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Background: Epidermal growth factor receptor (EGFR) genotyping and programmed
death ligand-1 (PD-L1) expressions are of paramount importance for treatment guidelines
such as the use of tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs)
in lung cancer. Conventional identification of EGFR or PD-L1 status requires surgical or
biopsied tumor specimens, which are obtained through invasive procedures associated
with risk of morbidities and may be unavailable to access tissue samples. Here, we
developed an artificial intelligence (AI) system that can predict EGFR and PD-L1 status in
using non-invasive computed tomography (CT) images.

Methods: A multitask AI system including deep learning (DL) module, radiomics (RA)
module, and joint (JO) module combining the DL, RA, and clinical features was developed,
trained, and optimized with CT images to predict the EGFR and PD-L1 status. We used
feature selectors and feature fusion methods to find the best model among combinations
of module types. The models were evaluated using the areas under the receiver operating
characteristic curves (AUCs).

Results: Our multitask AI system yielded promising performance for gene expression
status, subtype classification, and joint prediction. The AUCs of DL module achieved
0.842 (95% CI, 0.825–0.855) in the EGFR mutated status and 0.805 (95% CI, 0.779–
0.829) in the mutated-EGFR subtypes discrimination (19Del, L858R, other mutations). DL
module also demonstrated the AUCs of 0.799 (95% CI, 0.762–0.854) in the PD-L1
expression status and 0.837 (95% CI, 0.775–0.911) in the positive-PD-L1 subtypes (PD-
L1 tumor proportion score, 1%–49% and ≥50%). Furthermore, the JO module of our AI
system performed well in the EGFR and PD-L1 joint cohort, with an AUC of 0.928 (95%
CI, 0.909–0.946) for distinguishing EGFR mutated status and 0.905 (95% CI, 0.886–
0.930) for discriminating PD-L1 expression status.

Conclusion: Our AI system has demonstrated the encouraging results for identifying
gene status and further assessing the genotypes. Both clinical indicators and radiomics
features showed a complementary role in prediction and provided accurate estimates to
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predict EGFR and PD-L1 status. Furthermore, this non-invasive, high-throughput, and
interpretable AI system can be used as an assistive tool in conjunction with or in lieu of
ancillary tests and extensive diagnostic workups to facilitate early intervention.
Keywords: EGFR, PD-L1, NSCLC, deep learning, computed tomography
INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer and
the leading cause of mortality tumor throughout the world (1, 2).
In China, there are around 733,000 new cases of lung cancer
annually, and with over 610,000 deaths due to lung cancer (3),
accounting for 37% new cases and 39.2% death cases of the
world, respectively (4). Approximately 85% of lung cancer
patients were histologically identified as non-small cell lung
cancer (NSCLC), of which comprises the most common
subtype such as lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC) (5). Targeted therapies, as
represented by epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitors (TKIs), and immune checkpoint
inhibitor (ICI) treatments targeted the programmed death-1
(PD-1) receptor on T cells, or the programmed death ligand-1
(PD-L1) expressed by tumor cells; these two treatment
paradigms have significantly revolutionized cancer treatment
and improved survival outcome for lung cancer. Identifying
predictive biomarkers is therefore crucial for choosing
individuals who are potentially suitable to therapy.

In the era of precision medicine, lung cancer treatment
depended on the genetics. Patients with EGFR mutated lung
adenocarcinoma could achieve a longer progression-free survival
(PFS) from EGFR-TKIs than conventional chemotherapy (6–8).
However, the medication and efficacy varied among NSCLC
patients with EGFR 19Del, L858R, or other types of mutations (9,
10). Meanwhile, ICIs targeting PD-1 or PD-L1 offer promising
paradigm to treatment in NSCLC with high PD-L1 expression.
The first-line pembrolizumab monotherapy can enhance overall
survival (OS) and PFS in lung cancer patients with PD-L1 tumor
proportion score (TPS) ≥50% (11, 12). However, gene detection
is determined by surgical or biopsied tissue-based assays at
present, which has many limitations: difficulties in accessing
suitable tumor tissues due to their extensive genetic
heterogeneity; associated morbidities or tumor metastasis
during the invasive biopsies; and different antibodies, multiple
scoring criteria, and poor DNA quality resulting in high
heterogeneity of results (13). What is more, gene mutations
could change over the course and progression during whole
therapy, making it impractical and challenging to obtain tumor
biopsy during multiple times. However, molecular profiling of
relative high costs is not routinely performed for every patient,
especially in low-resource settings. Therefore, a non-invasive
method for identifying the mutation status is urgently needed.

Radiological images reflect abundant information on the
entire tumor in non-invasive way (14). Recent advances in
machine learning have promoted the disease diagnosis based
on computed tomography (CT) images. Conventional radiomics
org 2
methods, which are tedious and time consuming, include image
segmentation, feature extraction and selection, model building,
and data analysis. The radiological characteristics are affected by
manual segmentation and CT scan parameters, and repeated
professional analysis by doctors is necessary (14). Advances in
deep learning could overcome these problems and have
demonstrated accurate, reliable, and reproducible performance
on triage tasks for detecting the abnormalities and diagnosing the
disease (15, 16). These proposed deep learning models and
techniques have achieved a predictive performance in
estimating malignancy risk in pulmonary nodules and
diagnosing pneumonia quickly during the COVID-19
pandemic. Recent new and exciting developments in artificial
intelligence (AI) have provided new potential opportunities to
predict the EGFR mutation or PD-L1 expression status on the
basis of CT images (17, 18). However, the small datasets and
binary task limit its applicability in the routine clinical work.
There still exists a considerable challenge to objectively evaluate
the ability of the model to predict the gene mutation status and
gene subtypes.

In the present study, we proposed an AI system to mine CT
image information to predict EGFR mutation status and mutated
subtype (i.e., 19Del and L858R) and investigate the PD-L1
expression level and positive PD-L1 subtypes (PD-L1 TPS,
1%–49% and ≥50%) and further simultaneously identify both
EGFR and PD-L1 status, aiming to provide support for clinical
decision-making.
MATERIALS AND METHODS

Patients Cohort and Data Collection
This study retrospectively included consecutive patients with
NSCLC who visited West China Hospital of Sichuan University
(Sichuan, China) from June 2019 and June 2021. The current
study was performed in compliance with the Declaration of
Helsinki and approved by the Institutional Review Board (IRB)/
Ethics Committee. Written informed consent was waived
because the data used for system development were de-
identified by removing personal information. Patients who
meet the following inclusion criteria were collected into this
study: (1) histologically verified primary NSCLC, (2)
pathological analysis of tumor tissues with thorough EGFR or
PD-L1 testing results, and (3) preoperative CT images. Patients
were excluded if (1) clinical data such as age, sex, and stage were
missing; (2) preoperative treatment was received; (3) the
duration between CT examination and subsequent surgery
exceeded 1 month; or (4) tumors <1cm in size and CT
imaging artifact were found. Following the screening of
February 2022 | Volume 13 | Article 813072
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exclusion criteria, we selected our primary cohort (n = 3,816) for
model development. Furthermore, we created a subset of EGFR
cohort (n = 3,629), PD-L1 cohort (n=873), and EGFR and PD-L1
joint cohort (n = 818) who underwent staining based on surgery
or biopsy specimens and gene testing (EGFR, PD-L1 or both),
with the goal of evaluating the performance of our models for
three prediction tasks: gene mutation status, gene subtypes, and
joint prediction.

EGFR gene status was determined to be mutated (including
19Del, L858R, and Others) and wild by amplification refractory
mutation system-polymerase chain reaction (ARMS-PCR) or
next-generation sequencing (NGS). PD-L1 expression status
was identified as positive and negative according to PD-L1 TPS
(≥1% vs. <1%; TPS is the percentage of tumor cells with
membranous PD-L1 staining, with TPS ≥1% indicating
positivity; TPS 1%–49% and ≥50% indicating low PD-L1+ and
high PD-L1+, respectively) using SP142 antibody in
immunohistochemical (IHC) assays performed on the Ventana
Benchmark platform. After being reviewed by senior
pathologists, these gene testing results were regarded as the
gold criteria in the current study. The CT data utilized in this
study came from a variety of suppliers (GE, Philips, Siemens
United Imaging Health) to assess the resilience of our AI system
in multiple clinical contexts. All CT scans had a resolution of
512 × 512, with slice spacing ranging from 0.625 to 5 mm in the
axial direction. For the electronic health records (EHRs) data
collection in our study, ideally, for a unique patient, his/her
EHRs data should at least include basic information, i.e., age, sex,
tumor stage, and smoking status, and radiology reports in line
with international standards.

For multitask AI system, we collected multimodal data that
comprised (a) deep learning features based on CT images, which
consisted of a global texture feature and a tumor local texture
feature; (b) radiomics features that extracted and analyzed a large
number of advanced quantitative image features with high
throughput; and (c) clinical features that included
demographics, comorbidities, and clinical symptoms.

Data Pre-Processing
In this experiment, we obtained the training and testing cohorts
from the EGFR/PD-L1 dataset by stratified and random
sampling of patients at a ratio of 4:1. For the CT images, two
groups of doctors were asked to delineate of the specific mask of
the entire tumor. The tumor–mask pair was then fed into the
radiomics model, which extracted radiomic characteristics, and
the deep learning model, which extracted deep learning features.
For deep learning feature analysis, a cubic region of interest
(ROI) containing the entire tumor with surrounding information
was supplied and retrieved local deep learning features by the
local DL model, and the global DL model took the corresponding
origin CT volume as input. Finally, as deep learning features,
local deep feature and global deep feature were combined. Using
pre-computed windowing information, all cubic ROI and origin
CT volume pixels were normalized to 0–255, and all CT volumes
were resized to the same size of 36 × 36 × 36 using third-order
spline interpolation. To reduce overfitting, data augmentations
such as horizontal flip, random resizing cropping, random
Frontiers in Immunology | www.frontiersin.org 3
rotation, and random color jittering were used throughout the
training phase. For the final model training and inference, a
random crop of 32 × 32 × 32 would be employed.

Construction of AI System
We developed a deep-learning-based AI system for scalable gene
prediction in patients. To summarize, our proposed AI system
employed a modular pipeline method with four key components
(Figure 1): deep learning module, radiomics module, clinical
module, and feature fusion module. The following was a full
description of the AI system.

For the deep learning module (Figure 1B), in order to pay
more attention to contextual features (different lesion signs
usually appear at the same time) and use these correlation
lesion signs to improve the model’s representation learning
ability, this study proposed a novel dual-pathway deep learning
network architecture that performs CT volume and tumor
volume feature as local and global information, using the
weighted-share backbone to capture the dependence between
tumor detail information and the whole CT information in a
large range. To be more specific, both the encoders of the
framework (local and global) were composed of several 3D
convolution and residual blocks, and the continuous multislice
(tumor and full CT images) were used to form trainable 3D data
patches, which were then fed as two branch inputs to realize
multiscale local and global information extraction through
progressive fusion, making full use of context texture
information of 3D image space. In addition, due to the
different roles of global feature and local feature in specific
prediction, it was necessary to conduct corresponding
modeling for different extracted features; therefore, we adopted
an asymmetric non-local fusion layer to implicitly modeled the
attentional mechanism. For each weight-sharing branch of the
backbone, for 3D volumes, we applied a 3D ResNet-18 feature
extractor and fine-tuned the parameters by the pre-trained
model. As a consequence, transfer learning was employed to
address the issue of insufficient training data by first learning the
neural network’s unique weights on the source data set. Because
several gene mutations might co-exist or overlap on the same
patient, a multilabel triage loss function with sigmoid active
function was used instead of the standard multiclass
classification loss.

The radiomics module (Figure 1C) retrieved and quantified a
large number of characteristic data from tumor images and
processed genetic and tumor information from more high-
dimensional features that cannot be observed by the human
naked eye to construct clinical features. The following pipeline
steps were used to extract image radiomics features: (1) precise
segmentation of suspected tumors, (2) extraction of large high-
dimensional characteristics from suspected tumor area, and (3)
filtered and reduced correlation features to prevent overfitting.
To begin, 1,247 radiomics characteristics were extracted from
each tumor–mask pair volume (segmented by the doctors).
These characteristics included first-order (HU stats), shape,
and texture properties.

The first-order feature depicted the intensity distribution of
CT values in the volume of interest by common basic measures,
February 2022 | Volume 13 | Article 813072
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such as mean, range, and standard deviation. The texture
features were classified into five categories: (1) the gray-level
co-occurrence matrix, (2) the gray-level difference matrix, (3) the
gray-level run-length matrix, (4) the gray-level size-zone matrix,
and (5) the gray-tone difference matrix in the neighborhood.
Following that, for each feature in a specific tumor, we
summarized and examined the distribution of the feature’s
values across nine filters and eight wavelet transformations in
high dimensions. Then, the least absolute shrinkage and selection
operator (LASSO) method was used on the feature set to
eliminate the correlation radiomics characteristics with low
variance (<0.8). Finally, around 100-dimensional features were
selected as the most useful radiomics features in LASSO model.

The clinical module (Figure 1D) acquired structured
abnormality symptoms and the patients’ basic clinical
information. Although CT imaging can provide some insight
into the effectiveness of cancer immunotherapy, the clinical
information of patients including age, sex, tumor staging,
number, size, past recurrence, and medication status had all
been linked to the efficacy of cancer immunotherapy. How to
effectively combine imaging and clinical information to
construct an individual prediction model remained another
key problem. For the structured information, such as sex, we
mainly used the one-hot strategy to convert category variables
Frontiers in Immunology | www.frontiersin.org 4
into a sparse vector space that machine learning algorithms can
easily use. For the free-text reports, such as radiology record, we
used the natural language processing (NLP) algorithm to
perform free-text record analysis to predict patients’
radiological abnormalities into a structured label vector format
(binary vector of labels for the targeting abnormality). To create
uniform length vectors, the raw free texts were first vectorized
using a data vectorization process. The text classifier was then
trained using supervised learning, which may be used to generate
labels (e.g., radiological abnormalities) automatically. The text
classifier was trained using pre-annotated text–label pairs. Then,
these structured symptoms label vectors and structured patients’
basic clinical information were merged into the combined vector
as our clinical features.

The fusion module made use of the fully connectivity layer to
provide self-adaptation based on a combination of deep learning
(DL), radiomics (RA), and clinical (CL) features. Prior to the
fusion action, both features were followed by a new conversion
layer, specifically, a 512D-output full connection layer, which
bridged the dimensional gap between the types of features and
boosts the convergence of our feature fusion module. As a
consequence, our model could jointly project these diverse
features to an embedding feature space, allowing us to make
better use of individual feature strength.
A B E F

C

D

FIGURE 1 | Overall workflow in our study. (A) Data preparation stage included original CT image data, with manually labeled tumor images, NGS testing gene
mutation status, gene mutation subtypes, radiology records, and patients’ fundamental clinical indications. (B) A novel dual-pathway deep learning network
architecture that performed CT volume and tumor volume feature extraction, named DL feature, using the trained backbone for gene prediction and further to fuse
the extracted feature with another learnable pathway using an asymmetric non-local fusion module. (C) The pipeline of radiomics analysis model extracted radiomics
features based on manually segmented contour of the tumor. (D) The clinical feature considered a full coverage of clinical information, including radiology signs that
applied NLP techniques to extract structured labels from radiology reports. (E) The feature fusion utilized full connection to provide self-adaptation on the
combination of deep learning features, radiomics features, and clinical features. (F) Validation of the proposed AI system.
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Statistical Analysis
The following measures were used to assess the performance of
our classifiers: area under the receiver operating characteristic
curve (AUC), accuracy, sensitivity, and specificity. The 95%
confidence intervals (CIs) for the AUC were calculated
through DeLong technique. The median and interquartile
range (IQR) with a 95% CI were used to represent continuous
variables. Independent sample t-test was used to assess the
significance of mean age of EGFR mutant and EGFR
genotyping patients. The same statistical analysis was
performed for scores in the PD-L1 mutant group and the
PPD-L1 negative (PD-L1-) and positive (low PD-L1+; high
PD-L1+) groups. c2 test was used to evaluate the differences in
sex and other symptoms in each cohort. The ANOVA test was
used to determine whether there was a difference between the
joint categories of genes mutant patients. All statistical tests were
two-tailed, with statistical significance set at P < 0.05 considered
as significant. Our implementation of the deep learning model
used the Pytorch toolkit and Python 3.7.
RESULTS

Patient Characteristics of
Enrolled Datasets
A total of 4,404 patients were initially identified who had been
pathologically diagnosed with lung cancer and had undergone the
molecular (EGFR or PD-L1) test (Figure 2). Following eligibility
screening, this study included three cohorts of 3,816 eligible
patients with consecutive chest CT images. The EGFR cohort
(n = 3,629), PD-L1 cohort (n = 873), and EGFR and PD-L1 cohort
(n = 818) were enrolled, divided into 80% training/internal
validation and 20% testing sets, to develop and optimize our AI
systems for differentiating positive EGFR mutation or PD-L1
expression status from negative ones. The sum of three cohorts
were not equal to the number of total cohorts due to that
molecular profiling of EGFR or PD-L1 was not routinely
performed for every patient. Among the whole patients, the
mean age was 59 years, and 2,067 (54.17%) patients were male.
There were 2,067 (54.17%) never-smokers, 3,353 (87.87%) with no
family history of cancer, and 2,937 (76.97%) LUAD patients. For
tumor stage, patients with stages I, II, III, and IV were 1,136
(29.77%), 284 (7.44%), 742 (19.44%), and 1,475 (38.65%),
respectively. There was no significant difference for age (p =
0.508), sex (p = 0.143), smoking status (p = 0.759), family
history of cancer (p = 0.503), histopathology (p = 0.324), tumor
stage (p = 0.497) among these three cohorts. Demographic and
clinical characteristics of included dataset are depicted in Table 1.

Evaluation of Model Performance in
Predicting EGFR Mutation Status
In this step, three models including deep learning (DL) model,
radiomics (RA) model, and joint (JO) model combining the DL,
RA, and CL features were trained and developed to distinguish the
mutated EGFR from the wild EGFR patients and subsequently
discriminate the mutated EGFR subtypes (19Del, L858R,
Frontiers in Immunology | www.frontiersin.org 5
and others). On the binary task of distinguishing mutated EGFR
from wild ones, the AUCs of DL, RA, and JO models were 0.880
(95% CI, 0.871–0.892) and 0.842 (95% CI, 0.825–0.855),
0.838 (95% CI, 0.827–0.850) and 0.805 (95% CI, 0.789–0.827),
and 0.919 (95% CI, 0.914-0.924) and 0.895 (95% CI, 0.883–0.907)
in training and testing sets, separately (Figure 3 and Table 2).
Pertaining to three-way triage task discriminating the mutated
EGFR subtypes, DL, RA, and JO models achieved the mean AUCs
of 0.842 (95% CI, 0.828–0.855) and 0.805 (95% CI, 0.779–0.829),
0.809 (95% CI, 0.791–0.829) and 0.767 (95% CI, 0.735–0.791), and
0.873 (95% CI, 0.860–0.884) and 0.841 (95% CI, 0.818–0.864) in
predicting 19Del, L858R, and other mutation status on the
training and testing sets, respectively (Figure 3 and Table 2).
No matter which task, the proposed binary task and subtype
classification, the performance of the joint model showed the best
performance, and the combination of radiomics and clinical
features contributed most to the EGFR prediction, which
implied the associations and the complementarity of deep
learning, radiomics, and clinical features.

Evaluation of Model Performance in
Predicting PD-L1 Expression Status
The trained AI system was also evaluated on the PD-L1 cohort to
distinguish the positive PD-L1-positive (PD-L1 TPS ≥1%) from
the PD-L1-nagetive (PD-L1 TPS <1%) patients and subsequently
discriminate the PD-L1-positive subtypes (low positive PD-L1,
1%–49%; high positive PD-L1, TPS ≥50%). On the binary task of
distinguishing positive PD-L1 from negative PD-L1 ones, the
AUCs of DL, RA, and JO models were 0.851 (95% CI, 0.833–
0.872) and 0.799 (95% CI, 0.762–0.854), 0.819 (95% CI,
0.800–0.845) and 0.795 (95% CI, 0.748–0.843), 0.885 (95% CI,
0.867–0.905) and 0.867 (95% CI, 0.817–0.897) in training and
testing sets, separately (Figure 3 and Table 2). Pertaining to
binary task classifying the positive-PD-L1 subtypes into low
positive and high positive groups, DL, RA, and JO models
achieved predictive performance with the AUCs of 0.911 (95%
CI, 0.875–0.941) and 0.837 (95% CI, 0.775–0.911), 0.884 (95%
CI, 0.841–0.917) and 0.836 (95% CI, 0.775–0.892), and 0.919
(95% CI, 0.889–0.942) and 0.864 (95% CI, 0.802–0.924) in the
training and testing sets, respectively (Figure 3 and Table 3). The
performance of DL model outperformed RA models in both
training and testing cohorts. What is more, JO model also
performed superior than both DL and RA models. Both results
confirmed that the JO model was sensitive to radiomics and
clinical information and differentiating positive PD-L1 from
negative PD-L1 with reasonable accuracy as a diagnostic tool.

Evaluation of Model Performance in
Predicting Both EGFR and PD-L1
Expression Status
We next investigated the feasibility of assessing the multigenes
mutation status. Three models also demonstrated the robust
performance in the co-existing immunity cohort. In the multiple
task in terms of four-way classification (multitask classifier) into
EGFR(+)PD-L1(+), EGFR(+)PD-L1(−), EGFR(−)PD-L1(+), and
EGFR(−)PD-L1(−) groups, DL, RA, and JO model achieved the
February 2022 | Volume 13 | Article 813072
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AUCs of 0.906 (95% CI, 0.885–0.930) and 0.879 (95% CI, 0.854–
0.906), 0.860 (95% CI, 0.816–0.902) and 0.856 (95% CI, 0.815–
0.897), and 0.928 (95% CI, 0.909–0.946) and 0.905 (95% CI,
0.886–0.930) in the training and testing sets, respectively
(Figure 4; Table 4). These results proved the potential of our
joint model’ ability to predict multigene events that may occur in
at least two mutants on a single patient.

Deep Learning Model Interpretability
For each image, the attention of the model can be visualized for
human interpretability and validation. High-resolution feature
visualization provides an intuitive manner to understand the
distribution of features used in this investigation. The aim of this
section was to evaluate and validate the potential clinical
application of the joint model of heatmaps as saliency models
through CT volumes. In the attention map of the deep learning
model through CAM, the dark color areas might be the tumor
center, visualizing the attention regions located at the border of
the lesion of a network to capture the discriminative information
pertaining to the prediction results of distinct mutant categories
(Figure 5). When the deep learning model predicts gene
mutation status, it could simultaneously tell human experts
Frontiers in Immunology | www.frontiersin.org 6
which area draws the attention of the model. Additionally, the
deep learning framework was based on pixel-level models, with
the shallow layers of the model focused on textural information
between pixels in CT images, such as horizontal and diagonal
edges, while ignoring some general information about the tumor.
On the contrary, as the network becomes deeper, more
complicated characteristics, such as tumor semantics, were
learned at the deep convolutional layer. Furthermore, the
radiomics model concentrates primarily on some general
tumor properties rather than on specific local low-dimensional
tumor aspects. As a result, for a better understanding of the joint
deep learning feature, we compared the model based only on
deep learning feature and the joint model feature incorporating
radiomics and clinical factors on the convolution filter.
DISCUSSION

Accurate and rapid quantification of EGFR mutation and PD-L1
expression status is of paramount importance in identifying of
NSCLC patients more suitable for EGFR-TKI or ICI therapies,
TABLE 1 | Clinical characteristics of patients used to measure EGFR mutation and PD-L1 expression status.

Total (N = 3,816, %) EGFR (N = 3,629, %) PD-L1 (N = 873, %) EGFR&PD-L1 (N = 818, %) p-value

Age (years) 59.32 59.29 58.72 58.77 0.508
Sex, N(%) 0.143
Male 2,067(54.17) 1,955(53.87) 471(53.95) 449(54.89)
Female 1,749(45.83) 1,674(46.13) 402(46.05) 369(45.11)

Smoking status 0.759
Current or former 1,500(39.30) 1,413(38.94) 281(32.19) 257(31.42)
Never 2,067(54.17) 1,981(54.59) 566(64.83) 543(66.38)
Unknown 249(6.52) 235(6.47) 26(2.98) 18(2.2)

Family history of cancer 0.503
Yes 248(6.50) 236(6.50) 69(7.90) 67(8.19)
No 3,353(87.87) 3,188(87.85) 791(90.61) 745(91.08)
Unknown 215(5.63) 205(5.65) 13(1.49) 6(0.73)

Histopathology 0.324
LUAD 2,937(76.97) 2,787(76.80) 789(90.38) 743(90.83)
LUSC 607(15.90) 592(16.31) 47(5.38) 42(5.13)
Other 272(7.12) 250(6.89) 37(4.24) 33(4.03)

Stage 0.497
I 1,136(29.77) 1,092(30.09) 354(40.55) 347(42.42)
II 284(7.44) 272(7.50) 68(7.79) 63(7.7)
III 742(19.44) 700(19.29) 160(18.33) 150(18.34)
IV 1,475(38.65) 1,402(38.63) 260(29.78) 236(28.85)
Unknown 179(4.69) 163(4.49) 31(3.55) 22(2.69)

EGFR Mutation (%) 0.934
EGFR Wild 1,436(37.63) 1,436(39.57) – 183(22.37)
EGFR Mutant 2,193(57.47) 2,193(60.43) – 635(77.63)

PD-L1 Expression (%) 0.639
PD-L1- 562(64.38) – 562(64.38) 539(65.89)
PD-L1 + 311(35.62) – 311(35.62) 279(34.11)

Mutated EGFR Subtype (%) 0.367
19Del 919(24.08) 919(24.08) – –

L858R 1,090(28.56) 1,090(30.04) – –

Others 184(4.82) 184(5.07) – –

Positive PD-L1 Expression (%) 0.215
≥50% 268(7.02) – 268(30.70) –

1-49% 43(1.13) – 43(4.93) –
F
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further guiding clinical decision-making. However, the dynamic
change in proportion of cells expressing EGFR mutation or PD-
L1 level and the invasive tissue/biopsy-based nature limit the
applicability of EGFR or PD-L1 testing compared to image-based
assays. Thus, there is a need for a non-invasive, accurate, reliable,
and reproducible method to assess EGFR/PD-L1 status. In this
study, we proposed a deep learning model using non-invasive
chest CT images, which demonstrated the favorable performance
to predict EGFR mutation/PD-L1 expression status and their
subtypes for NSCLC patients.

According to the National Comprehensive Cancer Network
(NCCN) Guidelines, multiple gene status especially EGFR and
PD-L1 TPS should be known before deciding whether to use
either targeted therapy or immunotherapy (19). However, gene
detection posed a challenge, as suitable specimens were obtained
through invasive procedure. These assessments were affected by
heterogeneity of antibodies, platforms, and different clinicians. For
example, the current study utilized SP142 antibody to score
membrane-localized PD-L1 staining in tumor cells and tumor-
infiltrating immune cells, which ignored cytoplasmic- or nuclei-
located PD-L1. In addition, although the treatment strategy for
NSCLC has rapidly evolved with the emergence of targeted therapy
and immunotherapy, persistent drug responses remain limited to a
subset of patients, such as the response rates of ICIs ranged from
14% to 20% in unselected patients (20, 21). Patients with PD-L1
Frontiers in Immunology | www.frontiersin.org 7
level ≥50% would benefit from chemoimmunotherapy than single-
agent immunotherapy (response rates of 60% and 40%,
respectively) (11, 22, 23). The median PFS in patients with EGFR
19Del was longer than in patients with EGFR L858R treated with
EGFR-TKI (10, 24). It was worth exploring the comprehensive
method to assess precise gene status.

In clinical practice, CT scans are routinely available. Frontier
studies combined radiological images and deep learning
technology and have become trend in screening, diagnosis,
gene prediction, and prognosis of lung cancer (15, 25, 26).
Previous studies proposed deep learning models trained on CT
images to predict high PD-L1 expression or EGFR mutated
status of NSCLC (17, 18). Meanwhile, a deep-learning model
based on radiology text reports was performed to estimate
objective response of PD-1 blockade in NSCLC patients (27).
However, these models only focused on binary tasks of gene
status constructed on single-omics data, which were unsuitable
for routine clinical work. Herein, we explored an approach with
promising performance to predict gene mutation and further
specific type based on large sample CT images and clinical
features. This detailed molecular information including EGFR
mutated (19Del, L858R, other) or wild; PD-L1 (≥50%) assists
physician in accurate treatment. Additionally, several studies
using deep learning inferred therapeutic effects of TKIs or ICIs in
NSCLS patients (18, 28, 29). We would further update this
FIGURE 2 | Illustration of workflow in this study. Between June 2019 and June 2021, this study included primary cohort 3,816 consecutive patients with NSCLC
who visited West China Hospital (Sichuan, China) for model development and validation. Additionally, we built a subset (EGFR cohort and PD-L1 cohort) for patients
who underwent staining based on histological specimens and molecular test (EGFR, PD-L1), aiming to evaluate the performance of our models on predicting events
gene mutation status and gene subtype. Cohort EGFR and PD-L1 was used to evaluate model performance in joint immunity prediction.
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TABLE 2 | Predictive performance of EGFR status and EGFR mutated subtypes using three methods in the training and testing cohorts.

Methods Cohorts AUC(95%CI) Accuracy(%) Sensitivity(%) Specificity(%)

EGDFR Mutation Status

DL Training 0.880(0.871-0.892) 0.805(0.797-0.815) 0.832(0.820-0.845) 0.783(0.769-0.798)
Testing 0.842(0.825-0.855) 0.763(0.750-0.777) 0.797(0.777-0.818) 0.769(0.746-0.789)

Radiomics Training 0.838(0.827-0.850) 0.769(0.758-0.779) 0.794(0.780-0.812) 0.760(0.743-0.771)
Testing 0.805(0.789-0.827) 0.735(0.720-0.755) 0.768(0.748-0.793) 0.716(0.696-0.734)

Joint Training 0.919(0.914-0.924) 0.840(0.831-0.850) 0.839(0.829-0.852) 0.831(0.820-0.844)
Testing 0.895(0.883-0.907) 0.819(0.803-0.835) 0.791(0.765-0.816) 0.850(0.834-0.870)

EGFR Subtypes

DL Training 0.842(0.828-0.855) 0.753(0.740-0.769) 0.716(0.696-0.739) 0.853(0.836-0.873)
Testing 0.805(0.779-0.829) 0.732(0.707-0.755) 0.707(0.676-0.742) 0.815(0.787-0.849)

Radiomics Training 0.809(0.791-0.829) 0.725(0.708-0.743) 0.672(0.647-0.702) 0.848(0.830-0.870)
Testing 0.767(0.735-0.791) 0.697(0.663-0.728) 0.705(0.670-0.745) 0.742(0.712-0.773)

Joint Training 0.873(0.860-0.884) 0.790(0.776-0.804) 0.758(0.739-0.778) 0.862(0.844-0.881)
Testing 0.841(0.818-0.864) 0.767(0.746-0.790) 0.767(0.732-0.798) 0.827(0.803-0.858)
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FIGURE 3 | The model performances in the prediction of two outcomes (EGFR cohort and PD-L1 cohort). The ROC curves for predicting (A) EGFR gene mutation
status (mutant or wild); (B) PD-L1 status (positive or negative); (C) EGFR gene subtype mutations (19Del; L858R or Other); (D) PD-L1expression status (PD-L1 TPS
1%–49% or ≥50%). DL indicated that our image-based DL system used local tumor volume and global CT volume. RA indicated that our image-based radiomics
model and the JO indicated that the joint model combined with the DL feature, radiomics feature, and clinical features. The solid line represents the performances on
the training set, and the dotted line represents the effect on the test set.
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A B

C D

E F

FIGURE 4 | The model performances in the prediction of joint-mutant genes (EGFR and PD-L1 cohort). Confusion matrix of (A) training set and (B) testing set
indicated most errors occurred in the adjacent groups. (C) The ROC curves and (D) three model scores predicting EGFR mutation; (E) the ROC curves and (F) three
model scores predicting PD-L1 expression status.
TABLE 3 | Predictive performance of PD-L1 status and PD-L1 expression using three methods in the training and testing cohorts.

Methods Cohorts AUC (95%CI) Accuracy (%) Sensitivity (%) Specificity (%)

PD-L1 Status

DL Training 0.851(0.833-0.872) 0.824(0.809-0.840) 0.758(0.729-0.791) 0.829(0.807-0.852)
Testing 0.799(0.762-0.854) 0.770(0.727-0.800) 0.680(0.604-0.756) 0.793(0.746-0.839)

Radiomics Training 0.819(0.800-0.845) 0.797(0.777-0.816) 0.732(0.688-0.775) 0.791(0.764-0.810)
Testing 0.795(0.748-0.843) 0.759(0.717-0.797) 0.790(0.707-0.851) 0.716(0.659-0.769)

Joint Training 0.885(0.867-0.905) 0.869(0.850-0.884) 0.801(0.768-0.842) 0.865(0.847-0.881)
Testing 0.867(0.817-0.897) 0.808(0.771-0.846) 0.822(0.758-0.884) 0.752(0.714-0.810)

Positive PD-L1 Expression with low and high PD-L1(+)

DL Training 0.911(0.875-0.941) 0.899(0.868-0.925) 0.924(0.894-0.943) 0.844(0.750-0.940)
Testing 0.837(0.775-0.911) 0.868(0.820-0.910) 0.857(0.816-0.905) 0.750(0.611-0.933)

Radiomics Training 0.884(0.841-0.917) 0.831(0.798-0.865) 0.802(0.764-0.837) 0.898(0.811-0.963)
Testing 0.836(0.775-0.892) 0.796(0.745-0.854) 0.744(0.672-0.809) 0.917(0.810-1.000)

Joint Training 0.919(0.889-0.942) 0.917(0.894-0.938) 0.941(0.918-0.960) 0.850(0.773-0.922)
Testing 0.864(0.802-0.924) 0.884(0.845-0.934) 0.917(0.877-0.955) 0.750(0.636-0.875)
Frontiers in Immunology
 | www.frontiersin.org
 9
 February 2022 | Volume
EGFR, epidermal growth factor receptor; PD-L1, programmed death ligand-1; DL model, deep learning model.
13 | Article 813072

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang et al. AI System Predicts EGFR/PD-L1 Status
multitask AI system to predict the clinical outcomes of treatment
more accurately.

In terms of algorithm, radiomics and deep learning features
were integrated to mine CT image features. In addition, clinical
features were integrated to try to build a prediction model with
superior performance, which was more in line with routine
clinical work. Not surprisingly, the performance of the
integrated model was better than the deep learning model and
radiomics model. This also reflected the trend of characteristic
fusion. Although our AI system performed well in this aspect, it
failed well short of the gold standard set by laboratory studies. To
increase prediction accuracy, our AI system, for example, would
Frontiers in Immunology | www.frontiersin.org 10
benefit from other source data kinds. For example, clinical or
laboratory information (such as blood biochemical analysis)
might be incorporated as an additional information source to
our joint AI system.

Our study has some limitations. First, this was a single-center
study, and the predictive value of our model still needs to be
validated in other medical centers. Second, this was a retrospective
study. NSCLC patients may take multiple genes detection during
treatment, which may cause some selection biases. Finally, this
research only focused on EGFR and PD-L1. More extensive data
would be collected to support additional mutation of NSCLC, such
as ALK, ROS1, and KRAS mutation in the future.
TABLE 4 | Predictive performance of EGFR and PD-L1 status performance using three methods in the joint cohort.

Methods Categories AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (&)

EGFR&PD-L1 Status

DL EGFR 0.906(0.885-0.930) 0.767(0.735-0.798) 0.920(0.884-0.954) 0.787(0.748-0.827)
PD-L1 0.879(0.854-0.906) 0.793(0.762-0.819) 0.781(0.742-0.819) 0.939(0.904-0.969)

Radiomics EGFR 0.860(0.816-0.902) 0.659(0.617-0.705) 0.896(0.856-0.944) 0.731(0.664-0.801)
PD-L1 0.856(0.815-0.897) 0.719(0.677-0.766) 0.713(0.661-0.763) 0.918(0.864-0.972)

Joint EGFR 0.928(0.909-0.946) 0.831(0.807-0.856) 0.917(0.883-0.941) 0.807(0.771-0.846)
PD-L1 0.905(0.886-0.930) 0.848(0.825-0.874) 0.847(0.818-0.879) 0.915(0.876-0.951)
February 2022 | Volume
EGFR, epidermal growth factor receptor; PD-L1, programmed death ligand-1; DL model, deep learning model.
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FIGURE 5 | Heatmap of characteristics that contributed to the prediction of gene mutation (A) EGFR and PD-L1 status; (B) EGFR subtype (19Del, L858R, or other);
(C) PD-L1expression status (PD-L1 TPS, 1%–49% or ≥50%); (D) EGFR mutation combined with PD-L1 status using different filters. The first row showed the origin
tumor image in the 3D volume; the second and third rows visualize the attention regions of a network for distinct mutant categories.
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In conclusion, this study demonstrated an AI system’s value
in assisting medical professionals provide a non-invasive and
easy-to-use method to identify the expression status of common
genes EGFR and PD-L1 through CT images, which may serve as
a predictive biomarker for guiding the target therapy and
immunotherapy in NSCLC patients. Future refinement and
improvement will expand its use into predicting other
common genes mutation in larger and prospective trials.
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