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Despite recent therapeutic advances, ischemic stroke is still a leading cause of death and
disability. There is renewed attention on peripheral inflammatory signaling as a way of
modulating the post-ischemic neuro-inflammatory process. The immune-brain crosstalk
has long been the focus for understanding the mechanisms of sickness behavior, which is
an adaptive autonomic, neuroendocrine, and behavioral response to a peripheral
inflammation. It is mediated by humoral and neural pathways that mainly involve the
circumventricular organs and vagal nerve, respectively. In this review we address the
question of how sepsis and stroke can dysregulate this adaptive response, notably by
impairing the central integration of peripheral signaling, but also by efferent control of the
immune response. We highlight the potential role of gut–brain and brain–spleen signaling
in stroke.
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INTRODUCTION

Ischemic stroke is a leading cause of death and disability worldwide, with major consequences at
personal, social, and economic levels (1). There have been therapeutic advances in reducing acute
ischemic injury, notably through recanalization strategies using intravenous thrombolysis (2) and
mechanical thrombectomy (3). However, there is an urgent need for treatments that would hamper
the ischemia-mediated neurotoxic processes and foster repair and plasticity (4). This strategy should
be based on a comprehensive understanding of ischemic stroke pathophysiology. There is currently
renewed focus on the ischemia-induced neuro-inflammatory process, notably for its modulation by
inflammatory signaling proceeding from the periphery (5). This immune-brain crosstalk has been
the subject of study in the psychoneuroimmunology field for some time, especially as it relates to the
mechanisms of sickness behavior (6).

Sickness behavior is a physiological integrative reaction to a systemic inflammatory response,
particularly induced by infection, which involves the interconnected autonomic, neuroendocrine,
and limbic systems. It is stereotypically characterized by social withdrawal, decreased cognition,
psychomotor slowing, attention disorders, altered alertness (insomnia, hypersomnia, fatigue,
org April 2022 | Volume 13 | Article 8346491
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somnolence), mood disorders (irritability, anxiety, depression)
and eating behavior changes (anorexia, weight loss, thirst) (6, 7).
It is considered an adaptive response for protecting the
individual from an aggression by modulating in fine both the
local and the systemic inflammatory response. The brain centers
involved in sickness behavior can be activated by two routes, i.e.,
the humoral and neural pathways, and the behavior is therefore a
result of a complex control loop of the inflammatory response. It
can be altered at various levels and by structural or functional
mechanisms. For instance, alterations in the perception or the
integration of peripheral inflammatory signals at the brain level
can induce the dysregulation of the neuro-immune feedback.
Besides controlling an acute illness, it is also well-established that
sickness behavior can be complicated by long-term psychological
disorders, notably depression.
THE PHYSIOLOGY OF THE
NEURO-IMMUNE CROSSTALK

The Neural Pathway
Inflammatory mediators released at the site of inflammation can
stimulate peripheral nerves as they express specific receptors
both to various cytokines and to Damage-Associated Molecular
Patterns (DAMPs) and Pathogen-Associated Molecular Patterns
[PAMPs (8)]. Indeed, cytokine receptors (TNF, IL-1ß, IL-6, etc.),
or Toll-Like receptors (TLRs) have been identified on the
membrane of sensory neurons (9–12). DAMPs and toxins,
such as a-hemolysin released by Staphylococcus aureus, can
bind to the peptide formyl receptor 1 or to the ion channels of
the peripheral neurons (13), which in turn stimulate the release
of neuropeptides. Various channels involved in nociception, such
as the voltage-gated sodium channels Nav1.7, Nav1.8 or Nav1.9,
or transient receptor potential channels, are also expressed on
the surface of peripheral neurons. Their activation by nociceptive
stimuli generated at the site of infection results in the firing of an
action potential and in the lowering of the nociceptor threshold.
In addition to the sensing role of sensory neurons, afferent
neurons modulate the local immune response through the
release of neuropeptides (substance P, calcitonin gene-related
peptide, vasoactive intestinal peptide, etc.), which interact with
endothelium and immune cells located in the vicinity of the axon
terminals (8, 14, 15). The vagal nerve has been the most studied
of the peripheral nerves involved in immune-brain crosstalk. The
vagal afferents, whose cell bodies are in the nodose ganglia, have
visceral and thoracic afferents that project to the nucleus of the
tractus solitarius (NTS) and the area postrema (AP), which are
both located in the medulla and constitute the so-called vagal
complex (16). The vagal nerve also contains motor efferences,
initiated by cholinergic neurons of the dorsal vagal motor
nucleus. The sensory and motor efferences account for 80 and
20% of the vagal fibers, respectively. It has been shown that the
administration of lipopolysaccharide (LPS), cytokines (namely,
IL-1b and TNF), or pathogens such as Campylobacter jejuni,
stimulates the vagal afferent signaling in rodents, as evidenced by
the increase in the expression of the neuronal activation marker
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cFos in the NTS (17–21). In addition, a subdiaphragmatic
vagotomy (section of the abdominal branch of the vagal nerve)
blocks the occurrence of sickness behavior normally induced by
the intraperitoneal administration of LPS (22). Finally,
electrophysiological recordings have shown that intraperitoneal
administration of TNF or IL-1b induces an increase in vagal
nerve activity in mice, which is not observed in TNF and IL-1b
receptor knock-out mice (18).

Humoral Pathway
The humoral pathway involves various structures or
cell interactions.

Circumventricular Organs
Instead of a blood–brain barrier, the circumventricular organs
(CVO) have fenestrated capillaries that allow direct passage of
molecules between the general circulation and the brain (6, 7).
CVOs are located around the third and fourth ventricles. A
distinction is made between secretory CVOs (epiphysis,
pituitary, median eminence, etc.) and sensory CVOs, namely,
the AP, the subfornical organ, and the vascular organ of the
terminal lamina. The latter are access points to the brain for
circulating cytokines and chemokines, and also DAMPs and
PAMPs, which activate receptors on the surface of endothelial
cells and resident microglia and thus induce activation cascades
that lead to the local production of IL-1ß, interferon-g (INF-g),
TNF, and prostaglandin E2 (PGE2). These inflammatory
mediators can then spread by simple diffusion in the brain
parenchyma and bind to neuronal receptors. They also allow
the migration of circulating immune cells into the brain. Indeed,
studies in mouse models of peripheral inflammation or
autoimmune encephalitis have demonstrated the presence of
non-microglial leukocytes in some CVOs (7, 23, 24). In addition
to CVOs, the choroid plexus and the dura also allow the
trafficking of immune cells between the peripheral circulation
and the cerebrospinal fluid (CSF), or between the CSF and the
lymphatic vessels draining the brain, respectively (12, 25–27).

Cerebral Endothelial Cells
Cerebral endothelial cells (CECs) also express cytokine receptors,
notably for TNFa and IL-1b. The activation of these receptors
promotes the induction of the NF-kB signaling pathway, which
leads to the production and release of secondary messengers
from these endothelial cells. These secondary messengers include
nitric oxide (NO) and prostaglandins (PGs) (7, 28). NO acts
mainly as a vasodilator and immunomodulator (29). At the same
time, the PG-E2 subtype can diffuse due to its lipid nature, and it
thus modulates some central brain effects of the systemic
inflammatory response. Indeed, PG receptors are located in
brain centers involved in sickness behavior (e.g., hypothalamus
and amygdala) (30). The activated CECs also release
chemokines, which diffuse and interact with the surrounding
neuronal and glial cells (31). Similarly, the IL-6 receptor (IL-6R),
synthesized on the surface of leukocytes, can detach from the
plasma membrane when the leukocyte is activated. IL-6s bind
either to the membrane or to the soluble form of IL-6R. In turn,
the IL6–IL-6R complex can interact with endothelial cells, which
April 2022 | Volume 13 | Article 834649
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will express, for instance, adhesion molecules such as ICAM-1
(32). Finally, the CEC-circulating leukocyte interaction is
another pathway. By using intravital microscopy, it has been
shown that CEC–monocyte interactions are increased 5 days
after the induction of liver inflammation. This interaction is
mediated by the adhesion protein P-selectin and has been shown
to be necessary for local microglial activation (33). Similarly,
CEC–leukocyte interactions modulate neuronal excitability, as
shown in an experimental model of epilepsy (34).

These humoral pathways relay peripheral inflammation to the
brain by involving resident glial cells (microglia and astrocytes)
and peripheral cells infiltrated into the parenchyma. This
therefore results in the in-situ release of cytokines and
chemokines, but also of second messengers, such as NO or
PGs. These mediators maintain and relay the inflammatory
signaling to the neurons. It is important to note that the neural
and humoral pathways described above have very different
temporal patterns of activation, with afferent neural signaling
being much faster than the humoral pathway.

The Central Integration of Neural and
Humoral Signaling
The site of action of cytokines and chemokines depends primarily
on the areas of expression of their receptors. IL-1b, IFN-g, and
Frontiers in Immunology | www.frontiersin.org 3
TNF are the cytokines mainly involved in sickness behavior.
These receptors are expressed in most resident cell types of the
brain and in various brain regions, namely, the CVO, thalamus,
striatum, hippocampus, hypothalamus, and amygdala. By
studying the expression of early induced-neuronal genes, such
as the cFos gene, it is possible to obtain a map of the brain areas
that are activated during acute inflammation (Figure 1). The
vagal complex, which includes the NTS and AP, is activated by
both neural and humoral pathways and is the principal entry
point for peripheral inflammatory signaling. The vagal complex
then transmits the signal to other brainstem nuclei, namely: 1) the
rostral ventromedial medullary area (RVLM) that regulates the
heart rate, blood pressure and baroreflex; 2) the periaqueductal
gray matter (PAG), involved in nociception and defense behavior;
3) the parabrachial nucleus (PBN), that modulates appetitive and
aversive responses; and 4) the locus coeruleus (LC), the main
center of the sympathetic response to stress (6). In turn, the PBN
and LC spread extensively into: 1) the regions of the thalamus that
regulate pain perception [paraventricular nucleus (PVT)]; 2) the
hypothalamus, which controls the release of stress hormones
[paraventricular nucleus (PVN), supraoptic nucleus (SO)], food
intake [arcuate nucleus (Arc)], thermoregulation and sleep; and
3) the limbic system, responsible for the sleep cycle (pre-optic
median nucleus) and control of cognitive functions and
FIGURE 1 | A schematic view of the neuro-immune crosstalk during inflammation. Shown are the humoral and neural pathways conveying inflammatory signaling
to the brain, the main brain centers involved in the integration of the inflammatory signaling and controlling autonomic, neuroendocrine and behavioural responses
(constituting sickness behavior), and finally, the interaction between peripheral immune cells (notably of the spleen) and stress hormones and autonomic efferences
(35, 36). NTS, nucleus of tractus solitarius; AP, area postrema; DMN, dorsal nucleus of vagus nerve; BNST, bed nucleus of the stria terminalis.
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behavioral response [hippocampus, amygdala and nucleus of the
bed of the terminal stria (BNST)].

The Autonomic, Neuroendocrine, and
Behavioral Responses
The neural and/or humoral-activated brain centers are thus
interconnected and orchestrate regulation of the immune
response through the so-called ‘inflammatory reflex’ (Figure 2).

Neural Modulation
Studies on the inflammatory reflex have shown a functional
interaction between the parasympathetic (vagal nerve) and
sympathetic nervous systems that refine regulation of the innate
immune response (8, 38). In this reflex, the inflammatory signal
delivered by sensory neurons of the vagal nerve is integrated into
the brain. It then stimulates a descending anti-inflammatory
response mediated by the cholinergic efferences originating from
the dorsal motor nucleus of the vagal nerve (39). Interestingly,
these vagal fibers innervate the celiac and superior mesenteric
ganglia, which contain noradrenergic neurons of the splenic nerve
(40). Therefore, the splenic nerve participates in this inflammatory
reflex (41). Indeed, its noradrenergic axons stimulate the splenic T
cells, which express both b-adrenergic receptors and the choline
acetyltransferase enzyme, which is responsible for acetylcholine
(Ach) synthesis (35, 42). Thus, the vagal stimulation of the splenic
nerve results in noradrenergic-mediated Ach synthesis and release
by spleen T cells. The stimulation of cholinergic neurons controls
production of TNF-a in the spleen via the splenic nerve (43).
In parallel, the neurons of the sympathetic system, located in the
spinal cord, innervate many visceral organs (40) and also control
the secretion of adrenaline from the adrenal glands, which acts
directly as a hormone.

Finally, the immune cells express Ach and/or adrenergic
receptors, which modulate pro-inflammatory (i.e., NF-kB) or
anti-inflammatory (i.e., JAK) intracellular signaling. For
instance, macrophages express the a7 nicotinic acetylcholine
Frontiers in Immunology | www.frontiersin.org 4
receptor (a7nAChR). By binding to b2-adrenergic, the
noradrenaline and adrenaline inhibit the NF-kB pathway, and
thereby the release of pro-inflammatory cytokines by innate and
adaptive immune cells (8). On the other hand, innate immune
cells express a-adrenergic receptors that are rather pro-
inflammatory (44). Thus, the final immune response depends on
various time-dependent factors, namely, cell type, their receptors
and environment, and the phase of the inflammatory process.

Neuroendocrine Response
The neuroendocrine response to stress involves the
hypothalamus–pituitary–adrenal (HPA) axis. Pro-inflammatory
cytokines stimulate the release of glucocorticoids by regulating
the release of corticotropin hormone by the PVN, of
adrenocorticotropic hormone (ACTH) by the ante-hypophysis,
and finally of cortisol by the adrenal glands. In turn,
glucocorticoids exert a negative control over the immune
system by inhibiting the synthesis and release of pro-
inflammatory cytokines. In addition, glucocorticoids regulate
their own production by negative feedback to higher levels of
the HPA (45). A subpopulation of catecholaminergic neurons in
the NTS and RVLM projects to the PVN, promoting a
corticosteroid response to peripheral inflammation directly
mediated by the vagal nerve (46). Vasopressin is also a stress
hormone that controls not only blood pressure and the baroreflex
but also the HPA axis and the emotional response (47).

Behavioral Response
It is striking that some of the late features of infection-induced
sickness behavior are comparable to the clinical symptoms of
depression. They include altered mood and abilities, reduced
sensitivity to reward seeking, and reduced food consumption
(37). In humans, the association between depression, anxiety and
inflammation has been confirmed by several meta-analyses (37,
48). In the context of systemic inflammation, several brain regions
are recruited, including those orchestrating defensive behaviors to
ensure survival, notably fear (Figure 1). Fear is a rapid adaptive
response, which depends on a distributed circuit centered on the
amygdala and converging on the central nucleus of the amygdala
(CeA). Studies in humans and rodents show that the amygdala is
a key relay for fear and anxiety circuits and is directly involved in
the behavioral changes observed during illness behavior (49).
A DYSREGULATED RESPONSE TO
STRESS: THE EXAMPLE OF SEPSIS

As described previously, sickness behavior is a physiological
reaction to an acute systemic inflammatory response that
involves interconnected peripheral and central circuits that 1)
sense, mediate, and integrate an inflammatory signal, and 2)
elaborate an autonomic, neuroendocrine, and behavioral
response, leading to immune response modulation and
allostasis maintenance. In various conditions, this complex
brain-immune crosstalk can dysfunction at any of its relays,
resulting in an altered response to stress, either by excess or
default. Sepsis represents the model of dysregulated response to
FIGURE 2 | A schematic view of centers, according to their functions,
activated during a systemic inflammatory response (37). Amyg, amygdala; AP,
area postrema; Arc, arcuate nucleus; BNST, bed nucleus of the stria
terminalis; HIP, hippocampus; LC, locus coeruleus; MNPO, median preoptic
nucleus; NTS, nucleus of tractus solitarius; PBN, parabrachial nucleus; PAG,
periacqueductal gray; PVN, paraventricular nuclei; PVT, paraventricular nuclei
of the thalamus; RVLM, rostral ventrolateral medulla; SO, supraoptic nucleus.
April 2022 | Volume 13 | Article 834649
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stress (50). Thus, septic patients can develop relative adrenal
insufficiency. This is associated with increased mortality, which
can, however, be reduced by a substitutive opotherapy (51, 52).
Impaired osmoregulation of vasopressin also occurs in the acute
phase of severe sepsis, resulting from a depolarization of
osmoreceptors (53–55). Interestingly, osmoreceptors are
located within CVOs and their dysfunction might be induced
by inflammatory cytokines. The defective osmoregulation can
persist after recovery from sepsis and accounts for the
impairment of thirst (53). Furthermore, severe sepsis can be
associated with brainstem dysfunction which is clinically
characterized by a heterogeneous abolition of brainstem
reflexes (56), impaired heart rate variability with a decrease in
the sympathovagal balance (57), baroreflex and respirate rate
variability, and also increased latencies of the somatosensory and
middle-brain auditory evoked potentials (58) and absence of
electroencephalographic reactivity (59). This brainstem
dysfunction is associated with increased mortality, multiple
organ failure, and disorders of consciousness, namely,
coma and delirium (56). These phenomena are related to
dysfunction of the reticular ascending activating system and
the autonomic centers, which are both liable to neuro-
inflammatory insult as evidenced by neuropathological studies
(60). Septic patients often complain of anxiety, which is
considered a warning signal. In a prospective, multicenter
cohort study, we found that anxiety was more intense in
patients who would subsequently develop new organ failure. It
is conceivable that anxiety is either a marker of critical illness
severity or, by notably increasing the allostatic load secondary to
an overstimulation of the sympathetic system, an aggravating
factor (61). Interestingly, we found that impaired perception of
danger was also predictive of organ failure, suggesting that a
dysfunction of the limbic system may contribute to unfavorable
outcome (personal data). We conducted an experimental study
to assess whether sepsis is associated with amygdala dysfunction.
We found that there is an acute activation of the central
amygdala-BNST circuits, whose specific inhibition prevents
anxiety-related behaviors and fear memory 15 days after sepsis
in mice (62).

The dysfunction of the autonomic or limbic centers is likely to
result from a dysregulated neuro-inflammatory process,
involving a neurotoxic activation of microglial cells. Microglial
activation in response to a stimulus encompasses morphological,
immunological, and metabolic changes. Activated microglial
cells can, very schematically, acquire either a pro-inflammatory
or an anti-inflammatory immunophenotype which are usually
considered to be neurotoxic or neuroprotective, respectively.
Activated microglia can release various neurotoxic mediators—
namely, cytokines, NO, gliotransmitters and metabolites (such as
reactive oxygen species)—that increase neuronal excitability, fuel
neuronal hyper-activation, and may induce neuronal apoptosis
(63, 64). The modulation of microglial activity might therefore be
a relevant approach for restoring an adaptive immune-brain
crosstalk in sepsis. There have been promising results from
numerous experimental studies which have tested therapeutic
interventions, namely, minocycline (65), hydrocortisone (66),
Frontiers in Immunology | www.frontiersin.org 5
cholinergic inhibition (67, 68), and vagal nerve stimulation (69).
However, no randomized clinical trial has so far been successful.
Administration of rivastigmine (70) has been shown to be
deleterious and statins inefficient for treating or preventing
brain dysfunction in critically ill patients (71, 72). Given that
microglial activation is a dynamic phenomenon, a major
limitation is the absence of a biomarker for the microglial
phenotype. Although shown to be useful in patients with
Alzheimer’s disease, positron emission tomography of
microglial activation cannot be performed easily in septic
patients (73). Based on experimental evidence of its effect on
microglial cell-mediated neurotoxicity, we will soon carry out a
multicenter, randomized clinical trial for assessing whether
levetiracetam, an anti-seizure drug, prevents brain dysfunction
in septic patients (73). The autonomic modulation of the
immune response has also been investigated (74). It mainly
consists of stimulation of the cholinergic anti-inflammatory
reflex, which can be achieved by electrical stimulation of the
vagal nerve, administration of agonists of nicotinic acetylcholine
or b2-adrenergic receptors, but also by pharmacologic inhibition
of cholinesterase (67) and electroacupuncture (75).
THE BRAIN-IMMUNE CROSSTALK IN
ISCHEMIC STROKE

There are several arguments for hypothesizing that ischemic
stroke can impair the brain-immune crosstalk. First, the latter
can be activated by the systemic inflammatory response
transitorily triggered by an ischemic stroke (76) but also by an
infection, which is a frequent stroke complication favored by
secondary peripheral immunodepression (77). Second, ischemic
stroke can damage brain circuits involved in the immune-brain
crosstalk, resulting in a maladaptive response to stress, with acute
and long-term consequences. Finally, the activation of the
immune system during sepsis can induce ischemic stroke.

Due to blood–brain barrier breakdown, the brain ischemic
tissue releases cytokines, chemokines, brain-derived antigens,
and DAMPS into the circulation, which stimulates the
peripheral immune system. The brain-derived antigens, mainly
enolase, S100b and GFAP, are drained into the lymphatic system
and the spleen through the CSF and serum (78), where they can
activate macrophages and B and T cells. It has been
experimentally shown that there is a dramatic production of
pro-inflammatory cytokines by activated T cells of the lymph
nodes after ischemic stroke (79, 80). In stroke patients,
circulating antibodies against the N-methyl-D-aspartic acid
receptor or myelin basic protein are detectable, and brain
antigens are also detected in tonsils and lymph nodes (81).
With the use of a label ing technique, it has been
experimentally shown that spleen immune cells are found in
the brain 24 to 96 h after stroke (82). These findings indicate that
stroke induces autoreactive T cells, which have been reported to
worsen brain injury in animals but are also considered to favor
post-stroke autoimmunity. If not reported after stroke, auto-
immune encephalitis can occur after a herpes simplex
April 2022 | Volume 13 | Article 834649
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encephalitis (83). The main consequence of this systemic
inflammatory response is the infiltration (84)—facilitated by
the increased expression of adhesion molecules—of the brain
by activated cells of innate (i.e., macrophages, neutrophils,
dendritic and natural killer cells) and adaptive (i.e., T cells)
immunity, inducing blood–brain barrier dysfunction via
protease secretion, brain edema, the neuro-inflammatory
process, and finally, brain damage. If innate immunity cells are
usually considered deleterious, it seems however that T cells are
more equivocal. For instance, gd T cells, which reside primarily
in the gut, can reach the ischemic brain via the meninges and
contribute to microglial neurotoxic activation and neutrophil
recruitment by secreting IL-17 (85). On the other hand, T cells
have also been shown to promote neurogenesis, repair and
remodelling (4, 86–88). Cellular DAMPs mainly include
adenosine triphosphate (ATP), S100b, High-Mobility Group-
Box-1 and peroxiredoxins; extracellular DAMPS include
fibronectin, tenascin C, heparan sulphate, and hyaluronan (78).
They are major players in local neurotoxic phenomena but also
contribute to the activation of the peripheral immune system.
Within the first hours following stroke there is an increase in
circulating pro-inflammatory cytokines (i.e., IL-6 and TNF-a),
which are mostly produced from peripheral immune cells (89,
90). Thrombolysis can be complicated by a systemic
inflammatory response syndrome that is associated with poor
outcome (91). Interestingly, the targeting of DAMPs, immune-
signaling molecules (such as cytokines), microglial polarizations,
macrophages, and T cells are now considered to be promising
therapeutic strategies (78, 92).

This acute pro-inflammatory response is rapidly followed by
immunodepression, which is teleologically considered to
dampen brain infiltration by activated immune cells and to
have a neuroprotective effect. This immunodepression,
characterized by lymphopenia, deactivation of monocytes,
depletion of splenic T-cells and natural killer cells, reduces
splenic size (80), and also decreases the production of
proinflammatory cytokines such as lymphocytic IFN-g and
monocytic TNF-a (78, 93), which are necessary for
defense against bacterial infection. The main consequences of
this immunodepression is infection, to which changes in
gut microbiota might contribute by increasing plasma
trimethylamine N-oxide levels (94, 95). Gut dysbiosis is also a
determinant of post-stroke outcomes (96).

The key role of the spleen in the immune response (36), and gut
microbiota in infection and recovery, highlights the implication of
the HPA axis and autonomic nervous system, both components of
brain-immune communication and, as discussed above, the
response to stress and sickness behavior. First, there is an increase
of plasma cortisol and catecholamine levels after stroke (4, 97).
Second, the spleen is innervated by the noradrenergic neurons of the
splenic nerve, which is regulated by the cholinergic neurons of the
vagal nerve. This innervation is relatively anti-inflammatory, via
the b2-adrenergic pathway (98). There is no direct cholinergic
innervation of the spleen. In contrast to that in rodents, there is
direct sympathetic innervation of the spleen in humans, which
preferentially interacts with leukocytes and is potentially
Frontiers in Immunology | www.frontiersin.org 6
pro-inflammatory (50). Interestingly, it has been shown that
sepsis can impair this direct sympathetic nerve (50). In addition,
circulating catecholamines modulate the response of the splenic
immune cells. Therefore, there is a subtle sympathetic/
parasympathetic balance in the spleen immune response.
Regarding the gastrointestinal system, the sympathetic nervous
system may be deleterious, by disrupting production of intestinal
mucin, gut permeability (via noradrenergic-mediated expression of
TREM1), and composition of intestinal microbiota (78, 99), while
the vagal nerve is, on the other hand, more protective. For instance,
reducing parasympathetic nerve activity after an acute brain injury
stimulates intestinal bacterial proliferation and increases bacterial
translocation (96). It has been recently demonstrated that there are
circulating molecular regulators, such as small RNA, that finely
control the cholinergic reflex in stroke patients. Therefore, targeting
the autonomic nervous system seems a relevant therapeutic option.
The blockade of spleen noradrenergic control was beneficial in an
animal model of ischemic stroke with improvement in survival and
prevention of infection (79, 100). Moreover, activating the
cholinergic reflex reduces systemic and neuro-inflammation but
also infarct size in stroke animal models (101, 102). The decrease in
plasma acetylcholinesterase levels, a marker of cholinergic
immunosuppressive activity and predictor of poor outcomes
in stroke patients (103), supports intervention in the
parasympathetic system. However, we call for caution as the
sympathetic/parasympathetic balance is dynamic and complex,
suggesting that its control cannot be simplistic. Among other
benefits, such as replacing brain dead cells and promoting brain
repair, stem cells might be a promising way to optimize neuro-
immune interaction (104).We would like to emphasize that aging, a
major risk factor for stroke, has a dramatic impact on peripheral
and brain immune cells by favoring a pro-inflammatory response,
but it also affects the HPA axis and autonomic nervous system,
therefore altering the brain-immune crosstalk (78). Finally, it would
be interesting to assess how sickness behavior is impaired in stroke
patients, especially in those who developed infection or late anxiety
and depression (105, 106). Furthermore, it remains unknown to
what extent stroke location alters the peripheral-central crosstalk at
play in the natural course of stroke. Notably, brainstem stroke may
impair the connectivity between the autonomic, neuroendocrine,
and limbic systems. Thus, if sepsis is a consequence of stroke-
induced immunosuppression, it is also a factor in dysregulated
neuro-immune responses and unfavorable outcomes in
stroke patients.

To date, no intervention has been proven to decrease the risk
of subsequent infection after stroke, and no study on the
modulation of inflammation has been shown to prevent the
occurrence of an ischemic stroke or to improve the outcome.
For instance, the STROKE-INF clinical trial did not show any
benefit for prophylactic antibiotics in reducing the risk of
pneumonia in stroke patients with dysphagia (107). A better
understanding of the brain-immune crosstalk could help
develop a targeted and personalized therapeutic approach
based on immune response phenotyping.

Finally, the systemic inflammatory response is associated with
endothelial activation and intravascular coagulation, both of which
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can induce ischemic stroke, as reported in neuroradiological and
neuropathological studies (108, 109). In addition to
microcirculatory impairment, a decrease in blood pressure or
cerebral blood flow, and impaired cerebral autoregulation, are also
mechanisms of cerebral infarcts. Therefore, the occurrence of sepsis
can worsen ischemic damage in a stroke patient, by triggering
neuro-inflammation but also by affecting cerebral perfusion by
inducing macro- and microcirculatory dysfunction (110).
CONCLUDING REMARKS

In conclusion, brain-immune communication mainly involves the
autonomic nervous system, which can sense and modulate
peripheral inflammation, in cooperation with the neuroendocrine
and limbic systems. Brain-immune crosstalk is a key player in the
Frontiers in Immunology | www.frontiersin.org 7
evolution of sepsis and stroke, both at its acute and recovery phase,
influencing neurotoxic and neuroprotective mechanisms. It seems
that the sympathetic nervous system is somewhat deleterious while
the parasympathetic system tends to be beneficial. Targeting the
autonomic nervous system would therefore be relevant but
tremendously challenging since the sympathetic and
parasympathetic activities are dynamically balanced and not
univocal. Moreover, the natural neuro-immune response to stroke
is likely to be modified by various but common factors, namely,
aging and sex, and also stroke location and occurrence of sepsis.
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Brain-Derived Antigens in Lymphoid Tissue of Patients With Acute Stroke.
J Immunol (2012) 188:2156–63. doi: 10.4049/jimmunol.1102289

82. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker
KR. A Transient Decrease in Spleen Size Following Stroke Corresponds to
Frontiers in Immunology | www.frontiersin.org 9
Splenocyte Release Into Systemic Circulation. J Neuroimmune Pharmacol
(2012) 7:1017–24. doi: 10.1007/s11481-012-9406-8
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