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Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect
synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-
articular disorders. However, the pathogenesis of RA is still unclear, and the lack of
effective early diagnosis and treatment causes severe disability, and ultimately, early
death. Accumulating evidence revealed that the regulatory network that includes long
non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and
messenger RNAs (mRNA) plays important roles in regulating the pathological
and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and
competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and
PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory
response. Thereby providing new strategies for its diagnosis and treatment. In this review,
we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-
miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and
therapeutic targets for the diagnosis and treatment of RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is the most common autoimmune diseases with chronic, systemic
inflammatory responses; it is characterized by persistent synovitis, bone, cartilage, and joint
destruction (1, 2). Symmetrical pain, stiffness, and swelling of one or more joints are the main
clinical symptoms of RA; and the joints involved are those in the hands, wrists, feet, and knees (3).
The incidence of RA is very high affecting approximately 1% of the world population (4). As the
disease progresses, it can lead to bone and cartilage damage and extra-articular disorders, such as
cardiovascular disease (5) and organ damage (6); without active clinical treatment, RA can lead to
severe disability, and ultimately, early death (2).

RA is a multifactorial and heterogeneous disease; accumulating evidence have documented that
genetics is one of its key factors (7). Recently, the influences of environmental factors and gene-
environment interactions have been revealed, providing new clues on disease pathogenesis (8).
Despite the tremendous research efforts made in the past few years, the precise pathogenesis and
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etiology are not yet completely elucidated due to the complexity
of the disease, resulting in the early diagnosis of RA remains
difficult, and existing common serum biomarkers still lack
specificity (9, 10). Approximately one third of patients with RA
are serologically negative before the onset of severe clinical
symptoms (2, 11); thus, many patients miss the best time for
early treatment, leading to severe bone and cartilage damage, as
well as permanent disability.

Non-coding RNA (ncRNA) is a class of RNA that is unable to
encode proteins which mainly include microRNA (miRNA),
long non-coding RNA (lncRNA), circular RNA (circRNA),
ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear
RNA (snRNA), small nucleolar RNA(snoRNA), small interfering
RNA(siRNA), short hairpin RNA(shRNA) and Piwi-
interactingRNA (piRNA) (12). In recent years, ncRNA has
received much attention (13). ncRNA formerly known as
transcriptional noise (14), however, accumulated evidence
suggested that ncRNAs could serve as master regulators in a
series of biological processes, such as transcription, splicing, and
translation; they participate in the development and progression
of many diseases, including RA (15, 16). The most commonly
studied ncRNAs in RA are miRNAs (17), circRNAs (18), and
lncRNAs (19). Numerous studies have shown that miRNAs,
lncRNAs, and circRNAs are differentially expressed and
participate in regulating the pathological and physiological
processes in RA (20, 21). Significantly, new evidence indicated
that lncRNAs and circRNAs compete to bind to miRNAs by
competitive endogenous RNA (ceRNA) network, and they
regulate their target mRNAs in the biological processes of
many diseases (22, 23). This crosstalk includes lncRNA/
miRNA and circRNA/miRNA, which are essential for the
effective regulation of cellular signaling. In this review, we
highlight the functional interactions between lncRNAs/
circRNAs and miRNAs and describe the crosstalk in the
lncRNA/circRNA-miRNA-mRNA axis of RA
miRNAs AND RA

miRNAs belong to a class of short ncRNA molecules that are
approximately 22–23 nucleotides in length and are generated
endogenously. Mammalian miRNA genes are found in the
introns; only approximately 20% miRNAs are found in exons
or the combination of exons and introns (24). In general, most
miRNAs are named by the combination of miR and a designated
number and act as negative regulators; they silence their
complementary mRNA expression by cleavage or translation
suppression (25). The biosynthesis of miRNAs could be divided
into two stages from nucleus to cytoplasm. In the nucleus,
miRNA genes located in protein gene introns are transcribed
to primary miRNA. Then, they are broken down and converted
into pre-miRNA with approximately ~60 nucleotide by Drosha
ribonuclease III and diGeorge syndrome critical region 8
(DGCR8); Drosha works by trimming 5’ and 3’ tails (18, 26).
After the initial cut, pre-miRNA will translocate to the cytoplasm
with the help of the membrane protein exportin 5. In the
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cytoplasm, miRNA-miRNA duplexes are formed by a Dicer
endoribonuclease III known as an endonuclease, which
dissociates the secondary structure. After the second initial cut,
mature miRNA is formed. Subsequently, one of the miRNA
duplexes combine with argonaute protein and transform into
RNA-induced silencing complexes (RISCs), and the other is
commonly wasted. Eventually, the mature RISC inhibits the
translation and expression of target mRNA genes, resulting in
the degradation of the message (24, 27).

The biological role of miRNA has been studied extensively for
nearly 30 years. Research has shown that miRNAs target a third
of all human genes that target mRNA genes and some genes that
target DNA (25). In most instances, miRNAs act as inhibitory
regulator at the post-transcriptional level by repressing the
expression and translation of target mRNA genes, but there are
instances when they accelerate the expression level of target
genes (28). The miRNAs are highly tissue-specific and
differentially expressed in different tissues, and these traits are
related to the physiological development and pathological
process of a variety of diseases, including cancer (29), stroke
(30), heart disease (31), musculoskeletal disease (32), and
autoimmune disease (33, 34).

Studies confirmed that miRNAs in synovial tissue, synovial
fluid, and blood of patients with RA showed significantly
abnormal expression compared with those of healthy
individuals (7) (Table 1). Synovial tissue is an important part
of the knee joint, which mostly includes synovial macrophages
and fibroblast-like synoviocytes (FLS) (95); synoviocyte
proliferation, invasion, and migration are essential for the RA
pathology (96). Among synovial and FLS miRNAs, miR-21 (39),
miR-26a-5p (41), miR-126 (50), miR-135a (51), miR-138 (54),
miR-143 (56), miR-145 (56), miR-155 (58), and miR-421 (63)
are overexpressed, whereas miR-19a (37), miR-20a (38), miR-22
(40), miR-27a (42), miR-29a (44), miR-34a (45), miR-137 (53),
miR-140-3p (55), miR−152 (57), and miR-495 (68) are down-
regulated. The disturbed miRNAs enhance the expression level
of proinflammatory cytokine (IL-6, IL-8, TNF-a, and IL-1b) and
enzymes that erode the bone matrix (MMP-1 and MMP-3) by
affecting Wnt (97, 98), NF-kB (81, 99), JAK/STAT (48, 100), and
TLR (101, 102) pathways. Significantly, the disturbed synovial
fibroblast-derived exosomal miRNAs were discovered in recent
years. Liu et al. demonstrated that the expression level of miRNA
miR-106b was significantly increased in synovial fluid-derived
exosomes of RA, and it could target the pyruvate dehydrogenase
kinase 4 (PDK4) gene; it could attenuate RA progression by
regulating chondrocyte proliferation and migration (47).
Furthermore, research found that RA synovial fibroblast
(RASF)-exosomal miR-146a, miR-155, miR-323a, and miR-
1307 are also involved in inducing local inflammation and
attenuating octeoclastogenesis in RA (103).

As important diagnostic markers for RA, blood miRNAs have
been studied extensively. The greatest number of studies focused
on miR-146 (miR-146a and miR-146b) and miR-155 (104).
However, their roles in RA are still controversial. miR-146a
was described to be up-regulated in peripheral blood (PB) and
peripheral blood mononuclear cells (PBMCs) from patients with
February 2022 | Volume 13 | Article 810317
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TABLE 1 | The aberrantly expressed miRNAs in RA.

miRNA Express Target gene(s) Tissue/cell source Model Species Functions Reference

Synovial tissues
miR-10a-5p Down TBX5 Synoviocyte Cell model – Proliferation, apoptosis (35)
miR-17 Down TRAF2 Synovial tissue, SF, serum Cell model Human Inflammation (36)
miR-19a Down MMP13 Synovial tissues, FLS Cell model Human Proliferation, invasion (37)
miR-20a Down TXNIP FLS Cell model Rat Inflammation (38)
miR-21 Up NF-kB pathway FLS Cell model Human Proliferation (39)
miR-22 Down sirt1 Synovial tissues Cell model Human Proliferation, inflammation (40)
miR-26a-5p Up Smad 1 Synovial tissue – – Invasive (41)
miR-27a Down FSTL1 Synovial tissues FLS, serum Cell model Human Migration, invasion (42)
miR-27a-3p Down TLR5 RASF Cell model Human Apoptosis, inflammation (43)
miR-29a Down STAT3 Synovial tissues, FLS, serum Cell model Human Inflammation, apoptosis (44)
miR-34a-5p Down XBP1 FLS Cell model Human Proliferation (45)
miR−34a−3p Down MDM4 FLS Cell model Human Proliferation, inflammation (46)
miR-106b Up PDK4 SFB-exosomal Cell model Mouse model Human Mouse Proliferation, migration (47)
miR-124 Down MARCKS FLS Cell model Mouse model Human Mouse Proliferation, inflammation (48)
miR-125 Down PARP2 Synovial tissues Rat model Rat Inflammation (49)
miR-126 Up PIK3R2 Synovial tissues Cell model Human Proliferation, apoptosis (50)
miR-135a Up PIK3R2 Synovial tissues Cell model Human Apoptosis, migration, proliferation (51)
miR-137 Down LSD1 Synovial tissue, serum Cell model Rat model Human Rat Inflammation (52)

Down CXCL12 FLS Rat model Rat Proliferation, migration (53)
miR-138 Up HDAC4 Synovial tissue, serum Cell model Human Inflammation (54)
miR-140-3p Down SIRT3 SF Cell model Human Apoptosis (55)
miR-143 Up IGFBP5 FLS Cell model Human Improve RA-FLS sensitivity (56)
miR-145 Up SEMA3A FLS Cell model Human Improve RA-FLS sensitivity (56)
miR−152 Down ADAM10 Synovial tissue, serum, FLS – – Proliferation, inflammation (57)
miR-155 Up IKBKE FLS, PBMC Cell model Human Inflammation (58)
miR-192 Down CAV1 Synovial tissue, FLS Cell model Human Proliferation, apoptosis (59)
miR-193a-3p Up IGFBP5 Synovial tissues Cell model Human Proliferation, apoptosis (60)
miR-221-3p Up JAK3 Synovial tissues, synovial fluid Cell model Human Inflammation (61)
miR-365 Down IGF-1 Synovial tissues Mouse model Mouse Apoptosis (62)
miR-421 Up SPRY1 Synovial tissues, FLS Mouse model Human Mouse Inflammation (63)
miR-424 Up DICER1 RASF Cell model Human Apoptosis, proliferation (64)
miR-431-5p Down XIAP Synovial tissues, FLS Cell model Human Proliferation, apoptosis (65)
miR-449a Down HMGB1 Synovial tissues Cell model Human Inflammation, proliferation (66)
miR-483-3p Up IGF-1 Synovial tissues, FLS Cell model Human Apoptosis, proliferation (67)
miR-495 Down b-catenin Synovial tissues, FLS – – Proliferation, inflammation (68)
miR-522 Up SOCS3 SF Cell model Human Inflammation (69)
miR-3926 Down TLR5 RASF, synovial tissues Cell model Human Proliferation, inflammation (70)
miR-6089 Down CCR4 Synovial tissues, FLS – – Proliferation, apoptosis (71)
Synovial fluid
miR-574-5p Up TLR7/8 Synovial fluid sEV Cell model Human Bone resorption (72)
miR-146a Up FAF1 CD4+ T cells of synovial fluid Cell model Human T cell apoptosis (73)
miR-let7a Down HMGA2 synovial fluid macrophages Mouse model Human Mouse Macrophage activation (74)
Blood/serum
miR-16 Up RORgt/FoxP3 PBMC/serum – – Th17/Treg imbalance (75, 76)

Down SOX5 FLS/serum Cell model Human Inflammation, migration (77, 78)
miR-21 Up – Plasma – – Biomarkers (75)

Down STAT3 PBMC Cell model Human T-cell homoeostasis (79)
miR-124 Down – Serum – – Related to MMP-3 levels (80)
miR-125b Up NF-kB pathway Serum/synovial tissues/FLS Cell model Human Inflammation (81)

Down – PBMC, plasma – – Biomarker (82)
miR-126-3P Up – Serum – – Biomarkers (75, 83)
miR-103a-3p Up TP53, AGO2 PB, PBMC – – Prognostic biomarker (84)
miR-155 Up PU.1/CCL3 PB B cells/serum/PBMC Cell model Human B-cell activation/inflammation (85–87)

Down – Serum – – Predictors for disease outcome (77)
miR-146a-5p Down CTGF Serum Mouse model Human Mouse Inflammation, pannus formation (88)

Up – Plasma/whole blood – – – (89)
miR-210 Down – Serum – – Independent diagnostic markers (90)
miR-212-3p Down SOX5 Serum, synovial tissues, FLS Cell model Human Proliferation, apoptosis (91)

(Continued)
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RA (104–106); it is involved in the production of persistent
proinflammatory cytokine and disturbance of the balance of
Th17-Tregs (107). However, the expression level of miR-146a-5p
in synovial fibroblast of RA patients is significantly down-
regulated; miR-146a-5p could decrease inflammatory
mediators, inhibit angiogenesis, and delay RA progression (88).
Furthermore, the anti-rheumatic drugs, such as TNF inhibitors
and methotrexate (MTX), could increase miR-146a-5p
expression, suggesting that miR-146a-5p may be a potential
novel biomarker for predicting and monitoring therapy
outcome (87, 108). The roles of miR-155, miR-125b, miR-16,
and miR-21 are also ambiguous. Some authors report that miR-
155 and miR-16 are over-expressed in serum and PBMC (76, 87),
and others report their down-regulation in serum (77, 78). miR-
21 and miR-125b are over-expressed in plasma or serum (75, 81)
but lowly expressed in PBMC (79, 82). These findings all suggest
the tissue specificity of miRNA expression, and its biological
function needs to be further studied. The dysregulation of
miRNAs is also found in serum exosomes of patients with RA.
Wang et al. found that the expression level of miRNA miR-17
was high in RA-exosomes by microarray analysis and real-time
PCR; transforming growth factor beta receptor II (TGFBR II)
was the direct target. miR-17 could dispute the homeostasis of
Tregs by the participation of TGFBR II in the pathogenesis of RA
(109). The abundant miRNAs in RA-exosomes provide a new
idea and direction for the pathogenesis of RA, which is worthy of
further study.
lncRNAs AND RA

lncRNA is a newly identified RNA transcript with a length of
more than 200 nucleotides; it has little or no protein-coding
potential (15). There are approximately 92 343 lncRNA genes in
humans, which are far more than the protein-coding genes (110),
and the number is still increasing (111). There are five main
categories classified by the localization between lncRNA and the
closest protein-coding gene, as follows: intergenic, sense,
antisense, intronic, and bidirectional (104, 112). lncRNA was a
by-product of RNA polymerase II transcription and was
originally called transcriptional noise of the genome; it was
considered to have no biological function (113). However,
subsequent studies found that lncRNA could regulate target
gene expression at each stage from transcriptional and post-
Frontiers in Immunology | www.frontiersin.org 4
transcriptional to post-translational levels (114), and it is also a
crucial regulator of a range of cellular transformation processes,
such as apoptosis and intracellular transport (24). Furthermore,
as a transcription inhibitor, lncRNA could influence the stability
of miRNAs and RNA binding proteins as miRNA sponges, and it
is involved in the epigenetic modification of DNA (115).

The functional role of dysregulation lncRNAs in the
physiological development and pathological process of
tumors (116) and cardiovascular disease (117) have been
discovered, and the role of lncRNAs in autoimmune diseases
was also revealed gradually, but its role is still unclear (118).
Studies have discovered that lncRNAs are involved in
regulating the development and differentiation of various
immune cells, such as thymus T lymphocytes, macrophages,
bone marrow B lymphocytes, and dendritic cells (119).
lncRNAs are abnormally expressed in RA-associated
immune cells and play a crucial role in the physiological and
pathophysiological processes.

In recent years, microarray technology has been widely used
in the study of RA regulatory network; increasing evidence shows
the aberrant expression of lncRNAs in FLS, PBMS, plasma, and
synovial tissues in RA patients (113) (Table 2). Zhang et al.
found 135 differentially expressed lncRNAs (62 up-regulated and
73 down-regulated) and 103 differentially expressed mRNAs (36
up-regulated genes and 67 down-regulated genes) in three pairs
of FLS samples through genome-wide analysis of the expression
profiles (120). Luo et al. identified 2,410 up-regulated and 2,635
down-regulated lncRNAs and 1,403 up-regulated and 1,886
down-regulated mRNAs in PBMCs via microarrays. GO
category and KEGG pathway analyses demonstrated that these
differentially expressed transcripts are associated with multiple
biological processes and signaling pathway, such as T cell
receptor signaling pathway and TNF signaling pathway (124).
Qin et al. also found that there are approximately 289
differentially expressed lncRNAs and 468 mRNAs in the
plasma (127).

Many aberrantly expressed lncRNAs are reported by
microarray analysis, but only a small number of differentially
expressed genes participate in the development and progression
of RA (Table 3). Research demonstrated that lncRNA LERFS
(21), MALAT1 (128), UCA1 (130), GAS5 (154), and MEG3
(132) are down-regulated in FLS, whereas GAPLINC (135), Lnc-
IL7R (136), ITSN1-2 (137), PVT1 (138), H19 (145), ZFAS1
(155), and PICSAR (139) are up-regulated. The dysregulation
TABLE 1 | Continued

miRNA Express Target gene(s) Tissue/cell source Model Species Functions Reference

miR-301a-3p Up PIAS3 PBMC Cell model Human Differentiation, proinflammatory, (92)
miR-5196 Up – Serum – – Biomarker (93)
let-7a Down K-Ras, ERK1/2 Monocytes Cell model Human Inflammation, (94)
February 2022 | Volume 13 | Art
RA-SF, rheumatoid arthritis synovial fibroblast; SF, synovial fibroblasts; FLS, fibroblast−like synoviocytes; sEV, small extracellular vesicles; PBMC, peripheral blood mononuclear cell; PB,
peripheral blood; TBX5, T-box transcription factor 5; TRAF2, TNF receptor-associated factor 2; MMP-13, matrix metalloproteinase-13; TXNIP, thioredoxin interacting protein; FSTL1,
1follistatin-like 1; TLR5, toll-like receptor 5; STAT3/PIAS3, transcriptionactivator3; XBP1, x-box binding protein 1; MDM4, mouse double minute homolog 4; PDK4, pyruvate
dehydrogenase kinase 4; MARCKS, myristoylated alanine-rich C-kinase substrate; PARP2, poly (ADP-ribose) polymerase2; LSD1, lysine−specific demethylase 1; CXCL12, C-X-C
motif chemokine ligand 12; HDAC4, histone deacetylase 4; IGFBP5, insulin-like growth factor binding protein5; JAK3, janus kinase 3; IGF-1, insulin-like growth factor-I; SPRY1, sprouty1;
XIAP, X-linked inhibitor of apoptosis; HMGB1, high Mobility Group B1; SOCS3, suppressor of cytokine signaling 3; CCR4, CC chemokine receptor 4; FAF1, fas-associated factor 1;
HMGA2, high mobility group AT-hook 2; SOX, 5SRY-related high-morbidity-group (HMG) box 5; CTGF, connective tissue growth factor.
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lncRNAs are involved in regulating synovial inflammation and
cellular biological behavior of RA FLSs, including proliferation,
migration, and invasion. lncRNAs may be promising therapeutic
targets or biomarkers. Notably, lncRNA HOTAIR shows obvious
tissue specificity in different RA tissues. Zhang et al. revealed that
HOTAIR was lowly expressed in chondrocytes compared with
normal individuals, and miR-138 was the direct target of
HOTAIR. HOTAIR usually acts as protective regulator to delay
the progression of RA by inhibiting inflammatory response and
inactivating the NF-kB signaling pathway (142). Song and his
colleagues found that in the differentiated osteoclasts and
synoviocytes, HOTAIR was also down-regulated. It could
promote the dissolution of bone and cartilage matrix by
regulating MMP-2 and MMP-13 expressions. However, in blood
mononuclear cells and serum exosomes, HOTAIR was
overexpressed and participated in the migration of active
macrophage (141). Furthermore, HOTAIR was also found to be
up-regulated in serum. Based on these studies, we found that
HOTAIR is easy to obtain and detect in blood and is expressed
stably, making it a promising biomarker for RA diagnosis.

PBMC is a key component of host defense response and is
readily available. However, there are few studies on lncRNA in
PBMC at present. Existing studies demonstrated that NEAT1
(149), HIX003209 (156), and NTT (150) are up-regulated in
PBMC, whereas H19 (143) and lincRNA-p21 (148) are down-
regulated. Regulation of inflammation is an important mechanism
of these aberrantly expressed lncRNAs. Yan et al. found that
HIX003209 showed a significantly increased expression in PBMC
from patients with RA; it could target miR-6089 directly and
promote inflammation by regulating the TLR4/NF-kB pathway in
macrophages. Furthermore, similar results were observed in
lipopolysaccharide-mediated cell models; the overexpressed
HIX003209 could function as a positive regulator of
proliferation and activation (156). Spurlock et al. found that
lincRNA-p21 was down-regulated and NF-kB activation marker
phosphorylated p65 was up-regulated by analyzing blood samples
and cell culture models from patients with RA; lincRNA-p21
Frontiers in Immunology | www.frontiersin.org 5
could inhibit NF-kB activity directly. The regulation of lincRNA-
p21 was one of the important mechanisms underlying the action
of methotrexate against RA (148). Dysregulation lncRNAs, such as
LOC100506036, THRIL, and RMBP, were also observed in
lymphocytes and macrophages (157). However, their exact
functions andmechanisms are still unclear and need further study.
circRNAs AND RA

circRNAs are novel endogenous noncoding RNAs characterized
by a closed circular structure and are approximately 500
ribonucleotides (nts) long (34); they include 1–5 exons without
intervening introns (158). circRNAs are very stable because of
their circular structure, which help them resist exonucleolytic
decay through the cellular exosome ribonuclease complex.
Studies have shown that circRNAs have a maximum half-life
of 48 h, whereas linear mRNAs have only 4–9 h (159). Therefore,
circRNAs are ideal biomarkers. The functions of circRNAs
include the following: miRNA and RNA binding proteins
(RBP) sponge; RNAP II elongation; and RNA maturation
regulation (160). circRNAs are widely expressed in mammals
and participate in the regulation of physiological and
pathological processes for various diseases, such as cancer and
osteoarticular and autoimmune diseases (161). Recently, many
circRNA-related signaling pathways have been reported in
autoimmune diseases, suggesting that circRNAs may serve as
crucial immune regulators and potential biomarkers (118).

More aberrantly expressed circRNAs have been identified by
gene microarray technology. A series of studies indicated that
circRNAs were differentially expressed in PBMC and FLS
(Table 4). Ouyang and his colleagues detected the expression of
circRNA genes in PBMCs from 30 RA patients via quantitative real-
time polymerase chain reaction (qRT-PCR). They confirmed that
circRNAs circRNA_104871, circRNA_003524, circRNA_101873,
and circRNA_103047 were up-regulated and may be promising
biomarkers for diagnosis (164). Then, Ouyang et al. found that
TABLE 2 | The role of lncRNAs in gene expression profiles of RA.

lncRNAs
Up (n)

lncRNAs
Down(n)

mRNAs
Up (n)

mRNAs
Down(n)

Tissue (n) Species lncRNAs Functions Reference

62 73 36 67 RA-FLS (n=3)
Normal-FLS (n=3)

Human ENST00000483588, uc004afb.1,
ENST00000438399,ENST00000452247

Biomarker for RA diagnosis (120)

190 131 750 1025 RA-synovial (n=5)
Normal-synovial (n=5)

Human RP11-83J16.1 Proliferation, migration,
invasion, inflammation

(121)

349 806 1582 1295 RA-synovial (n=3)
Normal-synovial (n=3)

Human lnc-AL928768.3, lnc-AC091493.1 Biomarkers for RA risk and
activity

(122)

683 1,416 331 1,976 RA-PBMC (n=3)
Normal- PBMC (n=3)

Human ENST00000456270 Biomarker for RA diagnosis (123)

2410 2635 1403 1886 RA-PBMC (n=1)
Normal- PBMC (n=1)

Human – Biomarker for RA therapy (124)

231 110 – – RA-PBMC (n=3)
Normal- PBMC (n=3)

Human MIR22HG, DSCR9, LINC01189,
MAPKAPK5-AS1, ENST00000619282

Biomarker for RA diagnosis
Apoptosis, autophagy

(125)

275 218 193 181 RA-PBMC (n=2)
Normal- PBMC (n=2)

Human ENST00000569543 ENST00000420096 Biomarker for RA diagnosis (126)

169 120 280 188 RA-plasma (n=4)
Normal- plasma (n=4)

Human – Biomarker for RA diagnosis
and therapy

(127)
Feb
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circRNAs were also differentially expressed in plasma. They clarified
that circ_0005008 and circ_0005198 were overexpressed in the
plasma of RA patients. Furthermore, circ_0005198 may target
miR-4778-3p in RA-FLS (166). Wen et al. constructed a
circRNA-miRNA network of differentially expressed genes in
PBMC from patients with RA, and it contains 165 differentially
expressed circRNAs and 63 differentially expressed miRNAs. After
further RT-qPCR validation of the four significantly changed
c i r cRNAs (c i r cRNA_0001200 , c i r cRNA_0001566 ,
circRNA_0003972, and circRNA_0008360), they found that the
expression was consistent with the results of sequencing, and these
circRNAs may be promising biomarkers for diagnosis (162). After
Frontiers in Immunology | www.frontiersin.org 6
this study, Wen and his colleges further verified the presence of
other circRNAs in PBMCs from patients with RA by high-
throughput sequencing. The circ_0003353 and circ_0091685 were
up-regulated, whereas circ_0005732, circ_0072428 were down-
regulated. Then, the expression of circ_0003353 in fibroblast-like
synoviocytes was further investigated for functional phenotype
analysis; circ_0003353 was significantly highly expressed, it could
promote of FLS inflammatory response and cell apoptosis, but
inhibited cell proliferation (163).

Although a series of dysregulation circRNAs were found in
RA, their downstream pathways in regulating autoimmunity and
inflammation are still poorly revealed. Existing studies have
TABLE 3 | The aberrantly expressed lncRNAs in RA.

lncRNA Express Target gene(s) Related genes Tissue/cell
source

Model Species Functions Reference

FLS
LERFS Down – hnRNP Q,

RhoA
FLS Cell model Human Migration, invasion, proliferation (21)

MALAT1 Down – CTNNB1 FLS, PBMC Cell model Human Proliferation, inflammation (128, 129)
UCA1 Down – Wnt6 FLS Cell model Human Potential target (130)
MEG3 Down – NLRC5,

DNMT1
FLS Rat model Rat Inflammation (131)

Down miR-141 IL-23, Ki67 FLS Cell model Human Inflammation, proliferation (132)
Down – STAT3, PI3K/

AKT
FLS Cell model Human Proliferation, invasion, apoptosis (133)

GAS5 Down miR-222-3p Sirt1 FLS Cell model Human Proliferation, inflammation, apoptosis (134)
GAPLINC Up miR-382-5p,

miR-575
– FLS Cell model Human Proliferation, invasion, migration,

proliferation
(135)

Lnc-IL7R Up – EZH2, PRC2 FLS Cell model Human Proliferation, inflammation (136)
ITSN1-2 Up – NOD2, RIP2 FLS Cell model Human Proliferation, inflammation (137)
PVT1 Up – sirt6 FLS Rat model Rat Proliferation, inflammation, apoptosis (138)
PICSAR Up miR-4701-5p IL-6, IL-8,

MMP-3
FLS, synovial
fluid

Cell model Human Invasion, inflammation (139)

ZFAS1 Up miR-27a MMP-2,
MMP-9

FLS, synovial Cell model Human Migration, invasion (140)

HOTAIR Up – – Mononuclear Cell model Human Macrophage migration Bone
cartilage dissolution

(141)
Up – MMP-2,

MMP-13
Osteoclasts,
FLS

Cell model Human

Down miR-138 IL-1b, TNF-a Chondrocytes Mouse model, Cell
model

Mouse Proliferation, inflammation (142)

H19 Up – KDM6A PBMC Mouse model, Cell
model

Human
Mouse

M1 macrophage polarization (143)

Up – Notch, Hes1 Primary
synovial cells

Rat model Rat Proliferation, apoptosis (144)

Up miR-103a DDR-2, IL-15 FLS Mouse model Human
Mouse

Inflammation (145)

DILC Down – IL-6 Plasma Cell model Human Apoptosis (146)
ITSN1-2 Up – – Plasma – – Biomarker for RA diagnosis (147)
PBMC
lncRNA-p21 Down – NF-kB, JUNB PBMC Cell model Human Increase NF-kB activity (148)
NEAT1 Up – STAT3 PBMC, Th17 Mouse model Human

Mouse
inhibit cell differentiation (149)

NTT Up – C/EBPb/NTT/
PBOV1

PBMC,
monocytes,

Cell model Human monocyte/macrophage
differentiation

(150)

Lymphocytes
LOC100506036 Up – SMPD1, NFAT1 T cell Cell model Human Inflammation (151)
RMBP Up – DDX5-RORgt Th17cells Cell model Human Th17-mediated inflammatory (152)
THRIL Up – – T cell Cell model Human T cell dysfunction (153)
February 2022 | Volume 13 | Art
FLS, Fibroblast−like synoviocytes; PBMC, peripheral blood mononuclear cell; wnt6, wnt family member 6; NLRC5, nucleotide oligomerization domain-like receptor subfamily C5; DNMT1,
DNA methyltransferase 1; IL-6/8/15/23, interleukin 6/8/15/23; STAT3, signal transducer and activator of transcription 3; EZH2, zeste homolog 2; PRC2, polycomb repressive complex 2;
NOD2, nucleotide oligomerization domain-2; RIP2, receptor-interacting protein 2; MMP-2/3/9/13, matrix metalloproteinase-2/3/9/13; IL-1b, interleukin 1b; TNF-a, tumor Necrosis Factor
Alpha; KDM6A, lysine-specific demethylase 6A; DDR-2, discoidin domain Receptor 2; SMPD1, sphingomyelin phosphodiesterase 1.
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shown that the functions of dysregulation circRNAs are involved
in regulating synovial inflammation response and cellular
biological behavior of RA FLSs, including proliferation,
migration, invasion, and apoptosis (Table 5). Cai et al.
identified that circ_0088194 was up-regulated in RA FLS; it
could act as miR-766-3p sponge and promote the expression
of downstream target gene MMP2, thereby facilitating the
fibroblast−like synoviocytes’ invasion and migration. It may be
a novel and promising target for RA (167). Qu et al. suggested
that circ-AFF2 was up-regulated in synovial tissues and FLS of
RA; circ-AFF2 could bind to the miRNA miR-650; it enhances
the expression level of downstream target 2’,3’-cyclic nucleotide
phosphodiesterase (CNP) and promotes fibroblast−like
synoviocyte proliferation, inflammatory response, migration,
and invasion (168). Another study found that the up-regulated
circ-AFF2 was also associate with FLS cell progression and
inflammatory response via the miR-375/TAB2 axis (169). The
circRNA circ-Sirt1 was up-regulated in FLS and MH7A cells;
Frontiers in Immunology | www.frontiersin.org 7
it participates in the inhibition of cell proliferation, promotion of
apoptosis, and reduction of inflammation in MH7A by targeting
the miR-132-mediated Sirt1 pathway (170). Many differentially
expressed circRNAs genes should be further validated in vivo and
in vitro to find possible targets and pathways and to provide a
theoretical support for the development of novel RA biomarkers
and molecularly targeted therapeutic drugs.
THE CROSSTALK OF lncRNAs, miRNAs,
AND mRNAs IN RA

Mounting evidence demonstrated that lncRNAs could interact
with miRNAs in regulating mRNA expression via various post-
transcriptional mechanisms (177). Four potential mechanisms
were associated with the interactions of lncRNA, miRNA, and
mRNA (23, 178), as follows: (1) lncRNAs sponge miRNAs as
ceRNAs. ceRNA is a kind of RNAs acting as molecular sponges
TABLE 4 | The role of circRNAs in gene expression profiles of RA.

circRNAs
Up (n)

circRNAs
Down(n)

Tissue (n) Species circRNAs Functions Reference

109 56 RA-PBMC (n=3) Normal-
PBMC (n=3)

Human circ_0001200,circ_0001566, circ_0003972,
circ_0008360

Biomarker for RA diagnosis (162)

109 56 RA-PBMC (n=3) Normal-
PBMC (n=3)

Human circ_0003353 Promote immunity, inflammation,
synovial invasion

(163)

9 3 RA-PBMC (n=5) Normal-
PBMC (n=5)

Human circRNA_104871,circRNA_003524,
circRNA_101873, circRNA_103047

Biomarkers for RA diagnosis (164)

41 30 RA-PBMC (n=4) Normal-
PBMC (n=3)

Human circPTPN22 Biomarkers for RA diagnosis (165)

10 0 RA- plasma (n=5) Normal-
plasma (n=5)

Human circ_0005008, circ_0005198 Disease activity Biomarkers for
RA diagnosis

(166)
February 2022 | Volume 13 | Art
PBMC, Peripheral blood mononuclear cell.
TABLE 5 | The aberrantly expressed circRNAs in RA.

lncRNA Express Target gene
(s)

Related genes Tissue/cell
source

Model Species Functions Reference

FLS
circ_0088194 Up miR-766-3p MMP2 FLS Cell model Human Invasion, migration (167)
circ-AFF2 Up miR-650 CNP FLS, synovial Cell model Human Proliferation, inflammation,

migration
(168)

Up miR-375 TAB2 FLS, blood Cell model Human Cell progression, inflammation (169)
circ-Sirt1 Up miR-132 Sirt1 pathway FLS, MH7A cell Cell model Human Proliferation, apoptosis,

inflammation
(170)

circ-PTTG1IP Up miR-671-5p TLR4 FLS, synovial Cell model Human Proliferation, inflammation,
migration

(171)

circMAPK9 Up miR-140-3p PPM1A FLS Cell model Human Proliferation, inflammation,
migration

(172)

circASH2L Up miR-129-5p HIPK2 FLS Cell model Human Growth, motility, inflammation (173)
circ_0003353 Up – – FLS Cell model Human Proliferation, migration,

biomarker
(163)

circ_0008360 Down miR-135b-5p HDAC4 FLS, synovial
tissue

Cell model Human Proliferation, inflammation,
migration

(174)

PBMC
circ_09505 Up miR-6089 AKT1, IkBa NF-

kB
PBMC,
macrophages

Cell model Mouse
model

Human
Mouse

Proliferation, inflammation (175)

ciRS-7 Up miR-671 mTOR PBMC – Human Relation of ciRS-7/miR-7/mTOR (176)
Plasma
circ_0005198 Up miR-4778-3p DAS28 Plasma, FLS Cell model Human Biomarkers for RA diagnosis (166)
icle 810317

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Han et al. ncRNA and RA
by competing for miRNA response elements (MREs), it could
hinder the expression of other target genes, such as mRNAs, by
contending with miRNA (179). In the lncRNA-miRNA-mRNA
networks, lncRNAs competitively bind to miRNAs as miRNA
sponges, inhibit miRNA expression, and enhance the translation
of target mRNA. For example, lncRNA PRNCR1 directly binds
to miR-326, thereby functioning as a miR-326 “sponge” to up-
regulate the expression level of fascin actin-bundling protein 1
(FSCN1) in oral squamous cell carcinoma (180). (2) miRNAs
degrade lncRNAs. miRNAs directly target lncRNAs and regulate
their stability and abundance, thereby affecting different cell
functions in physiological and pathological processes. For
example, miRNA miR-9 target lncRNA MALAT1, thereby
silencing Ago2 and regulating the stability of MALAT1 in the
nucleus of L428 (181). (3) lncRNAs bind to target mRNAs and
directly compete with miRNAs. The overexpressed LncRNA
BACE1AS combines with mRNA BACE1 to reverse the
Frontiers in Immunology | www.frontiersin.org 8
downward trend by miR-485-5p (182). (4) lncRNAs produce
miRNAs. Some lncRNAs could generate miRNAs, thereby
regulating the expression of downstream genes. For example,
lncRNA H19 generates miR-675, thereby inhibiting the
expression of insulin-like growth factor 1 receptor(IGF1R)
(183). Recently, the lncRNA-miRNA-mRNA networks were
gradually revealed to be involved in rheumatic diseases, such
as RA (14) and systemic lupus erythematosus (SLE) (184); they
participate in biological and pathological processes of diseases.
This finding has become a hot topic, thereby attracting
increasing attention especially in RA.

lncRNAs act as miRNA sponge, and this is the most studied
mechanism in RA. lncRNAs competitively bind to miRNAs to
regulate the expression level of downstream genes in synovial
tissue, FLS, and PBMC. They participate in the regulation of the
proliferation, apoptosis, invasion, and inflammatory response of
RA-FLSs (Figure 1). Zhao et al. detected the expression of
FIGURE 1 | The crosstalk of lncRNA-miRNA-mRNA in RA. FLS, Fibroblast−like synoviocytes; PVT1, plasmacytoma variant translocation 1; SCUBE2, signal peptide-
CUB-EGF-like containing protein 2; IL-1b, interleukin-1b; IL-6, interleukin-6; THBS2, thrombospondin-2; GAS5, growth arrest-specific transcript 5; HDAC4, histone
deacetylase 4;PIAS3, protein inhibitor of activated STAT3; NEAT1, nuclear paraspeckle assembly transcript 1; MAPK1, mitogen-activated protein kinase 1; YY1, yin
yang-1; mdm2, mouse double minute 2; Sirt6, sirtuin 6; PON1, paraoxonase 1; PBMC, peripheral blood mononuclear cell; NEAT1, nuclear paraspeckle assembly
transcript 1; MDM2, murine double minute-2; SIRT6, sirtuin 6; MMP-15, matrix metalloproteinase-15; TLR4, toll-like-receptor 4; STAT3, signal transducer and
activator of transcription 3.
February 2022 | Volume 13 | Article 810317

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Han et al. ncRNA and RA
lncRNA in the serum and synovial tissues from patients with
joint trauma or RA, and they found that the expression of
FOXD2-AS1 was significantly increased. FOXD2-AS1 acts as
miR-331-3p sponge modulator of downstream target gene
STAT3 expression. The overexpressed FOXD2-AS1 increased
the proliferation and invasion of fibroblast-like synoviocytes
through the miR-331-3p/PIAS3 pathway, suggesting that
FOXD2-AS1 may be a promising target for RA treatment
(185). Tang et al. reported that in the synovial tissues of RA
patients, the expressions of lncRNA PVT1 and miRNAmiR-145-
5p were negatively correlated. In addition, significantly up-
regulated PVT1 and down-regulated miR-145-5p were found
in the RA-FLS model (induced by TNF-a). The knockdown of
PVT1 could directly target miR-145-5p to inhibit the over-
proliferation of RA-FLS and the activation of NF-kB signaling
pathway and to regulate the proliferation, apoptosis, and
inflammatory response of RA-FLS (186). Wang and his
colleagues revealed that the overexpressed PVT1 could directly
target miR-543, enhance the expression level of SCUBE2, and
promote proliferation and IL-1b secretion while inhibiting the
apoptosis rate of FLSs (187). The two abovementioned studies
showed that lncRNA PVT1 has two downstream miRNA targets,
miR-145-5p and miR-543. Similar to circRNAs, lncRNAs could
contain one or more binding sites to miRNAs, thereby serving a
sponging function. Studies have clarified that lncRNA NEAT1
could bind to miR-129/miR-204 (188), miR-410-3p (189), and
miR-23a (190), thereby regulating cell viability, migration, and
inflammation in fibroblast−like synoviocytes from RA.
Furthermore, the up-regulated lncRNA ZFAS1 (155, 191),
HIX003209 (156), and XIST (192) and down-regulated
lncRNA LINC01197 (193), GAS5 (154), and OIP5-AS1 (194)
also sponged miRNAs, thereby participating in cell proliferation,
differentiation, apoptosis, and inflammation in synovial tissue of
RA via ZFAS1/miR-2682-5p/ADAMTS9 axis, ZFAS1/miR-296-
5p/MMP-15 axis, HIX003209/miR-6089/TLR4 axis, lncRNA
XIST/let-7c-5p/STAT3 axis, LINC01197/miR-150/THBS2 axis,
GAS5/miR-128-3p/HDAC4 axis, and OIP5-AS1/miR-448/
PON1, respectively. The details are presented in Table S1.

Accumulating evidence has revealed the crucial role of
lncRNA in modulating gene expression through the crosstalk
of lncRNA-miRNA-mRNA in the immune and inflammatory
pathways of RA. However, a new study found that lncRNA could
be regulated by protein coding genes via the lncRNA-miRNA-
mRNA axis, which was involved in the pathophysiologic process
of RA (145). Mu et al. reported that lncRNA H19 was up-
regulated, whereas miR-103a was down-regulated in RA-FLS.
The expression of H19 could be greatly up-regulated when
downstream target discoidin domain receptor 2(DDR-2) was
activated, and miR-103a was the direct target of H19.
Furthermore, miR-103a acts as a negative regulator that
inhibits the expression of downstream genes interleukin 15
(IL-15) and dickkopf 1(DKK1). The study revealed that DDR-
2 could exacerbate joint damage and inflammatory response via
the H19-miR-103a network (145). Another study confirmed that
protein coding gene forkhead box M1(FOXM1) was a new
transcription regulator of lncRNA (195). Wang et al. indicated
Frontiers in Immunology | www.frontiersin.org 9
that FOXM1 and lncRNA LINC00152 were overexpressed in the
FLS of patients with RA. FOXM1 overexpression could promote
the expression of LINC00152, thereby acting as a transcription
activator. LINC00152 could bind to miR-1270 and negatively
regulate its expression. Intriguingly, the study found that the
mRNA and protein levels of FOXM1 were positively regulated by
LINC00152, and FOXM1 could also bind to LINC00152. Thus,
LINC00152 and FOXM1 form a positive feedback loop in RA
FLS. In summary, LINC00152 and FOXM1 could competitively
bind with miR-1270; FOXM1/LINC00152/miR-1270 is a positive
feedback loop involved in regulating the proliferation and
apoptosis of RA-FLS (195). These studies revealed a novel
molecular mechanism of pathophysiologic process in RA-FLS,
thereby providing a new idea and direction for the future study of
the pathological mechanism of RA.
THE CROSSTALK OF circRNAs, miRNAs,
AND mRNAs IN RA

For the past few years, the circRNA-miRNA-mRNA networks
were gradually revealed. Studies have shown the presence of
multiple miRNA complementary binding sites on circRNAs;
circRNAs participate in the regulation of transcriptional and
post-transcriptional levels by interacting with miRNA, thereby
participating in the biological processes of many diseases (196,
197), such as central nervous system diseases (16), osteoarticular
diseases (198), and cancer (199). Two main regulatory
mechanisms of circRNA-miRNA-mRNA axis exist, as follows.
1) circRNAs sponge miRNAs. The “sponging” function reveals
the regulatory mechanism, i.e., circRNAs may act as mRNA
expression regulators by targeting seed sequences, thereby
inhibiting the expression of miRNA. circRNA molecules
usually contain one or more binding sites to which miRNA
binds, thereby serving the sponging function (16). The
circ_POLA2/miR-326/GNB1 axis could regulate lung cancer
cell stemness and progression. Mechanistically, circ_POLA2
sponging miR-326 functioned as a ceRNA, thereby negatively
regulating the expression of miR-326 target GNB1 (200).
2) miRNAs mediate circRNAs. miRNAs target circRNAs,
thereby regulating the expression of downstream mRNA genes.
miRNA miRNA-1224 could mediate the expression of circRNA
circRNA-Filip1l by targeting downstream gene Ubr5, which is
involved in the regulation of nociception (201).

The crosstalk of circRNAs, miRNAs, and mRNAs was also
demonstrated in physiopathological process of RA (174), and the
mechanism is that circRNAs act as the miRNA sponge and
competitively bind to miRNA, thereby participating in the
regulation of downstream genes in FLS, synovial tissue, and
PBMC (Figure 2). In FLSs from patients with RA, Luo and his
colleagues detected the expression levels of circRNA and miRNA
via qRT-PCR and verified the interaction between them via dual-
luciferase reporter assay. They indicated that the circMAPK9/
miR-140-3p/PPM1A axis was involved in inhibiting
inflammatory response, proliferation and migration and
accelerating the apoptosis of fibroblast-like synoviocytes. The
February 2022 | Volume 13 | Article 810317
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circRNA circMAPK9 was high expressed and targets miRNA
miR-140-3p, and mRNA PPM1A was downstream target gene of
miR-140-3p. The knocked down circMAPK9 sponged miR-140-
3p and down-regulated PPM1A expression, thereby regulating
the biological process of RA-FLSs (172). Hao et al. found that
circRNA circ_0008360 was down-regulated in synovial tissue.
And then, they used bioinformatics analysis to obtain a
preliminary prediction. The results indicated that miR-135b-5p
and histone deacetylase 4 (HDAC4) interacted with
circ_0008360. They demonstrated that the circ_0008360
sponging miR-135b-5p positively regulated HDAC4
expression, thereby inhibiting the proliferation, migration, and
inflammation and facilitating the apoptosis of RA-FLSs (174).
Yang et al. found a high expression level of circRNA_09505 in
PBMC from patients with RA. The in vitro macrophage cell
model and in vivo collagen-induced arthritis (CIA) mice model
indicated that circRNA_09505 could act as miR-6089 sponge
through ceRNA mechanism, thereby activating IkBa/NF-kB
signaling pathway, promoting miR-6089 direct target AKT1
expression, and exacerbating arthritis and inflammation (175).

Other circRNAs, such as circ_0088194 (167), circ-AFF2
(168), circ-Sirt1 (170), circ-PTTG1IP (171), and circASH2L
(173), also acted as miRNA sponge in RA; they regulated FLS
proliferation, inflammation, and migration via circ_0088194/
miR-766-3p/MMP2 axis, circ-AFF2/miR-650/CNP axis, circ-
Sirt1/miR-132/Sirt1 pathway, circ-PTTG1IP/miR-671-5p/TLR4
Frontiers in Immunology | www.frontiersin.org 10
axis, and circASH2L/miR-129-5p/HIPK2 axis, respectively. The
details are presented in Table S2. The circRNA-miRNA-mRNA
networks may have other biological functions in RA diseases
besides proliferation, migration, invasion, and inflammatory
response. To identify the function of specifically expressed
circRNAs and miRNAs, Wen et al. first sequenced circRNAs
and miRNAs in PBMCs from three pairs of RA patients and
healthy controls. Then, the open source software platform
cytoscape was used to build a circRNA-miRNA co-expression
network that contained 228 circRNA–miRNA pairs. Further GO
and KEGG analyses indicated that the significantly differentially
expressed circRNAs were involved in apoptosis, inflammation,
autophagy, and oxidative stress (162). This study presents the
new idea that circRNAs might be related to the pathogenesis of
RA worthy for further study.
CLINICAL IMPLICATIONS

RA is the most common autoimmune disease in the world (1). It
leads to severe disability and early death (202). Therefore, early
detection, diagnosis, and treatment are particularly important
(2). Unfortunately, the markers used do not show a high degree
of specificity and sensitivity (118). ncRNAs may serve as novel
biomarkers because of their characteristics of stable expression in
blood and body fluids. In recent years, a growing number of
FIGURE 2 | The crosstalk of circRNA-miRNA-mRNA in RA. FLS, Fibroblast−like synoviocytes; PBMC, peripheral blood mononuclear cell; MMP2, matrix
metalloproteinase-2; CNP, 2’, 3’-cyclic nucleotide phosphodiesterase; TAB2, binding protein 2; TLR4, toll-like-receptor 4; PPM1A, protein phosphatase 1A; HIPK2,
homeodomain-interacting protein kinase 2; HDAC4, histone deacetylase 4.
February 2022 | Volume 13 | Article 810317
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studies confirmed that ncRNAs (lncRNA, circRNA, and
miRNA) play key roles in the physiopathological process of
RA (34) and may become promising tools for disease diagnosis
and prognosis and for prediction of treatment response. Some
examples are the ncRNAs in blood (including plasma and serum)
and synovial fluid, as follows: lncRNAs MEG3 (203), PICSAR
(139); circRNAs circ_0044235 (204), Circ_AFF2 (169),
circPTPN22 (165), circ_0005008 (166), and circ_0005198
(166); and miRNAs miR-23b (205), miR-103a-3p (84), and
miR-125b (82, 206). Furthermore, several miRNAs could also
function as potential biomarkers for RA complication, such as
miR-146a-5p and miR-155-5p, which are reported to be possible
biomarkers for the development of cardiovascular complications
in RA (207). Moreover, the exosome-encapsulated miRNAs,
such as miR-548a-3p (208) and miR-150-5p (209), may also be
novel and promising targets for RA diagnosis and treatment.

Accumulated evidence demonstrated that the aberrantly
expressed ncRNAs offer the opportunity to discover new
targeted drugs for patients with RA (107, 161). ncRNA
targeting treatment is more selective in RA treatment
because of its low susceptibility to infection. Targeting
lncRNAs LOC100652951and LOC10506036 modulates T cell
inflammation in RA (151). miRNA miR-10a could also act as a
regulator of inflammation in RA treatment (210). Furthermore,
gene therapy in RA has received much attention in recent
years, e.g., RNA interference (RNAi) (211) and antisense
oligonucleotides(ASO) (161). RNAi is an intrinsic cellular
mechanism that causes mRNA degradation through the
interaction of miRNA and small interfering RNA(siRNA)
molecules with complementary RNA molecules. Some biologicals
of RNAi that target TNF and NF-kB have been used in RA animal
models, but the results were not satisfactory (211). However, the
treatment of STAT1 siRNA encapsulated by nanoparticles reduced
joint deterioration in RA model mice; nanoparticles protected the
siRNA from serum degradation (212). ASO is a promising nucleic
acid therapy, and the ASO-based drug has been used in many
diseases (213). Studies reported that the silencing ofmiR-223 using
lentiviral vectors based on ASO could reduce disease severity of
experimental arthritis (214). However, RA-related drugs are
lacking. Few studies have investigated the clinical applicability of
ncRNAs modulators in autoimmune diseases.
Frontiers in Immunology | www.frontiersin.org 11
CONCLUSIONS

The studies on ncRNAs, especially the crosstalk of lncRNA/
circRNA-miRNA-mRNA in autoimmune disorders, have received
much attention. Although a series of published studies have revealed
the role of lncRNA/circRNA-miRNA network in regulating
inflammation and autoimmunity via Wnt3a/b-catenin and TLR/
NF-kB signaling pathways in RA, the regulatory mechanism of
ncRNAs is still unclear. More in-depth studies are needed to explore
the interactions of lncRNA/circRNA-miRNA-mRNA. Elucidating
the lncRNA/circRNA-miRNA-mRNA regulatory network and
analyzing the interaction mechanism of these fundamental
epigenetic regulators in the pathophysiology of RA are still a
challenge. With the development of next-generation sequencing
and other modern molecular biological techniques, more ncRNA
molecular regulatory mechanisms and ncRNA targeted drugs will
be uncovered. These would provide new strategies for the clinical
diagnosis and targeted treatment for RA.
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