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Mass spectrometry (MS) based immunopeptidomics is used in several biomedical
applications including neo-epitope discovery in oncology, next-generation vaccine
development and protein-drug immunogenicity assessment. Immunopeptidome data are
highly complex given the expression of multiple HLA alleles on the cell membrane and
presence of co-immunoprecipitated contaminants. The absence of tools that deal with
these challenges effectively and guide the analysis and interpretation of this complex type of
data is currently a major bottleneck for the large-scale application of this technique. To
resolve this, we here present the MHCMotifDecon that benefits from state-of-the-art HLA
class-I and class-II predictions to accurately deconvolute immunopeptidome datasets and
assign individual ligands to the most likely HLA molecule, allowing to identify and
characterize HLA binding motifs while discarding co-purified contaminants. We have
benchmarked the tool against other state-of-the-art methods and illustrated its
application on experimental datasets for HLA-DR demonstrating a previously
underappreciated role for HLA-DRB3/4/5 molecules in defining HLA class II immune
repertoires. With its ease of use, MHCMotifDecon can efficiently guide interpretation of
immunopeptidome datasets, serving the discovery of novel T cell targets. MHCMotifDecon
is available at https://services.healthtech.dtu.dk/service.php?MHCMotifDecon-1.0.

Keywords: MHCMotifDecon, MHC motif deconvolution, immunopeptidome, DRB3/4/5, mass spectrometry
INTRODUCTION

Mass spectrometry (MS) based immunopeptidomics is becoming increasingly relevant for several
biomedical applications including cancer neoantigen discovery, vaccine development and protein
drug deimmunization pipelines (1–4). The broad interest in MHC-derived MS relies on its ability to
discover MHC presented peptides in real scenarios, such as biomarker discovery in cancer,
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autoimmune and infectious disease, and therefore identifying
peptides that might induce T cell responses. Additionally,
thousands of peptides derived from the self-proteins can be
collected in a single assay which can be directly loaded into
bioinformatic motif identification and machine learning
pipelines to help uncovering the rules governing the processing
and presentation of peptides in a biological context.
Furthermore, ongoing refinements of the MS experimental
workflows, such as de novo peptide annotation, or peptide
quantification hold great promise in expanding the usage of
the technique.

Despite the great potential of MS immunopeptidomics data,
several inherent challenges curb the broad benefit of the
technique. A major challenge being assigning the accurate
MHC allele to each presented MS-derived peptide, a process
termed motif deconvolution. To tackle this concern, several
experimental approaches that artificially engineer cells to only
express one individual HLA have been performed both for MHC
class I (5, 6), and MHC class II (7). Although this laborious
experimental setup has proved extremely useful to understand
the rules of HLA presentation and their motifs, it lacks the
biological relevance, limiting its application in other scenarios
and experimental settings that involve patient samples
and biospecimens.

As an alternative to experimental approaches, unsupervised
bioinformatic methods have been proposed to deconvolute the
peptide specificities present in complex immunopeptidomes,
such as GibbsCluster (8, 9) or MixMHCp (10). These
pioneering tools have proved to be highly useful for MS data
analysis (11–14). However, they also show intrinsic limitations
such as the need for manual inspection associating those motifs
to known allele specificities present in the sample and assigning
peptides to MHC molecules with overlapping motifs. Another
challenge for these methods is dealing with proper deconvolution
of MHC molecules with limited peptide repertoire such as HLA-
C. Furthermore, in MHC class II, the expression of variable alpha
and beta genes forming the HLA-DQ and HLA-DP
heterodimers, plus the expression of HLA-DRB1 and its
associated HLA-DRB3, 4 and 5 alleles, make up to twelve
potential HLA class II specificities, disputing the capacity of
these methods to learn from this complex data.

Recently, Alvarez et al. proposed the NNAlign_MA
framework that combines binding affinity and MS data to learn
and deconvolute the peptide specificity associated to MS
immunopeptidome samples on the fly, while training a neural
network to predict MHC presentation (15). This method showed
a high deconvolution accuracy, and this core algorithm has been
already introduced into the state-of-the-art predictors
NetMHCpan-4.1 and NetMHCIIpan-4.0 (16).

Here, we build on these achievements to develop
MHCMotifDecon, a user-friendly supervised tool, that benefits
from the prior knowledge of NetMHCpan and NetMHCIIpan to
perform MHC motif deconvolution of both class I and class II
MS immunopeptidomes, assigning peptide sequences to their
most likely HLA restriction. The output from the tool includes
HLA motifs, length distributions, peptide counts, and a trash
Frontiers in Immunology | www.frontiersin.org 2
cluster to discard non-specific or contaminating co-
immunoprecipitated peptides. To show its power in analyzing
immunopeptidomics data, the tool is benchmarked against other
state-of-the-art publicly available motif deconvolution methods
on artificial MS datasets.

To further demonstrate the power of MHCMotifDecon, we
generated and moti f deconvoluted novel HLA-DR
immunopeptidome datasets. Considering that the DR
immunopeptidome of different antigen presenting cells is
naturally a complex mixture of peptides presented by HLA-
DRB1 (primary DRB) and DRB3, 4 and 5 (secondary DRB)
molecules, besides the distinct roles these molecules play in
disease susceptibility or protection, the deconvolution of the
peptide repertoire of DRB1 molecules from the DRB3, 4 and 5 is
essential for unraveling the function of class II HLA-DR in the
course of autoimmune disorder progression and treatment.
However, due to their strong linkage disequilibrium (LD) with
the accompanying DRB1 alleles, the contribution of the
secondary DRB molecules in presenting antigenic peptides to T
cells and their role in immune activation and response has been
largely overlooked.

Here, we demonstrate how MHCMotifDecon offers a simple
yet highly powerful tool to address this issue, allowing for
quantification of the relative contribution of DRB3, 4 and 5
molecules to the full HLA-DR peptide repertoire.
RESULTS

The proposed MHCMotifDecon method allows for HLA motif
deconvolution of immunopeptidome datasets based on prediction
of peptide HLA restrictions. The tool is available at https://services.
healthtech.dtu.dk/service.php?MHCMotifDecon-1.0 and takes
one or multiple immunopeptidome datasets as input together
with information of the HLA molecules expressed in each
individual cell line/sample. On the web-interface, the user can
select if motif deconvolution is to be performed for class I or class
II molecules, specify the length of peptides to be included in the
analysis and define the threshold (cut off) to identify and discard
potential MS co-purified contaminants. For further details about
the tool refer to Materials and Methods. In the following sections
the performance of the tool is first benchmarked against other
publicly available HLA motif deconvolution methods, and next
the use and value of the tool is illustrated in a series of real-
life applications.

Performance Evaluation
To assess the deconvolution accuracy and value of
MHCMotifDecon, the method was tested and compared to
other publicly available tools on two artificial datasets (one for
HLA class I and another for HLA class II) constructed
combining MS peptides from experimental designs where the
restriction allele was known and unique. As MHCMotifDecon is
a supervised classification method, the two datasets were
constructed from peptides that do not share overlap with the
January 2022 | Volume 13 | Article 835454
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MHC data used for the training of NetMHCpan and
NetMHCIIpan (for details refer to Materials and Methods).

MHC Class I Deconvolution
For MHC class I, 4400 HLA ligands of length 8-14 amino acids
were randomly sampled from six single-allele datasets (HLA-
A*02:02, HLA-A*11:02, HLA-B*13:01, HLA-B*49:01, HLA-
C*07:02, HLA-C*14:03) (5) and merged into one artificial
dataset. HLA-A and HLA-B ligands were added in equal
proportions and five times more compared to HLA-C (17),
mimicking the biological setting where HLA-A and HLA-B
alleles are expressed at higher levels compared to HLA-C.

Next, MHCMotifDecon, MixMHCp (18) and GibbsCluster
(8) were used to deconvolute the motifs contained within this
artificial MHC class I dataset of 4400 ligands covering 6 HLA
molecules. The result of this deconvolution is shown in Figure 1.
As an additional comparison of the deconvoluted motifs, each of
the original single allele data was submitted to GibbsCluster (11)
with a fixed cluster number of 1 to show the motifs found in the
original MS samples (Figure 1).

While all clustering algorithms were able to separate most
HLA-A and HLA-B associated peptides, the low representation
of HLA-C peptides in combination with a less defined motif
makes this motif more difficult to establish (Figure 1). Focusing
on the identified motifs for HLA-C*07:02 and HLA-C*14:03, it
becomes further apparent that both MixMHCp and
GibbsCluster fail to accurately separate the correct motifs for
the two HLA-C molecules (Figure 1, SA panel).

The accuracy of the motif deconvolution was next quantified
in terms of a confusion matrix aligning the annotated and
predicted HLA restrictions for each of the 4400 peptides in the
Frontiers in Immunology | www.frontiersin.org 3
dataset (Figure 2). These results demonstrate an overall high
ability of the three methods to deconvolute the motifs from
HLA-A and HLA-B, but also illustrates the difficulty of the two
unsupervised methods to accurately capture the motifs of the two
HLA-C molecules.

To further quantify this, we next estimated, using the HLA
association for each cluster as defined in Figure 1 and as
indicated along the diagonal of each matrix in (Figures 2A–C),
the performance of each method in terms of the Matthews
correlation of each HLA/group association. These MCC values
for each method and HLA are shown in Figure 2D, and confirm
the earlier observation with an overall superior performance
of MHCMotifDecon and a suboptimal performance of
MixMHCp and GibbsClusters for identification of the HLA-C
molecule motifs.

MHC Class II Deconvolution
To assess the deconvolution efficacy of MHCMotifDecon for
HLA class II immunopeptidome data, the method was applied to
an artificial dataset generated merging single allele datasets from
four different cell lines expressing DRB1*04:03, DRB1*08:03,
DRB3*02:02 and DRB5*01:01 alleles respectively (for details on
the artificial dataset generation refer to Materials and Methods
section). Here, the motif deconvolution was performed using the
new retrained version 4.1 of NetMHCIIpan. The retraining was
performed as described inMaterials and Methods expanding the
data to include an extended set of single allele MS data, excluding
single allele data from the alleles used on the benchmark to avoid
overestimation of the deconvolution accuracy. Also in this
benchmark two alternative methods, GibbsCluster and MoDec
were included. The result of the benchmark is shown in Figure 3,
FIGURE 1 | Motif deconvolution of the artificial HLA class I dataset. GibbsCluster, MHCMotifDecon, MixMHCp deconvolution of datasets. Motifs for MixMHCp were
constructed from the set of deconvoluted 9mer peptides only. The lower panel (SA) shows motifs for each individual HLA-A*02:02, HLA-A*11:02, HLA-B*13:01,
HLA-B*49:01, HLA-C*07:02, HLA-C*14:03 dataset as obtained by GibbsCluster using a single cluster.
January 2022 | Volume 13 | Article 835454
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again confirming the superior performance of MHCMotifDecon
over the other two methods.

Similar to class I, a confusion matrix was constructed to
quantify the deconvolution power of MHCMotifDecon compared
Frontiers in Immunology | www.frontiersin.org 4
toMoDec and GibbsCluster (Figure 4). This figure clearly confirms
the superior performance of MHCMotifDecon over the two other
methods with a close to 3-fold increase in median performance
compared to the second best method (MoDec).
A B

DC

FIGURE 2 | Clustering confusion matrix and Matthews correlation performance for the three methods (A) GibbsCluster, (B) MixMHCp and (C) MHCMotifDecon.
(D) Matthews correlation (MCC) performance estimates of accuracy of the motif deconvolution of the different methods for the artificial MS HLA eluted ligand
dataset. MCC values for each method and HLA were estimated from the confusion matrices and cluster-HLA annotations shown in Figure 1.
FIGURE 3 | Motif deconvolution of the artificial dataset combining MS eluted ligand data from 4 cell lines each one expressing one individual HLA-DR allele. The
three methods MHCMotifDecon, GibbsCluster (8), and Modec (10) were run as described in Materials and Methods. Eluted motif corresponds to GibbsCluster
deconvolution of each of the single allele datasets using a single cluster (k=1).
January 2022 | Volume 13 | Article 835454
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Dealing With Co-Immunoprecipitated
MS Contaminants
MS eluted ligand datasets generally contain a certain amount of
co-immunoprecipitated contaminants. One example is the co-
immunoprecipitation of varying amounts of HLA class I/II
derived peptides that are non-specifically co-purified in
addition to the HLA molecule of interest and contaminate the
IP preparations (19). This problem, that happens despite the use
of allele-specific antibodies, is inherent to the purification of
membrane-bound HLA molecules and is due to the function of
the detergent that disrupts the cell membrane and causes cell
lysis. As a result, the purified HLA remains bound to a piece of
membrane that carries other membrane proteins including other
HLA alleles (19). This problem is inevitable unless cells that are
engineered to secret the soluble form of the HLA are used (20,
21) which is not possible in case of tissues and biological samples.
To illustrate the power of the tool to handle such contaminants,
the complete immunopeptidome data obtained from the
IHW09060 (CB6B) cell line expressing the HLA-DR alleles
DRB1*13 :01 and DRB3*02 :02 were submi t t ed to
MHCMotifDecon limiting the peptide length to 9-25 and
excluding the use of the trash bin option (for details on the
data generation refer to Materials and Methods). The result of
this analysis (Figure 5A) showed an unusual motif and peptide
length distribution for DRB1*13:01 with an additional peak
taking up more than half of the peptide counts observed for
Frontiers in Immunology | www.frontiersin.org 5
the shortest peptide length; a clear sign of co-immunoprecipitated
contaminants. Rerunning the analysis, setting the trash threshold
to 20%, the result in Figure 5B was obtained. In this figure,
around 33% of the peptides were assigned to the Trash bin, and
the motifs and length distribution for the two DR molecules now
align with the expectations. To investigate the source of the large
proportion of peptides assigned to the Trash bin, the complete
IHW09060 peptide data was submitted to the MHCMotifDecon
server, now selecting class I, the class I alleles expressed in
IHW09060 cell line (HLA-A*01:01, HLA-B*15:01, HLA-
C*03:03), and setting a stringent threshold for the trash bin of
2%. The result of the analysis, shown in Supplementary Figure 2,
clearly, and in line with earlier works (22), indicates that the vast
majority of the short peptides (in particular for length 8-11) have
HLA class I origin. Next, the peptide data was resubmitted for
class II motif deconvolution excluding peptides with predicted
HLA class I restriction (Figure 5C). This analysis confirmed the
clear motifs and expected peptide length distributions for the two
DR molecules. Also, the analysis confirmed a very minor
proportion of remaining MS contaminants (7%), and a trash
motif with a highly reduced information content. As a final
analysis, the unfiltered data was submitted for class II motif
deconvolution limiting the peptide length to 12-25 keeping all
other parameters as default. The result of this analysis
(Figure 5D) aligns closely with the result of the analysis
excluding class I restricted peptides (Figure 5C) with the
A B

DC

FIGURE 4 | Clustering confusion matrix and Matthews correlation performance for the three methods (A) GibbsCluster, (B) MoDec and (C) MHCMotifDecon. (D) Matthews
correlation (MCC) performance estimates of accuracy of the motif deconvolution of the different methods for the artificial MS HLA eluted ligand dataset. MCC values for each
method and HLA were estimated from the confusion matrices and cluster-HLA annotations shown in Figure 3.
January 2022 | Volume 13 | Article 835454
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exception of the much larger amount of trash peptides found for
peptides of length 12 in this latter analysis.

In summary, this analysis demonstrates the power of
MHCMotifDecon to effectively perform HLA motif
deconvolution also in immunopeptidome datasets with
substantial amounts of co-purified contaminants. Furthermore,
the analysis suggests that for class II motif deconvolution, placing
a peptide length threshold of 12-25 serves as an effective way to
deal with class I co-immunoprecipitated contaminants. This
however with the caution of potentially identifying a small
proportion of false positive peptides at the shortest peptide
length. To avoid this, the analysis suggests to filter out
potential class I presented peptides prior to performing the
class II motif deconvolution.

To further illustrate the issue of potential false positive co-
immunoprecipitated MS contaminants, the motif deconvolution
of the original data was compared to the deconvolution
performed for a set of scrambled HLA-DR ligands (see
Supplementary Figure 3). In the scrambled dataset, the
peptide sequences have the same amino acid composition but
in a shuffled order (for details refer to Methods section). In this
comparison, the overlap between rank score in the original and
scrambled datasets for HLA class II was found to be substantial
for peptide lengths of less than 12 and above 21. In contrast, this
overlap is basically absent for peptide lengths of 12-21
(Supplementary Figure 3B). Given this, for class II we
recommend to filter the peptide length to fall in the range
Frontiers in Immunology | www.frontiersin.org 6
12-21 when using MHCMotifDecon. Likewise for class I, we
recommend applying a length filter to only include peptides of
length 8-14 amino acids (see Supplementary Figure 3A).

Characterization of the Peptide
Repertoires of Primary and
Secondary HLA-DR Molecules
To fully demonstrate the application and power of the
MHCMotifDecon method for analysis and interpretation of
complex immunopeptidome datasets, a set of 11 HLA-DR
immunoprecipitated immunopeptidome datasets were generated
from homozygous B cell lines (see Supplementary Table 1). For
details on the data generation refer to Materials and Methods.
Next, this complete set of 11 HLA-DR immunopeptidome was
analyzed using MHCMotifDecon with the purpose of
characterizing the peptide repertoires of primary and secondary
HLA-DR molecules in detail in the context of the contribution of
the primary and secondary DR molecules to total DR peptidome,
length distribution of each HLA-DR molecule, as well as the level
of overlap between the DR molecules in each haplotype. Note,
based on the conclusions from the above analyses, the data were
first filtered using MHCMotifDecon to exclude peptides with
predicted HLA class I restrictions. Then the peptide data were
submitted to MHCMotifDecon together with information about
their full HLA-DR typing using default MHC class II options and
including length histograms and consistency matrix plots. The
result of this analysis is shown in Figure 6.
A

B

D

C

FIGURE 5 | HLA-DR motif deconvolution for the IHW09060 dataset using different strategies to deal with co-immunoprecipitated MS contaminants. (A) Peptide
length 9-25, excluding the use of the trash bin option (achieved by setting the trash bin threshold to 101%), (B) Peptide length 9-25, trash bin 20%, (C) Peptide
length 9-25, exclude class I binders, trash bin 20%, (D) Peptide length 12-25, trash bin 20%.
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A

B

FIGURE 6 | MHCMotifDecon analysis for the MS peptidomics data obtained from the 11 cell lines. Peptide datasets were filtered for HLA class I binders as
described in the text and submitted to MHCMotifDecon for motif deconvolution using default class II options. (A) Peptide counts, length distribution per alleles or
trash cluster, and logos from HLA-DR alleles after deconvolution by the method. Each row corresponds to one dataset (cell line). The label N_ in front of each cell
line (i.e., 1_9023) corresponds to the different haplotype groups (see Supplementary Table 1). The first column shows the number of peptides assigned to each
HLA molecule and the Trash bin (containing peptides with a predicted rank > 20%). The second column gives the peptide length distribution for each HLA, and
Trash bin, and the remaining columns the binding motifs for each HLA molecule and Trash bin. Motifs are constructed from the predicted binding cores using
Seq2Logo (23) with default settings. (B) Consistency matrices generated by the method for the three DR molecules shared between 2 or more cell lines using the
method described in (15) defining the similarity between two HLA binding motifs in terms of the Pearson’s correlation coefficient (PCC) between the two vectors of
9*20 elements (9 positions and 20 amino acid propensity scores at each position). Note. that the consistency plot for DRB4*01:03 includes the null allele
DRB4*01:03N expressed in the 9052 cell line. Removing this allele from the plot results in increasing the Mean PCC value to 0.88.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 13 | Article 8354547
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Overall, these results demonstrated both the high quality of
the generated MS HLA-DR immunopeptidome datasets
(illustrated by the relative low proportion of peptides assigned
to the trash cluster (Figure 6A), and a high consistency between
the motif deconvolution for HLA-DR molecules shared between
multiple cell lines (Figure 6B). Also, the figure illustrates the
power of the MHCMotifDecon method to accurately
deconvolute the DR motifs in these complex datasets
(illustrated by the sharp motifs, and the well-defined peptide
length distribution for the DR annotated peptides). As a side
remark, the analysis further revealed subtle differences in length
preference among various primary and secondary HLA-DR
molecules. These differences will be discussed in more
detail later.

DRB5 Displays a Significant Contribution
to the Total Immunopeptidome of the
HLA-DR51 Haplotype Group
DRB5 molecules are in linkage disequilibrium with DRB1*15
and DRB1*16 alleles in DR51 haplotype group. The B
lymphoblastoid cell lines [SCHU (9013) and CALOGERO
(9084)] express the DRB5*01:01 and DRB5*02:02 alleles in
combination with DRB1*15 and DRB1*16 and therefore were
selected to determine the contribution of DRB5 alleles to HLA-
DR51 peptide repertoire. The motif deconvolution of the two cell
lines shown in Figure 6 indicates the large contribution of both
DRB5 molecules to the peptide repertoire of both cell lines. In
fact, DRB5*01:01 and DRB5*02:02 contributed 50% (1490 out of
a total of 2991 peptides) and 64% (1010 out of a total of 1580) to
the total DR peptidome of 9013 and 9084 respectively
(Supplementary Table 2).

Secondary DR alleles like primary DR molecules show a Bell
shape and normal length distribution. When the length
distribution of both DRB5 molecules were compared, both
showed a preference for the 15 amino acid peptides.

The binding motif of DRB1*15:01 and DRB5*01:01 has been
studied before by different groups using crystallography, binding
assay and eluted peptides (24–28). We were able to refine the
motif for the DRB5 alleles of HLA-DR51 haplotype, using a large
Frontiers in Immunology | www.frontiersin.org 8
set of peptides eluted from the homozygous BLCLs and identified
by mass spectrometry. In all cases, the identified motif (see
Figure 6) was in agreement with previously described motifs
(25) with some additional residues in the anchor positions P1,
P4, P6 and P9.

In DRB5*01:01, P1 showed preference for bulky aromatic and
hydrophobic residues like Tyr (Y) and Trp (W) as well as Phe
(F), Leu (L), Ile (I) and Val (V). At P4 it favors small amino acids
like Leu (L), Ala (A), Ile (I) or Val (V). This secondary DR
molecule accepts amino acids with aliphatic side chain like Ala
(A), Ser (S), Gly (G), Pro (P) and Asn (N) at P6 and positively
charged (basic) residues such as Lys (K) or Arg (R) at P9 that is
essential for the interaction between the peptide and the
DRB5*01:01 allele.

The same trend was observed in DRB5*02:02. This allele
shared P6 and P9 amino acid preferences with DRB5*01:01.
However, in DRB5*02:02, P1 has a strong preference for small
amino acids like Ile (I), Val (V) and Leu (L), while P4 favors the
bulky Tyr (Y), Trp (W) and Phe (F) amino acids. Therefore,
DRB5*01:01 and 02:02 have different P1 and P4 preferences but
share the same residues at P6 and P9.

While certain similar features can be identified between the
motifs of the primary and secondary DR molecules in the DR51
haplotype, the difference between residue preference at P1 and
P4, as well as a distinct basic P9 in both DRB5 molecules, has
caused the peptide repertoire of the primary and secondary
alleles in the DR51 haplotype to be complementary rather than
overlapping (see Figure 7 and Supplementary Table 3).

DRB4 Has a Limited Contribution to the
DR53 Haplotype Group Peptide Repertoire
DRB4 is associated with DRB1*04, DRB1*07 and DRB1*09 in
the DR53 haplotype group. Here, we investigated the peptide
presentation by these 4 primary and secondary HLA DR using
four different cell lines [AWELLS (9090), BER (9093), DKB
(9075) and DBB (9052)]. The motif deconvolution results in
Figure 6 indicate that DRB4 is presenting about 15% of the total
DR peptidome. That is, the primary DR molecules (DRB1*04,
DRB1*07 and DRB1*09) contribute about 5-6 times more than
FIGURE 7 | Peptide overlap within the DR51 haplotype group. HLA-DR binding for MS ligands identified within the two DR51 cell lines (Left) 9013 (HLA-
DRB1*15:01 and HLA-DRB5*01:01) and (Right) 9084 (HLA-DRB1*16:01 and HLA-DRB5*02:02) was predicted with NetMHCIIpan-4.1 using a threshold of 1% rank,
and the relative contribution from each primary and secondary HLA-DR molecule as well as their overlap were calculated.
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DRB4 to the total peptide repertoire of DR53 haplotype (see
Supplementary Table 2).

Despite the consistent contribution of DRB4*01:03 in 3 of the
cell lines, we observed a below average presentation by this allele in
the DBB (9052) cell line (2%, 53 out of a total of 2597 DR annotated
peptides). This proportion of presented peptides was comparable to
the number of peptides assigned to the trash bin (121), and hence
indistinguishable from the noise of the experiment. Using
sequence-based typing method, we noticed a null phenotype for
the DRB4*01:03 in this cell line. DRB4*01:03N is characterized by a
splice site mutation at the 3’ end of the first intron (AG > AA),
leading to a transcript that is larger than that of the common DRB4
molecule and believed to be processed into a non-functional HLA
molecule (29). Our data, which is in agreement with the typing
results, suggest that this null allele is non-functional or have
retained a very limited antigen presentation capacity.

In primary DR molecules, both DRB1*07:01 and DRB1*09:01
showed a preference for shorter peptides (14 mers), while
DRB1*04:01 and DRB4*01:03 showed the common class II
length preference for 15 amino acid peptides.

The motif for the DRB4*01:03 is distinct as it displays 5 key
anchor positions (P1, P4, P6, P7 and P9) instead of the
conventional 4 anchor positions (P1, P4, P6 and P9). P1 has
preference for Leu (L), Ile (I), Val (V), followed by Phe (F) and
Met (M). P4 favors Gln (Q) and Glu (E), and less Val (V), Ala
(A) and Leu (L). P6 accepts amino acids with hydrophobic side
chains like Leu (L), Val (V) and Ile (I). P7 which is unique to
DRB4 has strong preference for negatively charged or uncharged
polar side chains including Asp (D), Glu (E) and Asn (N) and
finally P9 that shows preference for Gly (G), Ser (S) and Ala (A).

When we compared the motif of the DRB4*01:03 with the
associated primary DR alleles (DRB1*04:01, DRB1*07:01 and
DRB1*09:01), we noticed that in all combinations the primary
DR alleles have a P1 position that favors the large aromatic
residues like Phe (F), Tyr (Y) and Trp (W) (Figure 6). DRB4-
restricted epitopes, on the other hand, tend to contain smaller
amino acids (Leu, Ile, Val) at the P1 anchor position.

This lack of similarity in the amino acid preference at P1,
which is considered a major determinant of peptide selection, in
addition to the 5th anchor position (P7) with strong preference
for acidic residues, which is absent in all other DR alleles,
explains the difference between the peptide repertoires of
primary and secondary DR alleles in DR53 haplotype. In fact,
except for DRB1*04:01 and DRB4*01:03 that share some
similarity and favor negatively charged residues at P4, the
other members of the DRB53 haplotype have little to no
similarity in their motifs which results in an extremely low
overlap between the ligandome of the DRB1*07 and DRB1*09
with the DRB4*01:03 (see Supplementary Table 3).

DRB3 Contribution to Total DR52 Peptide
Repertoire Varies Considerably
The DRB3 gene encodes 3 major alleles: DRB3*01:01,
DRB3*02:02, and DRB3*03:01 that display a strong association
with DRB1*03, DRB1*11, DRB1*12, DRB1*13 and DRB1*14 in
the DR52 haplotype family. The cell lines [VAVY (9023), BM21
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(9043), CB6B (9060), 31227 ABO (9061) and WT47 (9063)]
express frequent variants of DRB3 alleles including DRB3*01:01,
DRB3*02:02 and DRB3*03:01 in combination with DRB1*03:01,
DRB1*11:01, DRB1*13:01, DRB1*13:02 and DRB1*14:01. We
examined the peptide presentation and contribution of different
DRB3 molecules to the total DR52 peptide repertoire using above
cell lines. We observed a substantial variation in the contribution
of the DRB3 molecules to the total DR immunopeptidome
ranging from 20 to 56 percent (Supplementary Table 2). This
variation was not only seen among different DRB3 variants but
also in one variant (DRB3*02:02) in combination with different
primary DR alleles (DRB1*11:01, 13:01 & 14:01). Whether this
broad range of contribution is an inherent characteristic of this
DRB3 allele or the accompanying primary DR molecules play a
role in this, remains to be further investigated.

The overall contribution of DRB3 is more than what was
observed for DRB4 (Mean: 15.4%). In some haplotypes, where
DRB3 is co-expressed with DRB1*13:01 and DRB1*13:02 alleles,
the two DRB3 molecules (DRB3*02:02 and DRB3*03:01)
comprise between 46% and 56% of the total DR peptide
repertoire respectively, similar to what we observed with DRB5
variants (Mean: 56.8%) (Supplementary Table 2).

When comparing the length distribution of the 3 DRB3
molecules (Figure 6), we found an interesting pattern in which
the DRB3*02:02 showed the normal class II preference for 15
mers whereas a shift toward shorter peptides with a preference
for 14 mers was observed for DRB3*01:01 and DRB3*03:01.

In primary DR molecules, we observed a wider range of
deviation from the general class II length preference.
DRB1*13:01 and DRB1*13:02 showed a preference for longer
peptides (16 mers), while DRB1*03:01 and DRB1*11:01 showed
the common class II length preference for 15 mers, and
DRB1*14:01 favored shorter peptides (14 mers).

Next, we investigated in detail the binding motifs obtained for
the three DRB3 molecules included in our dataset. DRB3*01:01
motif consists of only 3 anchor positions (30). P1 in DRB3*01:01
has a preference for large, aromatic amino acids like Tyr (Y) and
Trp (W) as well as Phe (F), Leu (L) and Ile (I). At P4 position,
DRB3*01:01 shows a distinct preference for Asp (D), which is a
negatively charged amino acid. DRB1*03:01, which is in linkage
disequilibrium with DRB3*01:01 shares the very same preference
at P4. In crystallography experiments, pocket P4 has shown a
strong positively charged character and therefore the preference
for aspartic acid at P4 is consistent with suggested positive charge
of the pocket (30).

Due to the extremely small and shallow P6 pocket in the
crystal structure, P6 in DRB3*01:01 can only accommodate small
residues which has resulted in a “P1-P4-P9” binding motif (30).
P9 in DRB3*01:01, does not show a specific preference and can
accept small amino acids like Leu (L), Ile (I), Phe (F) and Val (V).

The DRB3*03:01 molecule shares a series of conserved
elements with other DR alleles but has some unique features in
the peptide binding groove. In P1, it prefers the amino acids with
a small aliphatic side chain like Leu (L), Ile (I) and Val (V). This
is different from the P1 in the DRB3*01:01, that can accept large
aromatic residues like Tyr (Y) and Trp (W) in addition to Phe
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(F), Leu (L) and Ile (I). At P4, DRB3*03:01 has a strong
preference for asparagine (N) and aspartic acid (D) which fits
in the hydrophilic pocket in the crystal structure of the molecule.
In contrast to P4, P6 does not seem to have preference for any
specific amino acid and can accept residues with small side
chains like Pro (P), Ala (A), Val (V) and Gly (G). P9 in both
DRB3*01:01 and DRB3*03:01 alleles are very similar and favor
small amino acids like Leu (L), Ile (I) and Val (V). P1 and P4
appear to be the key determinants of specific binding in
DRB3*03:01 allele (31).

The crystal structure of the DRB3*02:02 is not available (31).
Comparing the motif of this DRB3 variant with the DRB3*01:01
and DRB3*03:01 shows that this molecule shares an identical P4
with the DRB3*03:01 and displays the same amino acid
preference for P1 as DRB3*01:01. It also shares a similar
amino acid composition at P6 with DRB3*03:01. However, the
P9 in this molecule is different from both DRB3*03:01 and
DRB3*01:01 as it favors smaller residues.

Comparison of these three major HLA-DRB3 alleles suggests
that they were derived from one another by recombination
events that rearranged the four major peptide-binding pockets
at peptide positions 1, 4, 6, and 9 (31).
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When the motif of these DRB3 molecules was compared with
their associated primary DR alleles, except for DRB1*03:01 that
shares the same preference at P4 with the DRB3*01:01, the rest of
the primary DR molecules showed different preferences in P1
and P4 and all presented positively charged residues Lys (K) and
Arg (R) at P6. Therefore, except for the large overlap that is
observed between the peptide repertoire of the DRB1*03:01 and
DRB3*01:01, in the rest of the haplotypes the difference between
P1 and P4 preferences has caused the peptidome of the DRB3
and the accompanying DRB1 alleles to diverge and the overlap to
be minimal (see Supplementary Table 3).

Deconvolution of DR Ligandome From
Complex Biological Samples
Finally, to evaluate the performance of the MHCMotifDecon
method on deconvolution of the HLA-DR peptides identified
directly from scarce biological samples with complex,
heterozygous DR type, clinical specimens from patients with
cancer (Chronic lymphocytic leukemia and Lymphoma) and
autoimmune diseases (Rheumatoid Arthritis, Lyme Arthritis and
Sarcoidosis) obtained from previously published datasets were
analyzed (Figure 8) (32–35).
A B

D

C

FIGURE 8 | Contribution of the DRB3, 4 and 5 alleles vs. DRB1 in biological samples. (A) Contribution of DRB4 vs. DRB1 was calculated using biological samples
from ten patients with mantle cell lymphoma (MCL), one patient with chronic lymphocytic leukemia (CLL), three patients with rheumatoid arthritis (RA) and two
patients with Lyme disease (LA). (B) Contribution of DRB3 vs. DRB1 was calculated using samples from nine patients with mantle cell lymphoma (MCL), two patients
with chronic lymphocytic leukemia (CLL), one patient with rheumatoid arthritis (RA), four patients with Lyme disease (LA) and one patient with Sarcoidosis. (C)
Contribution of DRB5 vs. DRB1 was calculated using samples from two patients with rheumatoid arthritis (RA), two patients with Lyme disease (LA) and one patient
with Sarcoidosis. In all cases, the DRB3, 4 or 5 with the highest LD was assigned to the DRB1 before deconvolution of the DR peptidome by the MHCMotifDecon.
(D) Peptide counts, length distribution per alleles or trash cluster, and logos from deconvolution of HLA-DR peptidome of the patients after assigning DRB3, 4 and 5
to the associated DRB1 alleles. Each row represents one patient.
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Overall, while the clinical samples investigated here included a
wide variety of tissues and cell types such as lymph node biopsies,
splenectomy, synovial tissues and fluid, PBMC and
bronchoalveolar lavage cells with different antigen presentation
capacities, we observed that the contribution of the DRB3, 4 and 5
molecules in peptide presentation aligns extremely well with our
findings from homozygous B cell lines, with DRB4 showing the
lowest contribution with the least variation (Figure 8A), DRB3
presenting a large variation in agreement with our observations
from the cell lines (Figure 8B) and lastly, DRB5 that displays the
highest contribution to the accompanying DRB1 allele
(Figure 8C). It is worth mentioning that the data presented here
is the contribution of DRB3, 4 and 5 to the accompanying DRB1
only and not to the total DR immunopeptidome in each patient.
DISCUSSION

Analyzing and interpreting complex immunopeptidome data is a
highly challenging and intricate task considering the expression
of multiple HLA alleles on the cell surface and the presence of co-
immunoprecipitated contaminants. Here, we have proposed a
simple yet very powerful tool, called MHCMotifDecon, to assist
the computationally inexpert users in performing this task. The
tool takes the peptide sequences from MS immunopeptidomics
experiment(s) together with the associated full HLA typing from
one or more samples as input and performs a complete motif
deconvolution of the data assigning each peptide to its most
likely HLA restriction element while removing probable MS co-
immunoprecipitated contaminants.

Using artificial datasets constructed from peptides with
known HLA restriction, the method was demonstrated to
outperform other available motif deconvolution tools in
particular for low expression alleles such as HLA-C in case of
HLA class I, and in general across all alleles for HLA class II.

In order to illustrate the application of this tool, the
contribution of the primary and secondary DR molecules to
total DR peptidome as well as length distribution of each HLA-
DR molecule was investigated in detail in a large set of
immunopeptidome data generated for this study from a panel
of homozygous B lymphoblastoid cell lines (BLCL) selected with
an HLA-DR profile that covers the most frequent variants of the
secondary DR alleles in the haplotypes with high population
coverage. We next looked into the contribution of these
secondary DR alleles in clinical samples from autoimmune and
cancer patients with heterozygous DR HLA type. Our results
from these analyses, which are in mutual agreement, show that
the secondary DR molecules contribute to the class II DR
immunopeptidome far more than what was previously
assumed. The ligands presented by secondary DR alleles not
only expand the DRB1 peptide repertoire, they might also add an
independent function to the haplotype they contribute to (36).
Among the secondary DR molecules studied here, DRB5
demonstrated the highest contribution to the class II
ligandome. Next was DRB3, followed by DRB4 that displayed
the lowest level of peptide presentation. Interestingly, we found
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that in some haplotypes (DR51 and DR52) DRB5 and DRB3
contribute even more than the accompanying DRB1 molecule.
DRB4 was the only molecule that consistently contributed less
than the DRB1 alleles in the DR53 haplotype family. These
findings are in agreement with the previous studies performed on
a limited number of haplotypes at transcriptional and mRNA
expression level, where, for DRB3 (only DRB3*01:01 and
DRB3*02:02 included) the relative proportion of mRNA was
reported to vary from being four times lower to almost equal to
the amount of accompanying DRB1 mRNA (37). DRB5 mRNA
was found to be more abundant than the DRB1*15 (38), whereas
the level of DRB4 mRNA was as much as seven times lower than
DRB1*07 (39, 40).

While we observed a considerable degree of variation in the
contribution of DRB3 molecules to the DR52 peptidome, these
molecules contributed the most when expressed in combination
with the DRB1*13:01 and 13:02 primary DRs. HLA-DRB1*13
alleles have been shown to play a protective role against multiple
autoimmune and certain infectious diseases like HBV in HLA-
Disease association studies (41–43). It has been hypothesized that
the protective role of these DR molecules is due to more efficient
antigen presentation and promoting deletion of autoreactive T
cells during thymic selection (41). However, our results show that
the accompanying DRB3 molecule present a significant
proportion of the peptidome when co-expressed with DRB1*13
molecules suggesting that DRB3 molecules that generously add to
breadth and diversity of the peptide repertoire, may play a part in
the universal protective nature of the DRB1*13 alleles.

On the other end of the spectrum there are DRB1 alleles that
are associated with DRB4 molecules. One such allele is
DRB1*04:01 that is a risk factor for type 1 diabetes (T1D) and
rheumatoid arthritis (RA) (44). Our results, which was confirmed
by deconvoluting the DR ligandome of the clinical samples from
RA patients, indicate that DRB4 molecules, due to their limited
repertoire, do not contribute to the diversity and extent of the
haplotype total peptidome at the same level as DRB3 and DRB5.

Another important finding of this study is that the Secondary
DR peptide repertoire complements the peptidome of the DRB1
molecules and is not redundant. The complementarity or
redundancy of the peptide repertoires of the DRB3, 4 and 5
alleles has long been a source of controversy and overlap between
the peptide repertoires of the 2 DR molecules in a given
haplotype has been reported by different groups (45, 46).
However, our results demonstrate that the overlap between the
DR molecules in all the haplotypes studied here is minimal with
the only exception being the DRB1*03:01 and DRB3*01:01.
These findings are supported by differences in the motifs and
amino acid preferences in different anchor positions. Some of
these differences can be seen consistently in all haplotypes and
are not allele specific like P1 and P4 pockets that exhibit distinct
binding preferences.

The P1 pocket in the crystal structure of the HLA-DR
molecules is dimorphic and contains either glycine or valine at
position 86 of the B chain. Presence of glycine produces a larger
pocket which results in a preference for bulky hydrophobic and
aromatic residues. Substitution of glycine with valine creates a
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shallow hydrophobic pocket that is only able to accommodate
small hydrophobic amino acids (47, 48). Intriguingly we found
that in all haplotypes examined here, except for (DRB1*11:01,
DRB3*02:02), where one DR allele (either primary or secondary)
has a large P1 pocket and prefers the bulky aromatic residues like
Tyr (Y) and Trp (W), the second DR allele favors the small
aliphatic residues like Ile (I), Lue (L) and Val (V). This is in
agreement with P1 pocket role in determining allele specific
preferences for anchor residues (47) and explains how this
structural and steric hindrance at P1 pocket causes the primary
and secondary DR alleles to present diverse peptidome with
minimal overlap.

The P4 pocket is the most diverse and polymorphic pocket of
the HLA-DR binding site (27) which results in the different
residue preferences at P4 in the peptide repertoire of DR
molecules in a haplotype. This is another factor that
contributes to the presentation of distinct peptidomes by
primary and secondary DR molecules. The significance and
impact of the position 4 in creating a diverse peptidome is
even more highlighted when we appreciate the large degree of
overlap between DRB3*01:01, DRB1*03:01 which is mainly due
to sharing the identical P4 anchor residue Asp (D) for the two
molecules. It has been suggested that the P4 pocket of HLA-DR
makes an important contribution to susceptibility to different
human autoimmune diseases (27).

In addition to the distinct residue preferences at P1 and P4
that cause the peptidome of the primary and secondary DR
alleles to be different from each other in all haplotypes, there are
other distinguishing features that are unique to certain
haplotypes. For example, in the DR53 haplotype, the additional
anchor position (P7) in DRB4*01:03, imposes very different
peptide binding requirements between the primary and
secondary DR molecules explaining why DRB4 displays the
least number of overlapping peptides with the accompanying
DR7 and DR9 molecules.

In the end, the non-redundant and complementary nature of
the secondary DR peptidomes is not unexpected as throughout the
evolution different types of HLA have been developed by
recombination events, to add diversity to the immune system
and better defend the body against external pathogens. Our data
indicate that the secondary DR peptide repertoire in all haplotypes
expands the peptidome of the DRB1 molecules (26, 49). More
importantly these peptides similar to their accompanying DRB1
presented peptides can activate autoreactive CD4+ T cells and
provoke an autoimmune response which has been demonstrated
by multiple studies where the DRB3, 4 and 5 restricted T cells are
detected in measurable amount in patients with infectious and
autoimmune diseases (49, 50).

In summary, given the extent of contribution of the secondary
DR alleles, their complementary and non-redundant nature, in
addition to their ability to successfully provoke a T cell response
reveal the significance of these molecules and strongly suggest
that they should be regarded as functionally independent alleles
in future studies of autoimmune and infectious diseases.

The proposed MHCMotifDecon tool is supervised and
performs the motif deconvolution using predicted HLA
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restrictions. While this, as demonstrated here, provides a
highly powerful and successful approach for motif
deconvolution and handling of complex MS peptidomics
datasets, one should bear in mind that these successes are
contingent on accurate binding prediction power being
available for the MHC molecules in question. Also, one should
note that the tool makes unambiguous assignment of HLA
restrictions, hence failing to report multi-allele binding of
promiscuous peptides.

With these cautions in mind, in conclusion, we have proposed
a novel and powerful tool allowing computationally novice users
to analyze and interpret complex immunopeptidome datasets,
enabling accuracy assessment, motif deconvolution and HLA
restriction assignment, estimation of relative allele contribution,
and length profile investigations. The tool was demonstrated to
achieve state-of-the-art performance and illustrated to enable
novel biological discoveries. Given its ease of use, we expect the
tool to be highly valuable for the scientific community facilitating
better use and understanding of immunopeptidome data.
MATERIALS AND METHODS

MHCMotifDecon Method
Input peptides are first filtered by length range (determined by
the user) with default lengths (8–14) for MHC class I and (13–
21) for MHC class II. All the remaining unique peptides are then
predicted for MHC presentation towards all the MHC alleles
expressed in the given cell line using NetMHCpan4.1 (16) or
NetMHCIIpan (a retrained version for this paper). NetMHCpan
and NetMHCIIpan methods can make a prediction for all MHC
molecules with known protein sequence. A key prediction value
from the two methods is the percentile rank score for the
likelihood of a peptide being presented by a given MHC
molecule. This score reflects the likelihood of a random natural
peptide obtaining a prediction score equal to or higher than the
score for the given peptide. This score hence ranges from 0-
100%, where 0 corresponds to the strongest possible score
exceeding the score for all random natural peptides. For MHC
class I, a percentile rank value of 2% or lower is considered a
binder, and for class II the corresponding value is 5% (16).
Likewise, earlier work has shown that peptides with a percentile
rank score > 20% are MS co-immunoprecipitated contaminants
(25). Given this, by default all the peptides with a higher rank
score of 20% to all the proposed alleles are considered as a non-
binder or contaminant, and therefore assigned to the trash
cluster. Optionally, threshold can also be tuned by the user to
be more or less stringent.

The graphical output of the tool provides: sequence motif
logos for all the present alleles with a minimum of 10 (default
value) peptides assigned to it, the length distribution for all the
alleles and the trash cluster, and a bar-plot with peptide counts
assigned to each of the clusters. In addition, a correlation matrix
can be plotted when analyzing several samples with the same
HLA alleles on the same run, to check for consistency. The
correlation matrices are then calculated by stacking all the amino
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acid frequencies for all the core positions in a vector of 20*9 and
obtaining a Pearson correlation coefficient (PCC) among the
method information and the sample data. Additional text
datafiles provided in the output can be downloaded after the
analysis and include the raw and rank scores for each peptide-
allele combination, and the 9-mer core peptide sequence. Further
details about the use of the tool is available at the instruction tab
at the web-server.

Retrain of NetMHCIIpan
NetMHCIIpan was specifically retrained for this publication
(updated version called NetMHCIIpan-4.1) excluding all single
allele data from DRB1*04:03, DRB1*08:03, DRB3*02:02 and
DRB5*01:02 alleles. Single allele data for those alleles were left out
to be used for the independent benchmark of MHCMotifDecon.
Compared to NetMHCIIpan-4.0, additional single allele datasets
from Abelin et al. publication were included (7), and the binding
affinity data were re-curated to include updated data for DQ4. The
data used to retrain this method is available at https://services.
healthtech.dtu.dk/suppl/immunology/NetMHCIIpan-4.1. Apart
from the modified data, the method is identical to the previously
published version of NetMHCIIpan 4.0 (16). A performance
comparison of NetMHCIIpan-4.1 and 4.0 is included in
Supplementary Figure 1 demonstrating a significantly improved
performance of version 4.1. NetMHCIIpan-4.1 is available at
https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.1.

Benchmark Datasets
Artificial MS MHC class I eluted ligand dataset. Peptides of
length 8-14 amino acids were collected from the Abelin et al.
publication (5). Peptides sharing an 8mer or longer overlap with
the NetMHCpan-4.1 training data were excluded. A random
subset of 1000 peptides were sampled from the HLA-A*02:02,
HLA-A*11:02, HLA-B*13:02 and HLA-B*49:01 single allele
datasets, and 200 peptides were sampled from HLA-C*07:02,
and HLA-C*14:03 datasets.

Artificial MS MHC class II eluted ligand dataset. Peptides with
single allele associations for MHC class II were retrieved from
MassIVE, MSV000083991 (7). Eluted ligands from cell lines
expressing only one of the alleles DRB1*04:03, DRB1*08:03,
DRB3*02:02 and DRB5*01:02 were used to generate the
artificial dataset for class II. The four single allele datasets were
excluded from NetMHCIIpan retraining performed for this
paper, to avoid overlapping peptides present on the test and
the train set. Additionally, peptides that shared a stretch of 9
amino acids with the dataset used for training NetMHCIIpan
were excluded. Finally, for each of the alleles mentioned before,
800 unique peptides of length 13-21 were combined to generate
the artificial dataset for MHC-II.

Deconvolution of Immunopeptidome Data
MHCMotifDecon was used with the default parameters for class I
artificial dataset (Length range = 8-14; Class = I; Threshold for
trash cluster = 20) and for class II artificial dataset (Length range =
13-21; Class = II; Threshold for trash cluster = 20). For the in-
house MHC class II datasets, the length range was expanded to 12-
21 to further analyze length specificities.
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GibbsCluster deconvolution for MHC class I artificial dataset
was performed using default parameters as described earlier (8),
and including 1-6 clusters, motif length 9 amino acids, using
“trash cluster” with a threshold=2, performing single sequence
moves at every iteration, max length deletions = 5, max length
insertions=1, number of seeds for initial starting conditions=5,
Number of iterations x sequence x temperature step = 50.

The deconvolution softwares MixMHCp and MoDec were
downloaded from the GitHub repositories (https://github.com/
GfellerLab/MixMHCp and https://github.com/GfellerLab/
MoDec) and run with default parameters for class I and class
II (10, 18).

As MHCMotifDecon by construction will identify clusters
equal to the number of HLA alleles defined in the sample, the
number of clusters for the deconvolution of the artificial
immunopeptidome datasets was set to six for MHC class I and
four for MHC class II for MixMHCp and GibbsCluster methods
included in the comparison. Also, as MixMHCp and GibbsCluster
only perform motif clustering and do not assign HLA allele to the
identified clusters, the HLA assignment for these methods was
performed by visual inspection in unambiguous cases and by
performance optimization in ambiguous cases.

Scrambled Dataset Generation
All MS peptide data from eleven cell lines in the in-house MHC
class II datasets were merged (N=49,550). Each peptide sequence
was scrambled 100 times and predicted with NetMHCIIpan-4.1
for all the alleles expressed by the cell line presenting the original
peptide sequence. For each peptide-scramble combination the best
(lowest) rank score was selected. A random sample of the
scrambled peptide data was used to match the counts of the
original dataset following the same length distribution.

Performance Metrics and
Statistical Significance
A Matthews coefficient correlation (MCC) was calculated for
each prediction method and allele, from the confusion matrix
constructed from the complete motif deconvolution matrix (like
the ones shown in Figure 3) assigning the true positive count
(TP) as the number of peptide sequences from the Allele_X
dataset assigned to Cluster_X, the false positives count (FP) to
the number of peptides assigned to Cluster_X but belonging to
any of the remaining alleles in the sample and excluding the trash
cluster. Finally, the false negative (FN) count was assigned as the
number of peptides from the Allele_X dataset assigned to any of
the remaining Clusters, and the true negative (TN) count as the
number of peptides that were correctly predicted as non-binders
to Allele_X. For GibbsCluster, MixMHCp and MoDec that do
not provide an allele association, the cluster with the majority of
peptides assigned to that allele was used. In cases where the
majority of peptides on that cluster were assigned to a previously
assigned allele (example Cluster 3 in Figure 3A) the cluster was
assigned to the remaining and non-assigned allele (DRB5*01:01
allele in the previous example). After all allele-specific MCC were
calculated, the median was used to compareMCCs across methods.

Bootstrapping samples of N=100 with repetitions were used
to add statistical significance to the random associations.
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Sequence Logo Motifs
All the logos in this publication were constructed from the 9-mer
cores provided by each deconvolution algorithm and using
Seq2Logo without clustering and using P-weighted Kulblack-
Leibler option (23). Additionally, MHCMotifDecon web server
provides sequence logos of the deconvoluted motifs using the
same software with default options.

Deconvolution of the DR Ligandome From
Biological Samples
To evaluate the ability of the MHCMotifDecon tool to deconvolute
the DR peptidome from complex and heterozygous biological
samples, we analyzed its performance on twenty seven samples
from four previously published datasets, profiling the class II
peptidome of cancer and autoimmune diseases. From these
datasets, twelve patients with mantle cell lymphoma (MCL) (34),
three patients with chronic lymphocytic leukemia (CLL) (33), five
patients with rheumatoid arthritis (RA), six patients with Lyme
disease (LA) (32), and one patient with sarcoidosis (35) were
included in our analysis. DR peptides had been identified from
clinical samples such as lymph node biopsies, splenectomy, synovial
tissue, synovial fluid, PBMC and bronchoalveolar lavage (BAL) cells.

The DR peptidome for each sample along with the class II HLA
type of the patient were obtained from each dataset. Since no
DRB3, 4 or 5 typing had been reported, the most common
secondary DRB allele with the highest LD with the reported
DRB1, was assigned to each sample. Finally, the DR peptidome
of each sample together with the full HLA-DR type (DRB1, 3, 4 and
5) was submitted toMHCMotifDecon using the default parameters
for class II (Length range = 12-21; Class = II; Threshold for trash
cluster = 20) and the contribution of the DRB3, 4 and 5 molecules
to the accompanying DRB1 allele was determined.

Cell Lines and Antibody
Homozygous B lymphoblastoid cell lines (BLCL) were obtained
from the International Histocompatibility Working Group
(IHWG) Cell and DNA bank housed at the Fred Hutchinson
Cancer Research Center, Seattle, WA (http://www.ihwg.org). A
group of 11 cell lines expressing the high frequency DRB3, DRB4
and DRB5 molecules along with the DRB1 alleles were selected
for the study (Supplementary Table 1). To guarantee intact
Class II processing and presentation machinery and to ensure
that the total HLA-DR expression and the ratio of the primary
and secondary DR alleles represent the physiological level use of
engineered cells was avoided.

The cells were grown in high density cultures in roller bottles
in complete RPMI medium (Gibco) supplemented with 15% fetal
bovine serum (FBS; Gibco/Invitrogen Corp) and 1% 100 mM
sodium pyruvate (Gibco). Cells maintained >90% viability at all
times during the culture and were harvested from the suspension
when the cell density reached to 1.5 -2.5e6 cells/ml. The cells
were washed twice with ice cold PBS and spun down at 2500xg at
4C for 10 minutes. The cell pellets were snap frozen in LN2 and
stored at -80 until downstream processing.

All cell lines were subjected to high-resolution sequence-
based HLA typing (HLA-A, -B, -C, DRB1,3, 4, 5, DP and DQ)
Frontiers in Immunology | www.frontiersin.org 14
immediately upon receipt and growth in our laboratory, for
authentication prior to large scale culture and data collection.

The anti-human HLA-DR antibody (clone L243) was used for
extraction of total HLA DR from the BLCLs. The L243
monoclonal antibody reacts with the HLA-DR antigen and
does not cross react with HLA-DP and HLA-DQ. Clone L243
binds a conformational epitope on HLA-DRa which depends on
the correct folding of the ab heterodimer and therefore can be
used to purify different DR molecules regardless of the
DRB chain.

Isolation and Purification of HLA- DR
Bound Peptides
HLA-DR molecules were purified from homozygous cell lines by
affinity chromatography using the mAb L243 (American Type
Culture Collection, Manassas, VA) coupled to CNBr-activated
Sepharose 4 Fast Flow (Amersham Pharmacia Biotech, Orsay,
France) as described previously with some modifications (51).
Briefly, frozen cell pellets were pulverized using Retsch Mixer
Mill MM400, resuspended in lysis buffer comprised of Tris pH
8.0 (50 mM), octylphenoxy poly (ethyleneoxy) ethanol (Igepal,
0.5%), NaCl (150 mM) and complete protease inhibitor cocktail
(Roche, Mannheim, Germany). Lysates were centrifuged at
200,000 xg for 90 min in an Optima XPN-80 ultracentrifuge
(Beckman Coulter, IN, USA) and filtered supernatants were
loaded on immunoaffinity columns. After a minimum of 3
passages, columns were washed sequentially with a series of
wash buffers (51) and were eluted with 0.2 N acetic acid. The
HLA was denatured, and the peptides were isolated by adding
glacial acetic acid (up to 10%) and heat. The mixture of Peptides
and HLA-DR was subjected to reverse phase high performance
liquid chromatography (RP-HPLC).

Fractionation of the HLA/Peptide Mixture
by RP-HPLC
Reverse-phase high performance liquid chromatography (RP-
HPLC) was used to reduce the complexity of the peptide
mixture eluted from the affinity column. First, the eluate was
dried under vacuum using a CentriVap concentrator (Labconco,
Kansas City, Missouri, USA). The solid residue was dissolved in
10% acetic acid in water and fractionated over a 150-mm long
Gemini C18 column, pore size 110 Å, particle size 5m
(Phenomenex, Torrance, California, USA) using a Paradigm
MG4 instrument (Michrom BioResources, Auburn, California,
USA). An acetonitrile (ACN) gradient was run at pH 2 using a
two-solvent system. Solvent A contained 2% ACN in water, and
solvent B contained 5% water in ACN. Both solvent A and Solvent
B contained 0.1% trifluoroacetic acid (TFA). The column was pre-
equilibrated at 2% solvent B. The sample was loaded on the
column in a period of 18 minutes using a solvent system
comprised of 2% solvent B at a flow rate of 120 µl/min. Then
two linear gradients were run at 160 µl/min flow rate: 4% to 40%
Solvent B for 40 min, followed by 40% to 80% Solvent B for 8 min.

The percentage of Solvent B was maintained at 80% for 4 min,
and then decreased to 2% over a period of 3 min. Fractions were
collected in 2 min intervals using a Gilson FC 203B fraction
January 2022 | Volume 13 | Article 835454

http://www.ihwg.org
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kaabinejadian et al. Accurate Motif Deconvolution of DR Peptidome
collector (Gilson, Middleton, Wisconsin, USA), and the ultra-
violet (UV) absorption profile of the eluate was recorded at 215
nm wavelength.

Nano LC-MS/MS Analysis
Peptide-containing HPLC fractions were dried, resuspended in
an aqueous solvent composed of 10% acetic acid, 2% ACN and
iRT peptides (Biognosys, Schlieren, Switzerland) as internal
standards. Fractions were applied individually to an Eksigent
nanoLC 415 nanoscale RP-HPLC (AB Sciex, Framingham,
Massachusetts, USA), including a 5-mm long, 350 µm internal
diameter Chrom XP C18 trap column with 3-µm particles and
120Å pores, and a 15-cm-long ChromXP C18 separation column
(75-µm internal diameter) packed with the same medium (AB
Sciex, Framingham, Massachusetts, USA). An ACN gradient was
run at pH 2.5 using a two-solvent system. Solvent A was 0.1%
formic acid in water, and solvent B was 0.1% formic acid in 95%
ACN in water. The column was pre-equilibrated at 2% solvent
B. Samples were loaded at 5 mL/min flow rate onto the
trap column and run through the separation column at 300
nL/min with two linear gradients: 10% to 40% B for 70 minutes,
followed by 40% to 80% B for 7 minutes. The column effluent
was next injected using the nanospray III ion source of an AB
Sciex TripleTOF 5600 quadrupole time-of-flight mass
spectrometer (AB Sciex, Framingham, MA, USA) with the
source voltage set to 2,400 v. Information-dependent analysis
(IDA) of peptide ions was acquired based on a survey scan in the
TOF-MS positive-ion mode over a range of 300 to 1,250 m/z for
0.25 seconds. Following each survey scan, up to 22 ions with a
charge state of 2 to 5 and intensity of at least 200 counts per
second were subjected to collision-induced dissociation (CID)
for tandem MS analysis (MS/MS) over a maximum period of 3.3
seconds. Selection of a particular ion m/z was excluded for 30
seconds after three initial MS/MS experiments. Dynamic
collision energy was utilized to automatically adjust the
collision voltage based upon ion size and charge. PeakView
Software version 1.2.0.3 (AB Sciex, Framingham, MA, USA)
was used for data visualization.

Data Analysis
Peptide sequences were identified using PEAKS Studio 10.5
software (Bioinformatics Solutions, Waterloo, Canada) at a
precursor mass error tolerance of 30 ppm and a fragment mass
error tolerance of 0.02 Da. A database composed of SwissProt
Homo sapiens (taxon identifier 9606) and iRT peptide sequences
was used as the reference for database search. Variable post-
translational modifications (PTM) including acetylation,
deamination, pyroglutamate formation, oxidation, sodium
adducts, phosphorylation, and cysteinylation were included
in database search. Identified peptides were further filtered at a
false discovery rate (FDR) of 1% using PEAKS decoy-
fusion algorithm.

Peptide Repertoire Overlap Analysis
To determine the degree of overlap between the peptide
repertoire of the primary and secondary DR molecule in each
Frontiers in Immunology | www.frontiersin.org 15
haplotype, the total DR peptide repertoire of each cell line was
submitted to NetMHCIIpan-4.1 and the predicted binding to the
primary and secondary molecule was calculated. Peptide
binders were defined using an EL rank threshold of 1%,
peptides that showed binding to both molecules were
considered overlapping. Note, that this analysis was performed
using a different predicted binding threshold (1%) compared to
that used by MHCMotifDecon (20%). This is because the latter
analysis was performed to exclude the co-purified contaminants,
while the former was done to compare the overlap between
highly reliable peptide repertoires. Therefore, the reported
relative repertoire sizes of the primary and secondary DR
molecule can be slightly different between the two analyses.
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