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IL-33 and its receptor ST2, as well as mast cells and their mediators, have been implicated
in the development of chronic obstructive pulmonary disease (COPD). However, whether
mast cells and the ST2 receptor play a critical role in COPD pathophysiology remains
unclear. Here, we performed repeated intranasal administrations of porcine pancreatic
elastase and LPS for four weeks to study COPD-like disease in wildtype, ST2-deficient,
and Cpa3Cre/+ mice, which lack mast cells and have a partial reduction in basophils.
Alveolar enlargement and changes in spirometry-like parameters, e.g. increased dynamic
compliance and decreased expiratory capacity, were evident one day after the final LPS
challenge and worsened over time. The elastase/LPS model also induced mild COPD-like
airway inflammation, which encompassed a transient increase in lung mast cell
progenitors, but not in mature mast cells. While ST2-deficient and Cpa3Cre/+ mice
developed reduced pulmonary function uninterruptedly, they had a defective
inflammatory response. Importantly, both ST2-deficient and Cpa3Cre/+ mice had fewer
alveolar macrophages, known effector cells in COPD. Elastase/LPS instillation in vivo also
caused increased bronchiole contraction in precision cut lung slices challenged with
methacholine ex vivo, which occurred in a mast cell-independent fashion. Taken together,
our data suggest that the ST2 receptor and mast cells play a minor role in COPD
pathophysiology by sustaining alveolar macrophages.

Keywords: COPD - chronic obstructive pulmonary disease, pulmonary function, airway hyperresposiveness, mast
cell (MC), ST2, IL-33
Abbreviations: COPD, Chronic obstructive pulmonary disease; Cdyn, Dynamic compliance; FEV100, Forced expiratory
volume in 100 milli sec; FVC, Forced vital capacity; H&E, Hematoxylin & Eosin stain; LPS, Lipopolysaccaride; Lin, Lineage;
OCT, Optimal cutting temperature compound; PBS, Phosphate buffered saline; PCLS, Precision cut lung slices; TLC, Total
lung capacity.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is an
inflammatory disease of the airways predominantly caused by
long-term tobacco smoking, and characterized by progressive
and irreversible airflow obstruction. Lack of effective treatments
and an increasing prevalence among aging populations make
COPD a major health problem, and one of the main causes of
death worldwide (1, 2). COPD diagnosis relies on pulmonary
function testing to evaluate specific lung alterations. COPD
patients often exhibit alveolar enlargement (i.e., emphysema),
which causes an increase in their total lung capacity (TLC). The
chronic inflammation associated with COPD damages the elastic
properties of the airways, which is detected as an increase in
dynamic compliance (Cdyn). COPD patients also have an overall
decrease in their expiratory capacity (measured as forced
expiratory volume in 1 s/forced vital capacity: FEV1/FVC) due
to the ongoing airway inflammation, mucus hypersecretion,
emphysema, and loss of elastic recoil. The development of
COPD appears to be mainly driven by neutrophils,
macrophages, and CD8+ and CD4+ (Th1/Th17) T cells (3).
However, the inflammatory response associated with COPD
involves several other mediators and cell types such as IL-33
and mast cells (MCs) whose contributions to COPD
pathophysiology have not been fully elucidated.

IL-33 is an alarmin predominantly released by the airway
epithelium in response to infection and inhaled irritants such as
pollution and allergens. IL-33 acts via the ST2 receptor on
immune cells and structural cells to induce activation and
production of proinflammatory mediators, leading to cellular
recruitment to the lung and expansion of innate and adaptive
immune cells (4). The IL-33/ST2 axis has been most studied in
the context of asthma, where IL-33 both enhances allergic
responses and plays a pivotal role in antigen-independent
responses. Interestingly, expression of IL-33 and the ST2
receptor is increased in lung, serum, and plasma samples from
COPD patients (5–7). The increase in IL-33 and ST2 correlates
with reduced pulmonary function and higher eosinophil counts
in blood, and is more frequent in patients with chronic
bronchitis or severe COPD (5, 7). Moreover, an IL-33 gene
polymorphism is associated with impaired pulmonary function
and early onset of COPD (8). In mice, short-term exposure to
cigarette smoke upregulates epithelial IL-33 expression,
downregulates ST2 on type 2 innate lymphoid cells, and
enhances ST2 expression on macrophages and NK cells,
thereby amplifying type 1 immune responses toward influenza
infection (5). Although cigarette smoke-induced models of
COPD are relevant to human disease, they require long-term
exposures to induce the alterations in lung function associated
with COPD. In contrast, changes in lung function that
recapitulate human COPD can be induced rapidly over a few
weeks by administering elastase to the lung (9). Interestingly,
intratracheal injection of elastase also induces higher levels of
lung IL-33 in mice (10). However, IL-33-deficiency enhances
murine emphysema caused by intratracheal administrations of
elastase or cigarette smoke extract (10).
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MCs are rare ST2-expressing tissue-resident immune cells
that release proteases and proinflammatory mediators upon
activation by IL-33 (11, 12). Moreover, experimental studies
suggest that IL-33-induced activation of MCs participates in key
features of asthma (13). For example, IL-33 has been shown to
enhance antigen-induced bronchoconstriction viaMC activation
(14), and to induce IL-13-dependent airway hyperresponsiveness
in vivo, possibly via MC activation and release of IL-13 (15).
However, MCs activated by IL-33 have also been shown to
induce regulatory T cell differentiation and suppression of
inflammation in a model of Papain-induced allergic airway
inflammation (16). Importantly, MCs have also been
implicated in smoke-dependent models of COPD. Mice lacking
the MC-specific proteases mMCP-6 or Prss31, which are the
mouse homologs of human b- and g-tryptase, respectively, have
less airway inflammation and histological evidence of
emphysema (17, 18). There is also evidence of MC-
involvement in the human disease. COPD patients have a
higher proportion of tryptase- and chymase-expressing MCs
(MCTC) in the lung and increased tryptase activity in sputum
and plasma, all of which correlates with reduced pulmonary
function and enhanced disease severity (19, 20). MC numbers are
increased in lung biopsies from patients with centrilobular
emphysema (21) and chronic bronchitis (22), and MC
mediators such as histamine and tryptase are elevated in
bronchoalveolar lavage fluid (BALF) from long-term cigarette
smokers (23). Altogether, these data indicate that MCs and the
IL-33/ST2 axis might be relevant to COPD pathophysiology, but
whether they contribute to the impaired pulmonary function
that defines COPD has not been thoroughly examined.

In the present study, we investigated how the absence of MCs
or the ST2 receptor impacted two key features of COPD: airway
inflammation and reduced pulmonary function. For this
purpose, ST2-deficient and Cpa3Cre/+ mice, which lack MCs
and have a partial reduction in basophils, were subjected to a
model of COPD induced by repeated intranasal administrations
of porcine pancreatic elastase (henceforth elastase) and LPS.
While ST2-deficient and Cpa3Cre/+ mice had a defective
inflammatory response, both strains developed COPD-like
impaired pulmonary function. In addition, analysis of
precision-cut lung slices (PCLS) revealed that MCs were
dispensable for the development of airway hyperresponsiveness
(AHR) in elastase/LPS-induced COPD-like disease.
MATERIALS AND METHODS

Mice
Cpa3Cre/+ (24) and ST2−/− (25) mice on Balb/c background were
originally provided by Hans-Reimer Rodewald and Andrew
McKenzie, respectively. These strains and Balb/c JBomTac
mice were bred and maintained at the Swedish National
Veterinary Institute (Uppsala). All experiments were
performed in age- and weight-matched female mice, and
conducted in accordance with the ethical permit approved by
the Uppsala animal ethics committee (5.8.18-05248/2018).
April 2022 | Volume 13 | Article 830859
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Elastase-Dependent COPD Models
Mice (8 ± 1 weeks old, 20 ± 1 g) received porcine pancreatic
elastase (1.2 U in 50 ml phosphate buffer saline [PBS] i.n.) on day
1 and LPS from Escherichia coli O26:B6 (7 mg in 50 ml PBS i.n.,
both from Sigma-Aldrich) on day 4 for four consecutive weeks as
shown in Figure 1A. Control mice received the same volume of
PBS on the indicated days. All administrations were performed
under isoflurane anesthesia, and pulmonary function, airway
inflammation, emphysema development and AHR were
evaluated 1, 4 or 7 days after the final LPS administration.
Alternatively, mice received a single dose of elastase (1.2 U in
50 ml PBS i.n.) or PBS (50 ml i.n.) as shown in Supplementary
Figure 2A, and pulmonary function was evaluated 21 days later.

Pulmonary Function Testing
Mice were anesthetized (100 mg/kg ketamine, 20 mg/kg xylazine,
and 3 mg/kg acepromazine i.p.), tracheotomized, and connected
to a Buxco pulmonary function test system (Data Sciences
Inte rna t iona l ; DSI ) . Because pu lmonary funct ion
measurements are influenced by size (26), only weight-
matched mice were compared. We report the average of 3
consecutive measurements for each parameter evaluated.

Flow Cytometry
To assess airway inflammation by flow cytometry, mice were
euthanized and BALF obtained by flushing and aspiration of 1 ml
of PBS through a tracheal cannula. Lungs were perfused through the
right ventricle (PBS, 10ml), excised, cut in small pieces, and digested
on a gentleMACSOcto Dissociator using amouse lung digestion kit
(both fromMiltenyiBiotec).Undigesteddebriswas removed fromthe
lung cell suspension via 44% Percoll (Sigma-Aldrich) centrifugation
(400g, 20min). For residual redblood cell elimination, lung cellswere
incubated in lysis buffer (1 min; 150 mMNH4Cl, 9.5 mMNaHCO3,

1.2 mM EDTA) on ice before extensive washing. Isolated BALF and
lung cells were counted in a hemocytometer using trypan-blue
exclusion and stained with the antibodies listed in Supplementary
Table 1. Alveolar macrophages (CD45+ Siglec-F+ CD11c+),
eosinophils (CD45+ Siglec-F+ CD11c-), neutrophils (CD45+ Siglec-
F-/lo CD11c-/lo CD11b+ Ly6G+), and CD4+ (CD45+ Siglec-F-/lo

CD11c-/lo CD11b-/lo Ly6G-/lo CD3+ CD4+) and CD8+ (CD45+

Siglec-F-/lo CD11c-/lo CD11b-/lo Ly6G-/lo CD3+ CD8+) T cells were
identified in BALF as shown in Supplementary Figure 1. Mature
MCs (CD45+ lineage [Lin]- c-kithi ST2+ FcϵRI+ CD16/32+ Integrin
b7lo) andMCprogenitors (CD45+Lin- c-kithi ST2+FcϵRI+CD16/32+

Integrin b7hi) were identified in lung tissue as shown in
Supplementary Figures 3, 4. Lin was defined as: B220+ CD3+

CD4+ CD8b+ Gr-1+ TER-119+ CD11b+. Basophils (CD45+ Lin- c-
kit- FcϵRI+ CD49b+) were identified in lung tissue as shown in
Supplementary Figure 4. Gating of FceRI+ and ST2+ cells were set
using fluorophore-matched isotype controls. Flow cytometry was
performed on a LSRFortessa™, and data was analysed using
FlowJo™ (both from BD Biosciences).

Histology
To qualitatively assess emphysema development, mice were
euthanized, and their lungs filled manually using a 2 ml
syringe (1.5 ml optimal cutting temperature [OCT]
Frontiers in Immunology | www.frontiersin.org 3
compound). After fixation (4% PFA in PBS), they were
cryoprotected (20% sucrose in PBS), and embedded in OCT
compound. Cryosections (8 mm) were stained with hematoxylin
and eosin (H&E) and imaged with a Nikon Eclipse 90i Upright
microscope (Nikon Instruments).

Preparation of PCLS and
AHR Determination
PCLS were prepared as described previously (27). In brief, mice
were euthanized, tracheotomized, and their lungs filled with pre-
warmed (37°C) low-melting point agarose (4% w/v in PBS;
SeaPrep). Whole mice were immersed on ice until agarose
solidified, and PCLS (200 mm) were prepared from the left lobe
using a vibratome (VT1000 S; Leica Biosystems). Individual
PCLS were incubated (37°C, 5% CO2) in 1 ml of MEM
without phenol red (Gibco), and media was changed every
30 min for the first 2 h, and every h for the next 2 h to remove
agarose. Following overnight incubation (37 °C, 5% CO2) in 1 ml
of RPMI-1640 without FCS (Sigma-Aldrich), individual PCLS
were placed in 2 ml MEM and immobilized using a nylon thread
attached to a platinum rod. Bronchioles surrounded by a smooth
muscle layer (observed as a grey shadow) were time lapse-imaged
every 10 s with a Nikon Eclipse Ti2-E inverted microscope. The
first min was used as baseline, and the contraction in response to
methacholine (100 mM), and subsequently to KCl (60 mM) was
recorded for 3 min each. Bronchioles that failed to respond to at
least one of these reagents were considered dead and excluded
from the final analysis. Bronchial lumen area for each image was
calculated using FIJI/ImageJ and changes in lumen area were
expressed as fold decrease from baseline. Bronchioles were
divided according to their lumen area at baseline into three
groups: small (< 5000 mm2), medium (5000-15000 mm2), and
large (15000-40000 mm2), and comparisons were performed
among similar-sized bronchioles.

Statistical Analysis
Multiple comparisons were performed by one-way ANOVA
followed by Dunnett’s post hoc test. Comparisons between two
groups were done by two-tailed unpaired Student’s t-test or
Mann-Whitney U test (for values that were not normally
distributed). All analyses were carried out in GraphPad
Prism 9.1.
RESULTS

Elastase/LPS-Treated Mice Develop
COPD-Like Airway Inflammation and
Reduced Pulmonary Function
To induce COPD-like disease, weight- and age-matched female
mice received alternating intranasal administrations of elastase
and LPS for four weeks (Figure 1A). Mice subjected to this
model developed larger lung volumes (increased TLC), higher
Cdyn, and decreased expiratory capacity (lower FEV100/FVC)
than the control mice, which only received PBS (Figures 1B–D).
This impaired pulmonary function was apparent one day after
April 2022 | Volume 13 | Article 830859
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FIGURE 1 | Elastase/LPS instillation causes COPD-like impaired lung function, emphysema, and airway inflammation. (A) Wildtype Balb/c mice received alternating
intranasal (i.n.) administrations of elastase and LPS for four weeks, and were analyzed one, four or seven days after the final LPS administration. Control mice
received PBS instead. (B) TLC (C) Cdyn, (D) FEV100/FVC were measured in vivo. (E) Representative H&E-stained lung sections selected to visualize emphysema
development. Scale bar = 200 mm. (F) Total cells, (G) neutrophils, (H) eosinophils, (I) CD4+ T cells, (J) CD8+ T cells, and (K) alveolar macrophages were quantified in
BALF. Data were obtained from 6-15 mice per group pooled from 2-3 individual experiments and shown as means ± SEM. Statistical significance was tested by
one-way ANOVA followed by Dunnett’s post hoc test to compare each group against the control. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001.
Frontiers in Immunology | www.frontiersin.org April 2022 | Volume 13 | Article 8308594
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the final LPS administration, worsened over the next days, and
was accompanied by histological evidence of alveolar
enlargement (i.e. emphysema) (Figure 1E).

To characterize the inflammatory populations associated with
elastase/LPS-induced COPD-like disease, cells in BALF were
analyzed by flow cytometry (Supplementary Figure 1). A
major increase in inflammatory cells in BALF was found one
day after the final LPS administration, which partly resolved over
the following days (Figure 1F). The inflammatory cells in BALF
consisted primarily of neutrophils, accompanied by a smaller
increase in eosinophils, one day after the final LPS
administration (Figures 1G, H). A small peak in the number
of CD4+ and CD8+ T cells was found four days after the final LPS
administration (Figures 1I, J). The elastase/LPS treatment did
not significantly change the number of alveolar macrophages
(Figure 1K). Altogether, our data suggest that the elastase/LPS
model induces a transient inflammation that is not sustained.

The ST2 Receptor Plays a Minor Role in
Elastase/LPS-Induced COPD-Like
Airway Inflammation
Given that both clinical and animal studies have implicated the
IL-33/ST2 axis in COPD, we hypothesized that the IL-33
receptor ST2 would play a role in elastase/LPS-induced COPD-
like disease. However, when ST2-deficient mice (ST2−/−) and
their wildtype littermates (ST2+/+) were subjected to this model,
no differences were found between the pulmonary function
outcomes (TLC, Cdyn, and FEV100/FVC) of each group, neither
at one nor at seven days after the final LPS administration
(Figures 2A–C). Nevertheless, quantification of inflammatory
cells in BALF revealed that ST2-deficient mice had fewer
eosinophils (Figure 2D), CD4+ T cells (Figure 2E), CD8+ T
cells (Figure 2F), and alveolar macrophages (Figure 2G) than
ST2+/+ mice seven days after the final LPS administration. In
contrast, ST2 deficient mice had similar neutrophil numbers and
overall BALF cell count as their wildtype littermates
(Figures 2H, I).

Recently, Morichika et al. used a less severe model of COPD
(a single dose of elastase) to show that IL-33-deficiency enhanced
emphysema development in mice (10). We adopted this model,
and evaluated pulmonary function 21 days later (Supplementary
Figure 2A). Elastase alone did not induce increased TLC
(Supplementary Figure 2B) but caused slightly higher Cdyn

(Supplementary Figure 2C) and decreased FEV100/FVC
(Supplementary Figure 2D). Still, ST2−/− and ST2+/+ mice
developed similar Cdyn and FEV100/FVC after a single dose of
elastase (Supplementary Figures 2E, F). To summarize, our data
suggest that the ST2 receptor is redundant for the development
of elastase- and elastase/LPS-induced COPD-like impaired
pulmonary function. Nonetheless, the ST2 receptor is required
for an intact elastase/LPS-induced airway inflammation.

Elastase/LPS-Treated Cpa3Cre/+ Mice
Have Fewer Alveolar Macrophages
We have previously shown that viral and allergic airway
inflammation induce the recruitment of MC progenitors to the
Frontiers in Immunology | www.frontiersin.org 5
lung, which precedes the accumulation of lung MCs (28–30). To
determine whether MCs and their progenitors accumulate in
elastase/LPS-induced COPD-like disease, cells from dissociated
lung tissue were analyzed by flow cytometry (Supplementary
Figure 3). Elastase/LPS-treated mice had increased total cell
numbers in lung tissue one and seven days after the final LPS
administration (Figure 3A). Although the number of mature
MCs did not change, there was a transient 2-fold increase in MC
progenitors one day after the final LPS administration that was
lost over time (Figures 3B, C).

To investigate whether MCs play a crucial role in elastase/
LPS-induced COPD-like disease, Cpa3Cre/+ mice, which lack
mature MCs due to the carboxypeptidase A3 (Cpa3)-
dependent genotoxic overexpression of Cre recombinase (24),
were used to model MC deficiency. Using flow cytometry
(Supplementary Figure 4), we confirmed that Cpa3Cre/+ mice
with COPD-like disease lacked mature MCs in the lung
(Figure 4A). However, they had equal numbers of lung MC
progenitors as their wildtype littermates (Figure 4B). Similar to
what was previously reported in naïve and other disease models
(24, 27, 31), Cpa3Cre/+ mice with COPD-like disease had a
73% reduction in basophil numbers at both time points
(Figure 4C). Cpa3Cre/+ and Cpa3+/+ mice developed similar
impaired pulmonary function after elastase/LPS treatments
(Figures 4D–F). Still, Cpa3Cre/+ mice had a reduction in total
BALF cell count seven days after the final LPS administration
(Figure 4G), which was at least partly due to a decrease in the
number of alveolar macrophages (Figure 4H). Nonetheless,
BALF neutrophil, eosinophil and T cell numbers were similar
in Cpa3Cre/+ and Cpa3+/+ mice with COPD-like disease
(Figures 4I–L).

Recently, Shibata et al. showed that emphysema development
required basophil-derived IL-4 in a single dose of elastase model
(32). In our study, Cpa3Cre/+ mice were not protected from
developing impaired pulmonary function caused by a single dose
of elastase (Supplementary Figures 5A, B). To conclude,
Cpa3Cre/+ mice developed unimpaired elastase- and elastase/
LPS-induced COPD-like reduced pulmonary function, but had
a reduced inflammatory response following elastase/
LPS-instillation.

Elastase/LPS-Treated Mice Develop AHR
Independently of MCs
AHR affects one in four patients with mild-to-moderate COPD
and is a good indicator of disease progression and mortality (33).
To determine whether mice with elastase/LPS-induced COPD-
like disease develop AHR, methacholine-induced bronchiole
contraction in PCLS was evaluated ex vivo seven days after the
final LPS administration. Large bronchioles (PBS: 22685 ± 1223
mm2, COPD: 24707 ± 1822 mm2 lumen area at baseline) from
elastase/LPS-treated mice showed stronger contraction (33% ±
0.05 average maximum reduction in airway lumen area from
baseline) than those from PBS control mice (Figures 5A–C). No
differences in contraction in response to methacholine were
found when analyzing small- and medium-sized bronchioles
(Supplementary Figure 6). To test whether MCs contributed
April 2022 | Volume 13 | Article 830859
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to AHR in this model, large bronchioles from elastase/LPS-
treated Cpa3+/+ (22231 ± 1223 mm2) and Cpa3Cre/+ (21850 ±
1350 mm2) mice were analyzed. However, they showed a similar
contraction pattern in response to methacholine (Figures 5D, E).
DISCUSSION

The pathological mechanisms behind COPD development are
still under investigation. Due to ethical reasons, experimental
research on COPD requires animal models. While cigarette
smoke-based models are relevant to the human disease,
induction of COPD-like disease in mice requires daily cigarette
smoke exposure for up to six months, and results in mild non-
progressive disease (9). Elastase-instillation, on the other hand,
Frontiers in Immunology | www.frontiersin.org 6
causes severe and progressive emphysema in mice in less than
one month (9). By exposing mice to repeated intranasal
instillations of elastase and LPS for four weeks, Sajjan et al.
established a model in which C57BL/6 mice developed COPD-
like airway inflammation and impaired pulmonary function (as
determined by a Flexivent system) seven days after the final LPS
administration (34). As elastase (10) or LPS alone can induce IL-
33 expression in macrophages and epithelial cells (35, 36), we
thought that the elastase/LPS model would be relevant to study
mechanisms of COPD in mice. In our study, Balb/c mice
subjected to the elastase/LPS model developed alveolar
enlargement. However, the histological assessment of alveolar
enlargement was not quantified and represents a limitation of
our study. Instead, emphysema development was quantified by
pulmonary function testing, which detected impaired
B CA

E FD

H IG

FIGURE 2 | The ST2 receptor is redundant for the development of COPD-like reduced pulmonary function but required for the induction of an intact inflammatory
response. ST2+/+ and ST2−/− mice were subjected to elastase/LPS-induced COPD-like disease and analyzed one and seven days after the final LPS administration.
Control mice received PBS instead. (A) TLC, (B) Cdyn, and (C) FEV100/FVC were assessed in vivo. (D) Eosinophils, (E) CD4+ T cells, (F) CD8+ T cells, (G) alveolar
macrophages, (H) neutrophils, and (I) total cells were quantified in BALF. For the 1-day time point, data were obtained in (A-C) from 5-8 mice per group pooled
from 5 individual experiments, and in (D-I) from 5-7 mice per group pooled from 4 individual experiments. For the 7-day time point, data were obtained in (A-C) from
7-13 mice per group pooled from 5 individual experiments, and in (D-I) from 8-10 mice per group pooled from 4 individual experiments. Data is shown as means ±
SEM. Statistical significance was tested by Mann-Whitney U test. *p < 0.05, **p < 0.005, ***p < 0.0005.
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spirometry-like measurements as early as one day after the final
LPS administration. Moreover, we confirmed that the elastase/
LPS protocol induced mild airway inflammation, with a peak in
total BALF cells one day after the last LPS administration, which
consisted primarily of neutrophils, followed by a later increase in
CD4+/CD8+ T cells and a gradual decline in total BALF
cell numbers.

The IL-33/ST2 axis has been implicated in COPD, and
exposure to cigarette smoke or elastase instillation upregulate
IL-33 and ST2 in mice (5, 10, 37). However, we did not find a role
for the ST2 receptor in the decline in pulmonary function caused
by elastase/LPS treatment, nor 21 days after a single elastase
instillation. In contrast, IL-33-deficient mice had enhanced static
compliance and alveolar enlargement 21 days after a single
elastase administration (10). But Morichika et al. also found
that antibody-blocking of ST2 could not replicate the increased
compliance observed in elastase-treated IL-33-deficient mice
(10). Thus, IL-33 may have effects in this setting that are not
mediated by the canonical IL-33 receptor ST2.

ST2-deficient mice have impaired type 2 responses, produce
less type 2 cytokines (e.g. IL-4 and IL-5) (25), and absence of the
ST2 receptor has been shown to impact eosinophil, macrophage,
and CD4+ and CD8+ T cell differentiation (38–41). In agreement
with these and other studies that position the IL-33/ST2 axis as
Frontiers in Immunology | www.frontiersin.org 7
key player for the induction of airway inflammation across
various settings, ST2-deficient mice subjected to elastase/LPS
administrations had fewer BALF eosinophils, alveolar
macrophages, and CD4+ and CD8+ T cells than their wildtype
littermates. We speculate that the decline in pulmonary function
observed in the elastase/LPS model is largely due to the direct
action of elastase alone, and that the mild airway inflammation
associated with this model had little impact on pulmonary
function. This could potentially explain why the reduced
airway inflammation in ST2-deficient mice after elastase/LPS
treatment did not lead to an improved pulmonary function.
Alternatively, the method used to measure pulmonary function
may not be sensitive enough to pick up small differences.

MCs express ST2, and are activated by IL-33 to produce a
wide array of mediators that could potentially participate in
COPD pathophysiology (42). However, Cpa3Cre/+ mice, which
lack MCs and have a partial reduction in basophils, developed a
similar decline in pulmonary function as their wildtype
littermates after elastase alone, or elastase/LPS treatment.
Interestingly, Shibata et al. found that diphtheria toxin-injected
Mcpt8DTR mice, which have a complete lack of basophils,
developed significantly less elastase-induced emphysema (32).
This discrepancy can have (at least) two explanations: 1) MCs are
redundant for the development of elastase- and elastase/LPS-
C

BA

FIGURE 3 | Elastase/LPS instillation induces an increase in lung MC progenitors. (A-C) Wildtype Balb/c mice were subjected to elastase/LPS-induced COPD-like
disease and analyzed one or seven days after the final LPS administration. (A) Total lung cells and (B) lung MCs [mature MCs (mMC) and MC progenitors (MCp)]
were quantified in lung. (C) Representative pseudo-color plots showing the final gates for MCp and mMC, which express different levels of CD16/32 and integrin b7.
Data in (A, B) were obtained from 9-15 mice per group pooled from 2-3 individual experiments. Data are shown as means ± SEM. Statistical significance was tested
in (A, B) by one-way ANOVA followed by Dunnett’s post hoc test to compare each group against the control. ***p < 0.0005, ****p < 0.0001.
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induced COPD-like emphysema and the partial reduction in
basophils observed in Cpa3Cre/+ mice is not enough to
recapitulate the findings of Shibata and colleagues, or 2) the
absence of MCs in Cpa3Cre/+ mice is pathological and
Frontiers in Immunology | www.frontiersin.org 8
compensates for the protection granted by having fewer
basophils. On the other hand, Mcpt8 gene expression is not
completely restricted to basophils. El Hachem et al. identified
Mcpt8 expression in granulocyte-monocyte progenitors, which
B CA

E FD

H IG

K LJ

FIGURE 4 | Cpa3Cre/+ mice have a defective inflammatory response upon elastase/LPS treatment. Cpa3+/+ and Cpa3Cre/+ mice were subjected to elastase/LPS-
induced COPD-like disease and analyzed one or seven days after the final LPS administration. Control mice received PBS instead. (A) Mature MCs (mMC), (B) MC
progenitors (MCp), and (C) basophils were quantified in lung. (D) TLC (E) Cdyn, and (F) FEV100/FVC were determined in vivo. (G) Total cells, (H) alveolar
macrophages, (I) neutrophils, (J) eosinophils, (K) CD4+ T cells, and (L) CD8+ T cells were quantified in BALF. For the 1-day time point, data in (A–C) were obtained
from 6-11 mice per group pooled from 3 individual experiments, and in (D–L) from 7-16 mice per group pooled from 4 individual experiments. For the 7-day time
point, data in (A–C, G–L) were obtained from 8 mice per group pooled from 4 individual experiments, and in (D-F) from 9-10 mice per group pooled from 5
individual experiments. Statistical significance was tested by Mann-Whitney U test. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001.
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BA
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FIGURE 5 | Elastase/LPS instillation causes AHR in large bronchioles independently of MCs. PCLS were obtained from (A–C) wildtype Balb/c and (D, E) Cpa3+/+

and Cpa3Cre/+ mice with elastase/LPS-induced COPD-like disease seven days after the final LPS (or PBS) administration. Time-lapse images of individual bronchioles
were recorded every 10 s for 1 min before challenge with methacholine (MCh) and recorded for 3 more min. (A, D) Airway narrowing after MCh challenge determined as fold
decrease from baseline. (B, E) Area under the curve (AUC) was calculated for each individual bronchiole. (C) Representative images of lung bronchioles before
and after MCh challenge. Data in (A, B, D, E) are shown as means ± SEM from (A, B) 13-27 PCLS per group obtained from 5 PBS and 5 COPD mice
pooled from four individual experiments, and (D, E) 20-24 PCLS per group obtained from 4 Cpa3+/+ and 3 Cpa3Cre/+ mice pooled from three individual experiments.
Statistical significance in (B, E)was tested by unpaired Student’s t-test. ** p < 0.005.
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caused depletion of additional cell lineages such as eosinophils
and neutrophils in diphtheria toxin-treated Mcpt8DTR mice (43).
Furthermore, Mcpt8-driven Cre-mediated recombination was
also detected in <25% of peritoneal MCs, and <10% of other cell
lineages in Basoph8 x iDTR mice (44). Future research is needed
to dissect the specific contributions of MCs and basophils
in COPD.

Since MCs play a major role in AHR in house dust mite-
induced allergic airway inflammation (27), we determined
whether they could also play a role in AHR in elastase/LPS-
induced COPD-like disease. Previously, Van Dijk et al.
demonstrated that incubating PCLS from naïve mice with
elastase caused AHR in vitro (45). In our study, PCLS
prepared from mice with elastase/LPS-induced COPD-like
disease had increased contraction in response to methacholine
ex vivo when large bronchioles were assessed. However,
Cpa3Cre/+ mice developed AHR to methacholine to a similar
degree as their wild type littermates. Of note, the average
maximum contraction of these bronchioles (33 ± 0.05%) was
approximately half of the contraction observed in PCLS from
mice with house dust mite-induced allergic airway inflammation
(57 ± 5%) (27). It is possible that the mild AHR observed ex vivo
in PCLS from elastase/LPS-treated mice could explain why Sajjan
et al. were unable to detect AHR in vivo after elastase/LPS
instillation (34). Alternatively, the difference in AHR induction
could be due to the use of different mouse strains.

MCs accumulate in the airway smooth muscle of patients
with centrilobular emphysema, and those with higher MC
number at this location also had increased AHR (21). Other
studies found changes in MC distribution and phenotype, and
higher sputum tryptase levels that were associated with increased
COPD severity (19, 20). In mouse models of allergic airway
inflammation, MCs accumulate due to the recruitment and
expansion of MC progenitors, which is required for full-blown
AHR (27). However, in the current study, elastase/LPS
instillation induced only a small increase in MC progenitors,
which was not sustained and did not give rise to an increase in
mature MCs in the lung. Furthermore, the levels of the MC-
specific protease mMCP-1 and trypsin-like activity (as a
surrogate marker of MC tryptase) in BALF were similar in
mice with elastase/LPS-induced COPD-like disease and PBS
controls (results not shown). To conclude, although our data
suggest that MCs are dispensable for the development of AHR
and COPD-like reduced pulmonary function in elastase/LPS-
treated mice, the model failed to recapitulate the MC-related
changes that occur in COPD patients. Thus, further studies are
needed to find even better mouse models of COPD.

Alveolar macrophages are thought to play a pivotal role in
COPD, and disease progression is associated with an increase in
macrophages (46). We found that the number of alveolar
macrophages in BALF was reduced after elastase/LPS
instillation in Cpa3Cre/+ mice. This is in line with studies of
mice lacking the MC-specific mediators mMCP-6 or Prss31,
which had fewer neutrophils and macrophages in BALF
following exposure to cigarette smoke (17, 18). Together, these
Frontiers in Immunology | www.frontiersin.org 10
data suggest that MCs promote expansion of alveolar
macrophages in COPD-like disease. Mechanistically, this is
in line with a recent publication demonstrating that MCs
activated via IL-33/ST2 release macrophage-attracting factors,
including GM-CSF (CSF2), which promote tumor-associated
macrophages responsible for tumor cell proliferation and
angiogenesis in a preclinical model of gastric cancer (47).
Given that GM-CSF is required for the development of
monocyte-derived alveolar macrophages (48), we speculate that
the decreased alveolar macrophage numbers in Cpa3Cre/+ and
ST2−/− mice with COPD-like disease may be explained by a loss
of ST2-mediated MC release of such factors. However, as
basophils are also reduced in Cpa3Cre/+ mice, we cannot
exclude the involvement of basophils in the induction of
alveolar macrophages.

A limitation of our study is that the experiments were
performed exclusively in female mice. Male mice (and their
airways) grow faster than females, which has challenging
consequences. First, it is difficult to breed enough weigh-
matched males to start an experiment, and secondly, they
continue to grow differently during the experiment, resulting
in mice with unequal size at the end of the experiment. Given
that differences in size/weight impact lung function outcomes
(26), we decided to use female mice for our study. Future
research should evaluate potential sex differences.

To conclude, repeated elastase/LPS instillation caused COPD-
like impaired pulmonary function, emphysema, and mild AHR
in ST2-deficient, Cpa3Cre/+, and their wildtype littermates.
However, ST2−/− and Cpa3Cre/+ mice had a defective
inflammatory response in this model, especially regarding
alveolar macrophages, which were reduced in both strains.
Given that MCs become activated and release pro-
inflammatory mediators in response to ST2 stimulation, it
seems possible that MCs stimulated via IL-33/ST2 contribute
to the expansion of alveolar macrophages that occurs in COPD
patients. To the best of our knowledge, this is the first time that
the roles of MCs and the ST2 receptor were investigated in a
mouse model of elastase/LPS-induced COPD-like disease. Our
results complement previous findings in cigarette smoke-
induced COPD models, and highlight the need for better
mouse models.
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