed
Frontiers in Immunology | www.frontiersin.org 5
(8). Electroporation remains the most widely investigated non-
viral approach to deliver diverse cargo including mRNA, DNA
and protein to NK cells. This allows for transient gene expression
from a non-integrated DNA plasmid or mRNA, or, genome level
modification and stable expression when combined with
transposon technology, or knock-in after delivery of
endonucleases and a DNA template (8). Non-viral genome
editing has potential safety advantages relative to viral
transduction, but lacks the longer term safety data that is
available for clinical products manufactured using viral
approaches (60). DNA transposons are versatile gene vector
systems, involving co-delivery of a transposon plasmid
containing the genetic cargo, and a transposase enzyme which
cuts and pastes the transposon into genomic DNA by
recognition of flanking inverted terminal repeat (ITR)
sequences (61). A variety of factors influence the efficiency of
NK cell electroporation, including the type and concentration of
cargo, pulse characteristics and electroporation buffer (62). The
ultimate rate of stable integration achieved after DNA
transposon electroporation may also be impacted by
differences in the recovery and expansion rate of modified and
non-modified populations, reflecting recovery conditions and
the timing of restimulation.

Feeder cell-based activation and expansion is integral to early
reports of the DNA transposon-based gene editing of primary
NK cells. K562.mbIL21.4-1BBL feeder cell pre-activation
supports enhanced electroporation efficiency and recovery
when delivering CRISPR/Cas9 cargo (63). In a recent pre-
print, Pomeroy et al. describe the application of the TcBuster™

transposon system to primary NK cel ls using the
K562.mbIL21.4-1BBL pre-activation approach (43). Day 4 is
identified as the optimal time for transposon delivery by
electroporation, which may reflect the later upregulation of
DNA sensors, and transposition efficiency was further
enhanced by ribonuclease inhibitor pre-treatment of NK cells
(transposase enzyme mRNA was simultaneously delivered with
the DNA transposon). Their approach also incorporates
Nanoplasmid™ to reduce the size of the plasmid selection
cassette aiming to enhance DNA delivery, while others have
applied minicircle technology with a similar goal (64, 65). Repeat
stimulation 48h post electroporation allowed for clinically
relevant expansion characteristics. Our group and collaborators
have also recently applied TcBuster™ to primary NK cells using
EBV-LCL pre-activation and expansion to successfully generate
CAR-NK cells (41).

Viral RNA size may be a limiting factor for the efficiency of
transduction in primary NK cells (40). DNA transposons allow
for the delivery of larger transgenes and potentially can reduce
the cost and variability of immune cell engineering. This ability
has been leveraged to deliver multi-cistronic genes including a
cytotoxic selection marker, allowing production of a
homogenous gene modified product (66). Using these selection
systems combined with robust feeder driven expansion would
facilitate the outgrowth of gene modified cells from a lower
percentage of transposition – an important consideration, as the
ideal balance of efficiency, cellular toxicity, and subsequent
February 2022 | Volume 13 | Article 802906
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expansion capability remains unclear. This was highlighted by
the incidence of product derived lymphomas in two patients
treated with a Piggybac transposon-based CAR-T product which
were recently reported, although the transposon system was not
directly implicated in this occurrence, despite extensive
investigation (67).

The combination of endonucleases, with homologous DNA
templates has been successfully applied to stable gene editing,
including in NK cells. Cas9 mediated double strand breaks,
repaired by homologous recombination or non-homologous
end joining, can lead to integration of a tailored DNA
template. This allows for targeted gene insertions to genetic
safe-harbour sites, and simultaneous gene knock-out. The most
effective examples of this approach to date, rely upon a non-
integrating adenoviral vector to deliver the DNA template,
shortly after electroporation delivery of gRNA/Cas9 complexes
(68, 69). Considerably greater integration was achieved using a
self-complementary adenovirus vector, providing for rapid
availability of the dsDNA template for DNA repair. Notably,
NK cell expansion with K562.mbIL21.4-1BBL feeder cells was
implicated in the optimisation of this approach. Kararoudi et al.
demonstrated upregulation in genes involved in homologous
recombination (BRCA1 and BRCA2) in expanded NK cells,
likely contributing to an improved efficiency of knock-in.
Recently, efficient gene knock-out and knock-in of NK cells
maintained in a feeder-free media was described using a highly
active mutant of AsCas12a, a promising future approach to non-
viral gene editing (70).
DISCUSSION

The landscape of investigational NK cell therapies has rapidly
diversified. iPSC-NK, and donor-derived, primary NK cell
products may become effective, off-the-shelf immunotherapies.
Genome editing, supported by novel technologies and adaptation
of existing techniques to NK cells appears fundamental to
achieving this potential. Current protocols for clinical-scale
genome editing of primary, donor-derived NK cells rely upon
feeder cell stimulation. Initial stimulation increases the NK cell
quantity for gene editing and improves the efficiency of retroviral
Frontiers in Immunology | www.frontiersin.org 6
transduction and transposon delivery. Repeat stimulation
supports NK cell recovery and subsequent expansion, allowing
for clinical scale and multi-dose manufacture. The characteristics
of primary NK cells expanded with each of the feeder cell systems
discussed herein apply to the final product. This may be
beneficial by protecting against senescence during expansion or
create a barrier through potential loss of activation
characteristics occurring in vivo. Although few reports directly
compare the two prominent feeder approaches discussed here,
they share core activating pathways, and both are being
successfully applied to support NK cell genome editing.
Proposed feeder-free and novel approaches to NK expansion
should also be evaluated for their performance in this critical
supportive role to NK cell genome editing (36, 71, 72).
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