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Immunotherapies blocking negative immune checkpoints are now approved for the
treatment of a growing number of cancers. However, even in metastatic melanoma,
where sustained responses are observed, a significant number of patients still do not
respond or display resistance. Increasing evidence indicates that non-genetic cancer cell-
intrinsic alterations play a key role in resistance to therapies and immune evasion. Cancer
cell plasticity, mainly associated with the epithelial-to-mesenchymal transition in
carcinoma, relies on transcriptional, epigenetic or translational reprogramming. In
melanoma, an EMT-like dedifferentiation process is characterized by the acquisition of
invasive or neural crest stem cell-like features. Herein, we discuss recent findings on the
specific roles of phenotypic reprogramming of melanoma cells in driving immune evasion
and resistance to immunotherapies. The mechanisms by which dedifferentiated
melanoma cells escape T cell lysis, mediate T cell exclusion or remodel the immune
microenvironment will be detailed. The expanded knowledge on tumor cell plasticity in
melanoma should contribute to the development of novel therapeutic combination
strategies to further improve outcomes in this deadly metastatic cancer.
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INTRODUCTION

Immunotherapies blocking negative immune checkpoints were first approved for the treatment of
metastatic melanoma and are now widely used for the treatment of a growing number of cancers,
albeit with variable efficacy (1). Despite spectacular efficacy of immune checkpoint blockade (ICB)
(anti-CTLA-4 and anti-PD-1 antibodies) in a subset of metastatic melanoma patients (2), primary
(i.e. at the onset of treatment) or acquired resistance (i.e. after initial response) still occurs in 60% of
patients (3).

The mechanisms of resistance to immunotherapies targeting inhibitory immune checkpoints,
include both host extrinsic and intrinsic factors, the mechanisms of which are becoming
increasingly clear (4). Predictive features of response by the tumor immune microenvironment
have gained notoriety (5), particularly CD8+ T cell infiltration (6–8) and the presence of tertiary
lymphoid structures (9–11), emerging as promising factors of response. Conversely, the presence of
regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), M2 macrophages, and other
org March 2022 | Volume 13 | Article 8731161
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inhibitory immune checkpoints, contribute to inhibiting anti-
tumor immune responses (3, 12–14). However, the emergence of
additional tumor parameters has improved our predictive
capacity. Indeed, tumor cell-intrinsic alterations have been
associated with resistance to immunotherapy in melanoma.
Namely, JAK1/2 mutations were associated with decreased
Interferon-g (IFN-g) sensitivity of melanoma cells (15), and
mutations in the gene encoding beta-2-microglobulin (B2M) to
loss of surface expression of MHC-I and decreased antigen
presentation (16). Oncogenic alterations of melanoma cells,
including activation of the WNT-b-catenin (17, 18), MAPK
(19), CDK4-CDK6 (20) pathways, or loss of PTEN expression
(21–23) have also been associated with T cell exclusion and
immune resistance in mouse models and human melanoma
samples. Altogether, these tumor-intrinsic genetic alterations
define the tumor mutational burden (TMB), the value of which
to predict response to ICB was confirmed recently in a pan-
cancer meta-analysis of over 1,000 patients, including 5
melanoma datasets (24).

However, growing evidence suggests the contribution of tumor
cell-intrinsic non-genetic mechanisms, akin to the epithelial-to-
mesenchymal transition (EMT), in the acquisition of resistance to
immunotherapy in melanoma (25–29). EMT is an embryonic
reversible cell plasticity process, by which an epithelial cell loses its
polarity and adhesion to other cells, while gaining motility and
mesenchymal features (30). EMT is required during the
delamination of the embryonic neural crest, from which
melanoblasts, the progenitors of melanocytes, originate (31, 32).
This process is driven by intense transcriptional, epigenetic and
translational reprogramming, involving EMT-associated
transcription factors (EMT-TFs) (33, 34). Aberrant reactivation
of EMT has been thoroughly characterized in carcinomas, as a
multi-step dedifferentiation process driving metastasis, drug
resistance and disease recurrence (35, 36). More recently,
emerging evidence showed that this process is not limited to
epithelial cancers, since EMT-like transitions have been described
in non-epithelial malignancies, such as glioblastoma and
neuroblastoma (37–40). The term of phenotype switching is
therefore used to refer to EMT-resembling plasticity in non-
epithelial cancers.

Aberrant activation of EMT factors is increasingly reported to
contribute to immune evasion in various carcinoma models (41–
44). In contrast, their contribution in the context of melanoma
has been poorly studied, while they display cell-type specific roles
in this neural crest-derived cancer (45, 46). In this review, we will
focus on the impact of non-genetic mechanisms related to
melanoma cell phenotype switching during immune escape
and resistance to immunotherapies. After a brief overview
of EMT-like transcriptional, epigenetic and translational
mechanisms, we will review recent data highlighting how
melanoma cell plasticity may impact anti-tumor immunity,
including the loss of melanocytic antigens and other cell
autonomous mechanisms that enable melanoma cells to evade
cytotoxic CD8+ T cell lysis. In addition, we will discuss how
melanoma cell dedifferentiation can reprogram the immune
tumor microenvironment, mainly through the secretion of
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inflammatory cytokines and chemokines. Metabolic rewiring of
melanoma cells, which also plays a major role in their
interactions with the tumor microenvironment [already
reviewed in Avagliano et al. (47)] will not be addressed. A
better understanding of the mechanisms by which phenotypic
adaptations of melanoma cells contribute to the acquisition of
resistance to immunotherapies, will provide the basis for the
development of new combination therapies.
EMT-LIKE PHENOTYPE SWITCHING
IN MELANOMA

Melanoma cells undergo reversible phenotype switching between
a proliferative/differentiated phenotype and an invasive/stem-
like state. Microphtalmia-associated transcription factor (MITF),
the master regulator of melanocytic differentiation (48) was
described as the major driver of phenotype switching. Indeed,
decreased MITF expression promotes the transition towards a
more invasive state, with stem-like features (49–51). Up-
regulated expression of the AXL receptor tyrosine kinase, led
to the definition of the MITFlow/AXLhigh phenotype (52). Recent
analyses of tumor heterogeneity at the single cell level (20, 53, 54)
further refined this phenotype switching model, with the
description of intermediate states, including a neural crest stem
cell-like (NCSC) phenotype [reviewed in (55, 56)]. The
deciphering of the transcriptional and epigenetic mechanisms
regulating these transitions is ongoing (57, 58). Indeed, analyses
of the H3K27 acetylation pattern highlighted a major role for
MITF and SOX10 transcription factors in the regulation of
melanocytic enhancers, and AP-1 was described as the major
regulator of mesenchymal-like state enhancers (59, 60).

Strikingly, EMT-TFs were shown to participate in the
regulation of melanoma cell plasticity, with a specific
expression pattern compared to that of carcinoma (61)
[reviewed in (45)]. Our team demonstrated that ZEB2 and
SNAIL2 are highly expressed in MITFhigh proliferative
melanoma cells, whereas decreased expression of ZEB2 and
SNAIL2 and aberrant activation of ZEB1 and TWIST1
promoted phenotype switching towards an invasive,
dedifferentiated and MITFlow phenotype (46). Notably, ZEB1
increases the expression of NCSC markers, such as NGFR (62), a
major regulator of phenotype switching in melanoma (63).

Dynamic transcriptional regulation of EMT-TFs (ZEB1,
TWIST1, SNAIL) and genes associated with invasive phenotypes
(SOX9, POU3F2) is achieved through a bivalent promoter
configuration, displaying both permissive H3K4me and
repressive H3K27me histone marks; this “poised” state enables
rapid induction of gene expression (64). In this context, the
histone methyltransferase EZH2, the effector subunit of the
PRC2 polycomb complex, was shown to promote EMT-like
melanoma cell plasticity (65). An additional level of regulation
of phenotype switching is provided at the translational level
through the eIF4E/F translation initiation complex (66, 67).
Dysregulated mRNA translation by aberrant activation of the
March 2022 | Volume 13 | Article 873116
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MNK1/2-eIF4E axis plays a critical role in progression to an
invasive state (68). Phosphorylation of eIF4E selectively increases
the translation of a subset of mRNAs encoding proteins including
NGFR or SNAIL (69). In addition, micro-environmental cues
were shown to induce phenotype switching in melanoma cells in
vitro, such as TNFa (25), TGF-b (70) and hypoxia (71), all known
inducers of EMT in carcinoma models (30, 35).

Overall, our understanding of the EMT-like phenotype
switching in melanoma has improved over the last decade,
supporting its role in sustaining intra-tumoral heterogeneity
[reviewed in (72, 73)]. Concomitantly, several studies gathered
evidence for the role of melanoma cell-intrinsic plasticity in the
resistance to BRAFV600E targeted therapy (53, 57, 59, 62, 74), and
reprogramming towards a NCSC phenotype was proposed as an
adaptive response to targeted therapy [reviewed in (75)]. Emerging
evidence sustaining the role of melanoma cell phenotype switching
in immune resistance will be detailed below.
DECREASE IN TUMOR
CELL IMMUNOGENICITY

Loss of Melanoma Differentiation Antigens
Since the emergence of immunotherapy, considerable attention
was given to the expression of melanoma differentiation antigens
(MDAs) and their role in eliciting anti-tumor immunity. These
tumor-associated antigens (TAAs), including but not limited to
Melan-A/MART-1, gp100, TRP1/2 and tyrosinase, are mainly
expressed by melanocytic lineage cells under the control of MITF
(76). Expression of these melanoma antigens is known to vary
greatly between individuals, and at inter- and intra-tumoral
levels in the same patient (77), although this does not seem to
be attributable to direct genetic alterations or defects in antigen
processing (78). Several studies confirmed the immunogenicity
of these TAAs, demonstrating that their targeting by the immune
system induced tumor shrinkage in mice and melanoma patients
(79–82). A more recent study confirmed the role of these TAAs
in the response to PD-1 blockade therapy in melanoma (83).
This work by Riaz and colleagues showed that MDA-expressing
cell populations are depleted in biopsies of ICB-responding
patients after treatment. Intra-tumor T cell receptor (TCR)
sequencing revealed a clonal expansion of T cells, consistent
with a tumor antigen-specific immune response in ICB-
responding patients (83).

In their pioneering study, the team of T. Tüting demonstrated
in murine models that melanoma tumor cells resisting
immunotherapy, based on CD8+ T lymphocytes adoptive cell
transfer (ACT), undergo a dedifferentiation process, coordinating
the loss of melanoma differentiation markers and the gain of the
neural crest marker NGFR (25). Interestingly, the treatment of
human melanoma cells with TNFa alone recapitulated the
phenotype switch observed in their in vivo model. A similar
inflammation-induced dedifferentiation was recently reported in
human samples, in a longitudinal study documenting the follow-
up of a metastatic melanoma patient treated with MART-1-
targeting cytotoxic T-lymphocyte ACT (28). The analysis of
Frontiers in Immunology | www.frontiersin.org 3
tumor biopsies collected before and on-treatment showed a
decrease in MDA expression after treatment, with an
enrichment of NGFR-expressing tumor cells in lesions collected
during tumor progression. The authors suggested that in
regressing lesions, the decrease in differentiation antigens may
be due to their targeting by T cells, whereas the loss of MDA in
progressing lesions would occur through dedifferentiation in
response to immune pressure. Moreover, the authors
demonstrated that conditioned medium from engineered T cells
is sufficient to decrease the expression of MDA and stimulate
NGFR expression in human melanoma cells. In vitro, melanoma
cells resistant to MART-1-specific T cells lack the expression of
MDA, and display an enrichment of the neural crest-like and
undifferentiated melanoma transcriptomic signatures defined by
Tsoi and colleagues (57, 84).

Our team previously reported that ZEB1 expression in
melanoma cells induced the repression of MITF, and was
associated with a significant decrease in differentiation antigens
including MLANA, tyrosinase and MC1R, while simultaneously
enhancing NGFR expression (46, 62), highlighting the mutually
exclusive expression of EMT-TFs and MDA. Others found that
EZH2 epigenetically silenced MDA expression under TNFa
st imulation, while inducing ZEB1 (65). Preventing
phosphorylation of eIF4E in BRAFV600; PTEN KO transgenic
mouse models also results in the increased expression of MART-
1 and gp100 by tumor cells and their recognition and eradication
by CD8+ T cells (68). Phospho-eIF4E was also negatively
correlated with the expression of MART-1 in patient samples.

Overall, melanoma cells often harbor TAAs, which can
efficiently be targeted by cytotoxic T cells. The loss of these
highly immunogenic differentiation antigens appears to be a
non-genetic tumor cell-intrinsic immune escape mechanism
consistently found in experimental settings (25, 84), as well as
in patients (28), in response to immunotherapy (Figure 1A).
However, the recognition of dedifferentiated melanoma cells by
T cells specific for nonmelanocytic antigens remained unaffected
(25), indicating that these cells may still be killed through other
cancer-associated antigens such as cancer testis antigens (CTA),
including NY-ESO1, or neoantigens, originating from the
degradation of cancer-specific mutated proteins (85).

Loss of MHC Class I
Melanoma cell dedifferentiation has also been associated with
alterations of antigen presentation, in particular in major
histocompatibility (MHC) class I expression. MHC class I
molecules are necessary for the recognition of TAAs by CD8+

T lymphocytes and can be induced by IFN-g signaling. EMT has
been associated with down-regulation of MHC class I in
carcinoma models (41). A recent study conducted in the lab of
A. Ribas found that the induction of the antigen presentation
machinery in on-therapy melanoma biopsies was predictive of
clinical response to ICB (86). Similar results were obtained in
other cohorts, showing that lack of MHC class I expression is
correlated with worse prognosis under ICB therapy (87). In this
latter work, 43% of the cases harbored a complete loss of MHC
class I expression, without any causal genetic event found.
Evidence suggests a transcriptional regulation of the antigen
March 2022 | Volume 13 | Article 873116
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presentation machinery, as genetic alterations in antigen
presentation (B2M, HLA-A) and IFNg signaling (IFNGR,
STAT1 and JAK1/2) (16, 88) remain infrequent in melanomas
and are not restricted to non-responding patients (89).

Combined RNA-sequencing and flow cytometry analyses of
patient biopsies under anti-PD-1 treatment recently highlighted
the negative correlation between MHC class I expression and
Frontiers in Immunology | www.frontiersin.org 4
melanoma cell dedifferentiation (89). In particular,
transcriptomic analyses underlined a correlation between
HLA-A (MHC class I) downregulat ion and SNAIL
upregulation, a well-known EMT-TF. Patients categorized as
HLA-Alow showed a dedifferentiated profile, with a MITFlow/
AXLhigh phenotype, including downregulation of SOX10-
regulated genes, TYR, and MLANA transcripts. The authors
FIGURE 1 | Major mechanisms by which melanoma cell-intrinsic pathways impact the crosstalk with the immune tumor-microenvironment. Melanoma cell-intrinsic
pathways can mediate immune escape through transcriptional (TFs, transcription factors), epigenetic (Epig reg, epigenetic regulators) and translational mechanisms.
(A) Loss of immunogenicity. Dedifferentiated melanoma cells express lower levels of melanoma differentiation antigens, such as TYR, gp100 and MART-1. Increased
ZEB1 expression transcriptionally represses the expression of such markers. Immunogenicity is further decreased by transcriptional repression of the antigen
presentation machinery (TAP1/2, PSMB8/9, MHC-I) by EZH2, and the transcriptional silencing of retroelements by SETDB1 and KDM5B. (B) Resistance to lysis.
Increased PD-L1 expression allows dedifferentiated melanoma cells to inhibit the cytotoxic action of CD8+ T cells. Evidence suggests that PD-L1 expression is
regulated both at transcriptional (DNA methylation) and at translational levels (CMTM6/eIF4E). Moreover, NGFR/BDNF and SOX2 render dedifferentiated melanoma
cells inherently resistant to T cell-induced lysis, although the mechanisms remain unclear. Finally, epigenetic silencing of IFNg-response genes, by aberrant DNA
methylation (decreased TET2, upregulated DNMT3A) and chromatin remodeling (ARID2B, PBRM1), promotes the insensitivity to T cell-induced extracellular queues.
(C) T cell exclusion/dysfunction. Phenotype switching impacts the recruitment of effector T cells, via reducing the production of chemoattracting chemokines. In
particular, ZEB1 has been shown to transcriptionally impair the expression of CXCL10, preventing CD8+ T cell infiltration. Other epigenetic actors, such as ARID2
and PBRM1 were found to mediate a similar effect. Additionally, NGFRhigh melanoma cells are associated with poor TILs infiltrate. (D) Immunosuppressive
microenvironment. Dedifferentiated melanoma cells have been shown to induce an immunosuppressive and pro-tumoral immune microenvironment. Namely, the
MNK1/2-eIF4E axis was shown to increase the translation of CCL2 and CCL5, which attract myeloid-derived suppressor cells (MDSC) and M2 macrophages.
Additionally, the EMT-TF SNAIL stimulates the transcription of immunomodulating cytokines such as TSP1 and TGF-b, resulting in an increased infiltration of
regulatory T cells.
March 2022 | Volume 13 | Article 873116
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further demonstrated that MHC class I downregulation was
recapitulated upon phenotype switching induced by TGF-b
treatment in vi tro . Interest ingly , th is coupl ing of
dedifferentiation and MHC class I repression was observed in
31% of the immunotherapy-resistant patients in this cohort,
corroborating the frequency observed by Rodig et al. (87).

The epigenetic regulator EZH2, was recently shown to
coordinate melanoma cell dedifferentiation (associated with a
gain in ZEB1 and NGFR) (65) with downregulation of MHC
class I (HLA-A/B/C) and antigen presentation machinery (i.e.
antigen processing genes TAP1/2 and immunoproteasome
subunits PSMB8/9) (90). EZH2 is induced in response to
immunotherapy (IL-2 or anti-CTLA-4) in tumors developed
upon grafting of B16F10 or NrasQ61K Ink4a-/- melanoma cells.
Moreover, by using a chemical EZH2 inhibitor, the authors
demonstrated that targeting EZH2 could synergize with
immunotherapy in their murine models (90, 91). Other recent
findings suggest that EZH2 could interact with DNA
methyltransferases (DNMT) to mediate robust silencing of its
target genes in melanoma, including the IFN-g pathway (92). In
melanoma patient biopsies, a methylome study revealed that
DNA methylation on PRC2 target gene promoters is associated
with poor MHC class I expression and lack of immune
infiltration (93).

Moreover, a recent in vivo CRIPR-Cas9 screening in B16F10
cells highlighted the role of the histone methyltransferase
SETDB1 in reducing the immunogenicity of murine melanoma
cells, thus enhancing resistance to anti-PD-1 therapy (94). An
independent study showed that SETDB1 cooperates with histone
demethylase KDM5B/JARID1B to silence retroelements, which
decreases antigen presentation in melanoma cells, efficiently
promoting immune evasion (95). Interestingly, high KDM5B/
JARID1B expression was previously reported in slow cycling
therapy-resistant melanoma cells (96), and it is known that ZEB1
induces the upregulation of JARID1B in melanoma (62).

Altogether, although the precise role of EMT-inducing
transcription factors in mediating down-regulation of MHC
class I expression in melanoma cells is still lacking, tumor cell
dedifferentiation and silencing of antigen presentation clearly
appear to be intertwined. The EMT-like phenotype switching
occurring in melanoma would therefore contribute to reducing
the immunogenicity of tumor cells by concomitantly repressing
melanoma differentiation antigens and the antigen presentation
machinery, resulting in immune escape and resistance to ICB by
avoiding T cell recognition (Figure 1A).
RESISTANCE TO LYSIS

Upregulated PD-L1 Expression
Immune checkpoint ligands are key actors in the regulation of
anti-tumor immune response. In particular, the expression of
programmed cell death-ligand 1 (PD-L1/CD274) by tumor cells
is a potent mechanism of immune escape by suppressing the
activity of effector T cells expressing its receptor PD-1 (97)
(Figure 1B). In carcinomas, a growing body of evidence
Frontiers in Immunology | www.frontiersin.org 5
suggests that EMT induces an upregulation of PD-L1 on
tumor cell surface (98–100). Notably, the EMT-TF ZEB1 was
shown to stimulate PD-L1 expression by repressing miR-200 in
lung and breast cancer, leading to immune escape and metastasis
(101, 102). Consistently, spontaneous lung tumors in mice with
inactivated Zeb1 harbor a significantly reduced PD-L1
expression at the invasive front, associated with a stronger
anti-tumor immunity in this model (103).

PD-L1 expression displays a high inter- and intra-patient
variability in melanoma, and the evaluation of PD-L1 alone as a
predictive marker for response to anti-PD-1 remains debated
(104). While PD-L1 is known to be induced by IFN-g signaling in
response to T cell activation and infiltration (105, 106),
constitutive PD-L1 expression on tumor cells is observed in
approximately 10% of melanomas (104, 107, 108). Interestingly,
the characterization of melanoma cell lines with constitutive PD-
L1 expression revealed a strong enrichment in EMT
transcriptomic signatures compared to cell lines with inducible
PD-L1 expression (108). Melanoma patients with constitutive
PD-L1 expression (TIL-/PD-L1+) had a significantly worse
median survival rate than patients with inducible PD-L1
expression (TIL+/PD-L1+) (107).

RNA-sequencing in PD-L1 null melanoma biopsies have
uncovered a down-regulation of IFN-g-induced genes compared
to PD-L1-positive tumors (107). DNA methylation has recently
been shown tomediate the repression of IFN-g response pathways.
In particular, PD-L1 expression is strongly negatively correlated to
methylation levels of its promoter, both in cell lines (108) and in
patient samples (109). Interestingly, the DNA methyltransferase
DNMT3A was also shown to be negatively correlated to PD-L1
(108), and to promote dedifferentiation of melanoma cells (110).
Furthermore, the repression of DNA demethylase TET2, which is
also associated with phenotype switching (110, 111), participates
in the resistance to anti-PD-1 therapy in B16 mouse models by
silencing IFN-g response genes such as PD-L1, CXCL9 and
CXCL10 (112). Together, these results highlight the epigenetic
silencing of the IFN-g pathway in tumor cells as an immune
escape mechanism.

While PD-L1 may be regulated at the transcriptional level,
recent data highlighted a translational control through the
translation complex eIF4E in melanoma (113) (Figure 1B).
Genome-wide CRISPR-Cas9 screens additionally identified
CMTM6 as a crucial mediator of PD-L1 translational
regulation in a broad range of cancer cells including melanoma
cells (114). CMTM6, which is expressed at the cell surface,
increases PD-L1 protein pool without affecting its transcription
levels. Indeed, CMTM6 associates with the PD-L1 protein,
reducing its ubiquitination and increasing its half-life. EMT
has also been shown to regulate surface PD-L1 via CMTM6
induction in breast cancer (115), though this link remains to be
addressed in melanoma. eIF4E complex formation is associated
with CD8+ T cell infiltration and inducible PD-L1 expression in
patient samples correlated with response to immunotherapy in a
cohort of 59 patients with metastatic melanoma treated with the
anti-PD-1 monoclonal antibody pembrolizumab. While PD-L1
alone was not predictive, its inducible expression by CD8+ T cells
March 2022 | Volume 13 | Article 873116
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through PD-1 PD-L1 proximity, predicted a better
response (113).

Escape From T Cell/NK Cell Cytotoxicity
The intrinsic properties of dedifferentiated melanoma cells favor
resistance to T cell cytotoxicity, hence contributing to immune
escape and resistance to ICB (84, 116). Indeed, MART-1 T cell-
resistant melanoma cells were reported to harbor an NGFRhigh

dedifferentiated phenotype (84). NGFR, and its ligand BDNF,
actively mediate this resistance to T cell-induced lysis, as their
knock-down sensitized melanoma cells to MART-1 T cells. This
study was the first to suggest a pro-survival role of NGFR rather
than being only a dedifferentiation marker (84).

A CRISPR/Cas9 screening using co-culture experiments with
melanoma cells and gp100-specific T cells identified the
chromatin remodeling complex pBAF as an inducer of
resistance to T cell killing by regulating chromatin accessibility
on IFN-g response targets (117). Knocking-out Arid2 or Pbrm1
also significantly increased PD-L1 expression (117).

Recently described stemness-associated mechanisms could
also participate in the acquired resistance to T cell cytotoxicity
by melanoma cells. SOX2, a stem-associated transcription factor,
was recently reported to sustain the expression of late IFN-g
response immunosuppressive genes (PD-L1, IDO1), promoting
resistance to T cell lysis in co-cultures (116). SOX2 silencing by
the HDAC inhibitor SAHA synergized with anti-PD-1 therapy in
mouse models. Interestingly, the authors found that SOX2
expression could segregate PD-L1high patients into responding
versus non-responding patients in published cohorts (116).

Althoughmost studies focus on T cell-mediated lysis, melanoma
cells may also develop mechanisms to escape from innate
cytotoxicity triggered by natural killer (NK) cells. At the
molecular level, melanoma cells may increase NK-protective
MHC-I expression or induce a decrease in tumor-recognizing
activating receptors on NK cells (118). Recent studies suggested
that Integrin beta-like protein 1 (ITGBL1), a secreted protein,
upregulated in MITFlow melanoma cells, inhibits NK cells
cytotoxicity (119). However, the role of MITF might be more
complex (120), since another study showed that MITF-expressing
cells would also escape NK cell lysis, by regulating the expression of
ADAM10, which cleaves the MICA/B family of ligands for NK cells
(121). This is reminiscent of the previously described association of
EMT with increased susceptibility to NK cell cytotoxicity in
carcinoma models (122). Decreased MHC-I expression at the
surface of mesenchymal cells, may indeed promote activation of
NK cells by decreasing inhibitory signal. NK cells could also drive
phenotype switching of melanoma cells (118). Overall, while the
mechanisms of escaping from T cell-mediated lysis are increasingly
characterized, the complex relationship between melanoma cells
and NK cells will need further investigation.
T CELL EXCLUSION OR DYSFUNCTION

In addition to escaping recognition and lysis by immune cells,
tumor cells may also modify the composition and functionality
Frontiers in Immunology | www.frontiersin.org 6
of the immune microenvironment. CD8+ T cell recruitment and
activation following treatment is a major parameter associated
with the response to immunotherapy (83, 123) (Figure 1C).
TGF-b, a well-known inducer of EMT (124), has been associated
with the exclusion of cytotoxic T cells in carcinoma models
(125, 126). In accordance, combined treatment with antibodies
targeting PD-L1 and TGF-b was shown to induce CD8+ T cell
infiltration and tumor regression. However, few studies are
available in melanoma.

Alterations in various oncogenic pathways have also been
associated with T cell exclusion or dysfunction in melanoma
(21). Indeed, activation of the b-catenin pathway and loss of
PTEN are two major independent and non-redundant
mechanisms mediating T cell exclusion in metastatic
melanomas (18, 22). A longitudinal follow-up of a patient with
metastatic melanoma who relapsed upon interleukin-2 treatment
revealed an activation of the b-catenin pathway, associated with
the absence of infiltrating CD8+ T cells and decreased chemokine
expression in the recurrent tumor (23). These findings provide
evidence that tumor cell-intrinsic b-catenin activation induces
an immune-deprived environment, that impairs immune control
even in the setting of IL-2 immune stimulation. More recently,
another study showed that serine/threonineprotein kinase PAK4,
a WNT signaling mediator, was enriched in immunologically
cold tumors from patients with melanoma resistant to anti-PD-1
immune checkpoint blockade. In multiple mouse models, genetic
deletion or pharmacological inhibition of PAK4 resulted in
reversal of resistance to anti-PD-1 therapy (17).

In addition, high NGFR expression in melanoma cells has
been linked to immune exclusion in human melanoma samples
(84). Indeed, NGFR expression by melanoma cells, as assessed by
immunohistochemistry, was inversely correlated with the
presence of CD8+ T cells. This was also evidenced at the intra-
tumoral level in melanoma heterogeneous cases. These findings
suggest that NGFRhigh melanoma cells are not only resistant to T
cell targeting but are also associated with poor T cell infiltration.

More recently, we investigated the role of the EMT-inducing
transcription factor ZEB1 in immune evasion, and demonstrated
its role in preventing T cell infiltration in melanoma (127).
Multi-immunofluorescence spatial analyses of the immune
infiltrates in human melanoma samples highlighted that high
ZEB1 expression in tumor cells was associated with decreased
CD8+ T lymphocyte infiltration. Gain- or loss-of-function
experiments in BRAF or NRAS-mutated melanoma mouse
models demonstrated that ZEB1 prevents the recruitment and
the activation of CD8+ T cells. Mechanistically, ZEB1high

melanoma cells showed a defective secretion of T cell-
attracting chemokines, including CXCL10, suggesting the
intrinsic role of ZEB1 in regulating the secretome and
subsequent immune cell attraction. ZEB1 directly binds to the
promoters of T cell-attracting chemokines, including CXCL10 to
repress their transcription. ZEB1-mediated T cell exclusion
promotes immune evasion, as we showed that ZEB1
overexpression promotes resistance, whereas Zeb1 knock-out
improves the efficacy of anti-PD-1 immunotherapy in
melanoma mouse models. Overall, our data indicate that
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CXCL10 partially accounts for ZEB1-mediated CD8+ T cell
deficiency, and suggest additional mechanisms may contribute
to immune escape. Moreover, ZEB1 may regulate CD8+ T cell-
dependent tumor growth at least in part independently of MITF-
mediated phenotype switching, since similar phenotypes were
observed in MITFhigh and MITFlow backgrounds.

Other melanoma-intrinsic pathways have also been
associated with T cell deficiency. Knocking-out the epigenetic
regulators Arid2 or Pbrm1 in B16F10 melanoma cells
significantly increased CXCL9/CXCL10 production and CD8+

infiltration in vivo, resulting in decreased tumor growth (117).
SOX2 overexpression in B16F10 melanoma cells, in addition to
mediating resistance to T cell killing, decreased infiltration of
CD8+ T cells, albeit the underlying mechanisms remain unclear
(116). Although not related to a phenotype switch in the
immune-competent melanoma mouse models used, Sox10
knock-out was also shown to reduce melanoma tumor growth
in a T cell-dependent manner (128).

The link between the melanoma differentiation state and T cell
exclusion/dysfunction was recently nicely addressed in novel
mouse models, that will be useful tools to further dissect
melanoma cell-intrinsic mechanisms of immune escape. Four
immunocompetent melanoma mouse models differing in their
differentiation status were generated and extensively characterized
in relation with their differential sensitivity to immunotherapy
(129). These models, based on different genetic backgrounds,
showed similarities with previously described differentiation
signatures (57); the M1 (NCSC-like) and M2 (undifferentiated)
models were resistant to anti-CTLA-4 and anti-PD-1, while more
differentiated models, M3 (melanocytic) and M4 (transitory),
displayed partial response to ICB. The capacity to present
antigens through MHC-I and to activate CD8+ T cells was
maintained in all models. Importantly, resistant M2 tumors
which displayed an undifferentiated signature, harbored only few
T cells with a high exclusion score, except for Treg (130). However,
TIL abundance in untreated tumors was not sufficient to explain
ICB response, since M1 tumors were resistant despite a high CD8+

T cell/Treg ratio. CD8+ T cells in M1 tumors were shown to
display a high dysfunctional score as determined by TIDE (T cell
dysfunction and exclusion score), with increased expression of
PD-1, LAG-3 and TIM3 exhaustion markers. Moreover, these
studies highlighted the importance of assessing the myeloid cell
compartment in addition to T cells: pro-tumor macrophages
(especially PD-L1+) were enriched in M2 and M1 tumors, while
dendritic cells (DC) and NK cells were further reduced in M2
tumors. Overall, melanoma cell dedifferentiation is associated with
decreased T cell abundance and function, but may also impact the
recruitment or function of other immune cell populations.
INDUCTION OF AN
IMMUNOSUPPRESSIVE MICROENVIRONMENT

Previous studies in carcinoma have shown that expression of
EMT-TFs (notably ZEB1, SNAIL and TWIST1) is associated
with the recruitment of immunosuppressive cells, including
Frontiers in Immunology | www.frontiersin.org 7
regulatory T cells, myeloid-derived suppressor cells and tumor-
associated macrophages (TAMs) (41–43, 131–133).

Dedifferentiation of melanoma cells has been associated with
an immunosuppressive microenvironment (Figure 1D). Namely,
the dedifferentiated MITFlow/c-Junhigh melanoma phenotype in
human melanoma samples, was associated with increased
infiltration by myeloid immune cells, as assessed by CD14
immunohistochemistry (134). Increased Gr-1+ myeloid cell
recruitment was confirmed in dedifferentiated Hgf-Cdk4R24C

mouse melanoma models obtained after escape from ACT
against the melanocytic antigen gp100. In an ACT model
directed against the melanosomal protein RAB38, recurrent
melanomas with dedifferentiated features also showed increased
myeloid cell recruitment, related to increased secretion of myeloid
cell-attracting chemokines (CCL2, 3, 5) (135). Overall, several
studies reported that the MITFlow phenotype is associated with
elevated NF-kB activity, and increased expression/secretion of
pro-inflammatory cytokines IL-1b, IL-6 and CCL2 chemokine
that may contribute to myeloid cell recruitment (136).

SNAIL was shown to favor an immunosuppressive
microenvironment in melanoma models (137). SNAIL
overexpression in melanoma cells in vivo promotes the
recruitment of Tregs and impairs dendritic cell maturation in a
process involving the immunosuppressive cytokines
thrombospondin (TSP1) and TGF-b. Furthermore, blocking
SNAIL with siRNA or anti-TSP1 monoclonal antibodies
inhibited tumor invasion by relieving this immunosuppressive
mechanism. In addition to promoting CD8+ T cell deficiency,
ZEB1 overexpression in melanoma mouse models was also
associated with an increased frequency of Treg, although at a
later stage. No significant modifications in the overall frequency
of macrophages and DCs were observed in these models upon
ZEB1 expression, although more precise phenotyping of these
immune populations will be required (127).

Moreover, CD133+ melanoma cancer stem cells (CSC) in the
B16F10 model were associated with increased abundance of
immunosuppressive cells, including Tregs, MDSCs, and M2
macrophages (138). Interestingly CD133+ CSC harbored an
increased TGF-b signature that was regulated by miR-92
through an integrin-dependent TGF-b activation.

Recently, the MNK1/2-eIF4E axis was also involved in the
regulation of melanoma plasticity and anti-tumor immune
response by promoting a suppressive tumor microenvironment
(68). In a BRAFV600; PTEN KOmouse melanoma model in which
eIF4E cannot be phosphorylated (eIF4EKI), they showed an
increase in the secretion of many cytokines linked with the
expansion, recruitment (such as CCL2, CCL12, and CCL5),
and function (such as MMP-9) of immunosuppressive cells
such as MDSCs. Immune phenotyping showed a significant
infiltration of cytotoxic CD8+ T cells linked to a decrease in
monocytic MDSCs in eIF4EKI compared with eIF4EWT
melanomas (68). Combined treatment with MNK1/2 inhibitors
and anti-PD-1/PD-L1 demonstrated its efficacy in several mouse
melanoma models, arguing in favor of defining a new strategy to
inhibit melanoma plasticity and improve response to anti-PD-
1 immunotherapy.
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Altogether cancer cells use several ways to promote immune
escape notably by inducing an immunosuppressive
microenvironment through phenotype switching. Strategies
aiming at targeting key players of melanoma cell plasticity
could thus improve response to immune checkpoint therapy
(Table 1). Such combination strategies may not only be
addressed in preclinical mouse models, but their efficacy may
be further evaluated ex vivo on fresh human melanoma slices
(142), as nicely reported recently. This will also allow the
validation of predictive biomarkers.
MELANOMA CELL-INTRINSIC
PREDICTIVE MARKERS OF RESISTANCE
TO IMMUNE CHECKPOINT BLOCKADE

Previous reports have suggested that EMT or mesenchymal
signatures were associated with a lack of response to ICB in
carcinoma (36, 42, 43). As described in this review, preclinical
studies in mouse models highlighted the contribution of many
non-genetic mechanisms in the resistance to ICB in melanoma,
but only few studies demonstrated the predictive value of these
parameters in large human cohorts of ICB-treated patients.
Difficulties reside in the inability to identify robust signatures/
biomarkers of response to ICB from bulk RNA-Seq data of
tumors at baseline, before treatment.
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By comparing responding versus non-responding pre-treatment
tumors Hugo et al. first described an innate PD-1 resistance (IPRES)
gene signature, including upregulation of mesenchymal markers
(such as AXL, WNT5A, or TWIST2) and immunosuppressive
cytokines (27). Another ICB pre-treated melanoma cohort
showed that TGFB1low and SOX10high expression was associated
high cytotoxic T lymphocyte levels and a better overall survival
(130). RNA-Seq data of patients treated with ICB revealed that the
tumor-intrinsic NGFR signature predicts resistance to anti-PD-1
therapy before treatment and is further increased upon treatment
(84). However, transcriptomic signatures such as IPRES have not
been able to consistently predict response to anti-PD-1 in several
independent melanoma cohorts (83, 89, 123, 143). One limitation
resides in the fact that part of these melanoma samples received
BRAF inhibitors (BRAFi) prior to ICB. Indeed, previous treatment
with BRAFimay be a confounding parameter, as BRAFi is known to
induce ZEB1 expression and promote a higher mesenchymal score
(62). In line with these observations, a recent study demonstrated in
melanoma patients and mouse models, that tumors relapsing after
targeted therapy with MAPK pathway inhibitors are cross-resistant
to immunotherapies (144). Resistance to targeted therapy in
melanoma leads to activation of a cancer cell-intrinsic signaling
program with enhanced and altered transcriptional output
associated with an immunosuppressive tumor microenvironment,
characterized by a lack of functional CD103+ DCs and T cells.
Inhibition of the MAPK pathway in BRAFi-resistant tumors
restored tumor infiltration and maturation of CD103+ DCs,
TABLE 1 | Different strategies targeting melanoma cell plasticity-associated players to potentiate ICB efficacy.

Target Strategy Combination Status Clinical trial Phase References

ACT MART-1 T-cells Aldesleukin C Metastatic melanoma II NCT00910650 (139),
TGFß-resistant, NGFR
transduced T-cells

Aldesleukin R Stage III or Metastatic melanoma I NCT01955460

CXCR2 and NGFR
transduced T-cells

Aldesleukin NR Stage III or Metastatic melanoma I/II NCT01740557

TGFb SRK-181 Anti-PD1 R Solid tumors I NCT04291079
POC / / (140)

AXL AXL-107-MMAE BRAF + MEK inhibitors POC / / (141)
BGB324 Pembrolizumab or

Dabrafenib + Trametinib
R Advanced non-resectable (Stage IIIc)

or Metastatic (Stage IV) Melanoma
Ib/II NCT02872259

INCB081776 Nivolumab R Solid tumors Ia/Ib NCT03522142
EZH2 shRNA, GSK503 Anti-CTLA4 POC / (90)

Tazemetostat BRAF + MEK inhibitors R Metastatic melanoma I/II NCT04557956
MNK1/2 Tomivosertib eFT508 / C Solid tumors I/II NCT02605083

Anti-PD1 U Solid tumors II NCT03616834
SEL201 Anti-PD1 POC / / (68)

HDACs SAHA Anti-PD1 POC / / (116)
Panobinostat Ipilimumab (anti-CLTA4) NR Unresectable stage III/IV Melanoma I NCT02032810
Entinostat Pembrolizumab (anti-PD1) R Non-inflamed stage III/IV melanoma II NCT03765229
Tinostamustine Nivolumab (anti-PD1) R Advanced melanoma Ib NCT03903458

SETDB1 Knock-out Anti-PD1 POC / / (94)
ARID2, PBRM1 Knock-out Anti-PD1 POC / / (117)
TET2 Vitamin C Anti-PD1 POC / / (112)
ZEB1 Knock-out Anti-PD1 POC / / (127)
March 20
22 | Volum
Both clinical trials and proof of concept experiments in mouse models are indicated.
ACT, Adoptive Cell Transfer; R, Recruiting; NR, Not recruiting; U, Unknown; C, Complete; POC, Proof of concept.
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reduced suppressive myeloid cells, increased T cell infiltration, and
re-sensitize cross-resistant tumors to immunotherapy.

More recently, Pérez-Guijarro et al. defined a 45-gene
melanocytic plasticity signature (MPS), consisting of 33
upregulated and 12 downregulated genes, in undifferentiated/
NCSC resistant melanoma mouse models and validated its
efficacy in predicting response in human cohorts. While the
precise molecular mechanisms involved remain to be
functionally addressed, they demonstrated that combination of
MPS and TIDE (T cell dysfunction and exhaustion) signatures
was a stronger predictor (129). Overall, this highlights the
interest of combining cancer cell-intrinsic and immune
parameters in order to better predict patient survival in
response to ICB.

However, there may still exist limitations/biases of using bulk
RNA-Seq approaches, since EMT-associated genes are not only
expressed by cancer cells but also by cells from the tumor micro-
environment, including cancer-associated fibroblasts (CAFs),
endothelial cells, and immune cells. This constitutes an important
confounding parameter in bulk RNA-Seq analyses, especially in
samples from lymph nodes metastases. This problem can be
overcome through single-cell RNA-seq analyses (20, 54) or
through spatial analyses of tumors (127). By using scRNA-seq
data, Tyler and Tirosh recently defined cancer or stromal cell-
specific mesenchymal signatures. Such a deconvolution tool would
allow to circumvent the confounding effect of stromal cells in bulk
RNA-Seq data (145). In parallel, we already demonstrated the
power of multiplexed immunofluorescence analyses to specifically
analyze ZEB1 expression in melanoma cells, by excluding stromal
and immune cells. Whether ZEB1/EMT-TF specific expression by
melanoma cells may predict response to ICB in patient cohorts
remains to be addressed.

Furthermore, since plasticity is a dynamic event, longitudinal
follow-up of patients during immunotherapy, and not just
baseline analyses, is required to comprehend the dynamic
evolution of cancer cells and their microenvironment. In a
recent study conducted in the group of G. Boland, a patient
was followed for 9 years, collecting tumors from primary tumor,
metastatic recurrence, pre-treatment, on-treatment, post-
progression and at autopsy. This allowed them to establish an
evolutionary dynamic map of resistance to ICB. Deconvolution
of bulk RNA-Seq and highly multiplexed immunofluorescence
characterized a dedifferentiated neural-crest (NGFRhigh) tumor
population during resistance to immunotherapy. Moreover, they
described distinct NGFRhigh tumor cell distribution patterns,
highlighting site-specific heterogeneity in tumor-immune
interactions that will require further investigation (29).
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CONCLUSION AND
FUTURE PERSPECTIVES

Throughout this review, we described several complementary
mechanisms by which melanoma cell-intrinsic pathways can
impact the crosstalk with the immune tumor microenvironment.
Transcriptomic analyses in patient samples contributed to
pinpointing that melanoma dedifferentiation markers may prove
useful in combination with immune parameters to design a
composite score for better predicting patients that may or may not
respond to immunotherapy. In the future, the development of single
cell spatial transcriptomic analyses, performed on samples biopsied in
a longitudinal way upon treatment, will be crucial to precisely
decipher the crosstalk between cancer cells and immune cells.
A better understanding of these complex, intertwined interactions,
will pave the way to novel combinatory treatments, to rescue
resistance to ICB and improve metastatic melanoma patient care.
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124. Batlle E, Massagué J. Transforming Growth Factor-b Signaling in
Immunity and Cancer. Immunity (2019) 50:924–40. doi: 10.1016/
j.immuni.2019.03.024

125. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al.
Tgfb Attenuates Tumour Response to PD-L1 Blockade by Contributing to
Exclusion of T Cells. Nature (2018) 554:544–8. doi: 10.1038/nature25501

126. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-
Ramentol J, Iglesias M, et al. Tgfb Drives Immune Evasion in Genetically
Reconstituted Colon Cancer Metastasis. Nature (2018) 554:538–43.
doi: 10.1038/nature25492

127. Plaschka M, Benboubker V, Grimont M, Berthet J, Tonon L, Lopez J, et al.
ZEB1 Transcription Factor Promotes Immune Escape in Melanoma. J
Immunother Cancer (2022) 10:e003484. doi: 10.1136/jitc-2021-003484

128. Rosenbaum SR, Tiago M, Caksa S, Capparelli C, Purwin TJ, Kumar G, et al.
SOX10 Requirement for Melanoma Tumor Growth is Due, in Part, to
Immune-Mediated Effects. Cell Rep (2021) 37:110085. doi: 10.1016/
j.celrep.2021.110085
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