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Almost all solid tumors display hypoxic areas in the tumor microenvironment associated
with therapeutic failure. It is now well established that the abnormal growth of malignant
solid tumors exacerbates their susceptibility to hypoxia. Therefore, targeting hypoxia
remains an attractive strategy to sensitize tumors to various therapies. Tumor cell
adaptions to hypoxia are primarily mediated by hypoxia-inducible factor-1 alpha
(HIF-1a). Sensing hypoxia by HIF-1a impairs the apoptotic potential of tumor cells, thus
increasing their proliferative capacity and contributing to the development of a chaotic
vasculature in the tumor microenvironment. Therefore, in addition to the negative impact
of hypoxia on tumor response to chemo- and radio-therapies, hypoxia has also been
described as a major hijacker of the tumor response by impairing the tumor cell
susceptibility to immune cell killing. This review is not intended to provide a
comprehensive overview of the work published by several groups on the multiple
mechanisms by which hypoxia impairs the anti-tumor immunity and establishes the
immunosuppressive tumor microenvironment. There are several excellent reviews
highlighting the value of targeting hypoxia to improve the benefit of immunotherapy.
Here, we first provide a brief overview of the mechanisms involved in the establishment of
hypoxic stress in the tumor microenvironment. We then discuss our recently published
data on how targeting hypoxia, by deleting a critical domain in HIF-1a, contributes to the
improvement of the anti-tumor immune response. Our aim is to support the current
dogma about the relevance of targeting hypoxia in cancer immunotherapy.
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INTRODUCTION

In solid tumors, the establishment of hypoxia in the tumor
microenvironment relies on the failure of abnormal vasculature
to meet increasing oxygen demands from rapidly proliferating
cancer cells. Therefore, within the same tumor, the O2 level
varies depending on the quality and the integrity of blood vessels.
Several areas in the tumor microenvironment can be identified
according to the oxygenation level of tumor tissue: well
oxygenated, poorly oxygenated, and non-oxygenated or
necrotic areas (1) (Figure 1). In addition to the tumor size and
the quality of the tumor vascularization, the different levels of O2

in the microenvironment of different tumors rely on the initial
physiological oxygenation levels observed in the corresponding
healthy tissue and on the degree of the tumor heterogeneity.
Figure 2 shows the oxygen levels (reported as a percentage) in
several tumors and corresponding healthy tissues. The
percentage of O2 in healthy tissues range from 9.5% (observed
in kidney healthy tissue) to 3.5% (reported in healthy prostate
tissue). Hence, the average of O2 in the healthy tissues reported
in Figure 2 is 5.9%. The oxygen levels in the corresponding
tumors range from 2.5% (observed in rectal tumor) to 0.3%
(reported in liver and prostate tumors). Therefore, the average of
O2 in the tumors reported in Figure 2 is 1.3%. Based on these
values, most tumors exhibit median oxygen levels below 2%. The
term of normoxia should not be used to describe the oxygenation
level in healthy tissues, however, it can defines the O2 level in
tissue culture flasks where the oxygenation is about 20-21%. The
term of physioxia is more appropriate to describe the
oxygenation status in healthy tissues as previously reported (2).
Therefore, it is important to control the O2 in cell culture settings
to mimic as far as possible the O2 levels found in healthy and
tumor tissues.

The mechanism of cell adaptation to hypoxia is currently well
described. William G. Kaelin Jr., Sir Peter J. Ratcliffe, and Gregg
L. Semenza were awarded the Nobel Prize in Medicine 2019 in
recognition of their seminal discovery on the molecular
mechanisms and signaling pathways by which cells sense and
adapt to hypoxia.
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While the negative impact of hypoxia on tumor response to
conventional chemo- and radiotherapy is now well recognized
(3, 4), an accumulating new body of data highlights its
involvement in tumor resistance to immunotherapy (5). Here, we
describe recent evidence on how hypoxia plays a role as a culprit of
immunotherapy failure. We will mainly discuss our recent
experimental and preclinical evidence data showing that strategies
targeting hypoxia can provide the basis for innovative combination
therapies that may improve the immunotherapeutic efficacy.
Hypoxia-inducible factors (HIFs) are essential transcription
factors mediating cell adaptation to hypoxia, and thus we will first
briefly describe how HIFs expression and stability are regulated
under hypoxia in tumor cells.
HYPOXIA INDUCIBLE FACTORS -
MECHANISMS OF REGULATION
AND STABILITY

HIFs are heterodimer complexes consistent of an O2-inducible
alpha subunit and constitutively expressed beta subunit (HIF-1b/
ARNT). Three alpha subunits have been identified: HIF-1a,
HIF-2a, and HIF-3a. The well-studied alpha subunit is HIF-
1a and contains N-terminal basic-helix-loop-helix (bHLH)
required for DNA interaction. There are also two Per-Arnt-
Sim (PAS) domains (PASa and PASb) essential for
heterodimerization with HIF-1b. Two oxygen-dependent
degradation domains (ODDD) have been identified in the N-
terminal (N-ODDD) and C-terminal (C-ODDD) parts of the
protein in addition to two transactivation domains (TADs). One
overlaps with the C-ODDD, and the second is found in the C-
terminal part (6).

Under normoxic conditions, HIF-1a is continuously
synthesized, but it is rapidly degraded by the ubiquitin–
proteasome system (UPS). The short half-life of HIF-1a under
normoxia is less than five minutes (7). The basal expression level
of HIF-1a under normoxia is low, but varies in different cells.
Such variations depend on the rate of HIF-1a synthesis (O2-
FIGURE 1 | Graphic representation of the different areas in the tumor microenvironment according to the oxygenation level (percent of O2): Well oxygenated, poorly
oxygenated, and non-oxygenated or necrotic areas. Enlargement of a blood vessel section in the poorly oxygenated hypoxic area shows defect in the organization of
endothelial cells and pericytes’ coverage. Enlargement of a blood vessel section in the well oxygenated area shows well-structured endothelial cells and pericytes’ coverage.
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independent mechanism) and the rate of HIF-1a degradation
(O2-dependent mechanism).

The degradation of HIF-1a under normoxia depends on its
hydroxylation on proline residues located at positions 402 and/or
564 in the ODDD by prolyl hydroxylase domain protein 2
(PHD2). Thus, hydroxylated HIF-1a binds to von Hippel-
Lindau (pVHL) protein, which is part of the E3 ubiquitin-
protein ligase complex. It is subsequently subjected to
degradation by the UPS [reviewed in (8)].

The enzymatic activity of PHD2 requires O2 as a substrate,
and thus the protein becomes inactive in hypoxic cells (9).
Therefore, HIF-1a is no longer hydroxylated under low O2

pressure; as a result, its interaction with pVHL and subsequent
degradation by UPS are blocked. Thus, the failure of the
mechanism involved in HIF-1a degradation under hypoxia
leads to its accumulation in the cytoplasm, translocation to the
nucleus, and interaction with HIF-1b. The heterodimer HIF-1a/
HIF-1b binds to the hypoxia-responsive element (HRE) motif
found in the promoter of several genes involved in several
biological processes that tolerate cellular adaptation to hypoxia
and confer a survival benefit to tumor cells.

HIF-2a displays similar DNA binding and dimerization
domains as HIF-1a, but these differs in the transactivation
domains (10). Therefore, the hydroxylation of HIF-2a is also
regulated in an oxygen-dependent manner (11). Both HIF-1a
and HIF-2a regulate common downstream target genes, but
each can also regulate specific genes (12). Unlike HIF-1a and
HIF-2a, HIF-3a lacks the transactivation domain. It can inhibit
the activity of HIF-1a and HIF-2a (13), and HIFs are involved in
the regulation of several microRNAs (HRM) (14) and
chromatin-modifying enzymes (15). HIFs can directly regulate
more than 800 genes involved in several biological functions as
revealed by ChIP-seq analysis and genome-wide chromatin
immunoprecipitation combined with DNA microarrays (ChIP-
on-chip) (16, 17). The expression of downstream target genes is
achieved by binding HIF-1a to 50-base pair cis-acting hypoxia
responsive element (HRE) motifs found in their enhancer and
promoter regions (18). The HRE motif contains the core
sequence 5’-[A/G]CGT-3’, which is usually ACGTG (19).
Frontiers in Immunology | www.frontiersin.org 3
Considering the preferential binding of the heterodimer
complex HIF-1a/HIF-1b to specific bases in the 5’ and 3’ ends
of the HRE motif, the following HRE consensus sequence [T/G/
C][A/G]CGTG [CGA][GTC][GTC][CTG] has been
described (19).
STRATEGIES FOR TARGETING HYPOXIA -
CHALLENGES AND OPPORTUNITIES

Inhibiting hypoxia has inspired significant interest because it can
improve therapeutic outcomes. Strategies used to inhibit hypoxia
rely on bio-reductive prodrugs (20) or inhibitors targeting
pathways upon which the survival of hypoxic cells depends
(21). However, targeting HIF-dependent pathways is extremely
challenging because various signaling pathways converge on—
and emerge from—HIFs (22). Additional approaches have been
proposed consisting of targeting HIFs directly. Although
considerable efforts have been undertaken to identify selective
inhibitors of HIFs, enthusiasm has been tempered by the reality
that transcription factors, including HIFs, seem to be
“undruggable” or at least no selective drugs inhibiting HIFs
have been identified.

Considering the well-described molecular mechanism of HIF-
1a protein activity, various strategies have been proposed to
impair such activity. Such mechanisms inhibit HIF-1a protein
synthesis or stabilization; they can also prevent HIF-1a/b
heterodimerization or HIFs/DNA binding (23).
INHIBITING HYPOXIA BY PREVENTING
HIF-1a/b, HETERODIMERIZATION
REGULATES PRO-INFLAMMATORY
CHEMOKINES AND IMPROVES THE
BENEFIT OF IMMUNOTHERAPIES

In a highly hypoxic and PD-1-resistant B16-F10 melanoma
mouse model (24, 25), we recently reported that inhibiting
FIGURE 2 | Summary of the oxygen level (reported as a percentage) in the healthy tissue and corresponding tumor of different organs.
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hypoxia by preventing HIF-1a/b heterodimerization in a mouse
melanoma model drives immune cells into the tumor
microenvironment and improves anti-PD-1- and vaccine-based
immunotherapies (26). Using CRISPR/Cas9 technology, we
showed that the deletion (in HIF-1a) of the domain
responsible for the interaction with HIF-1b still leads to the
accumulation of the protein in hypoxic cells; however, this
remarkably inhibits its transcription activity as demonstrated
by suppressing the expression of well-known HIF-1a
downstream target genes CAIX, VEGF, and Glut1. Similar to
the full-length HIF-1a (HIF-1aFL), the deleted HIF-1a
(hereafter reported to as HIF-1aDel) accumulated in the
cytoplasm of hypoxic cells. However, unlike HIF-1aFL, HIF-
1aDel displayed a defect in the nuclear translocation as seen via
confocal microscopy analysis. By assessing the tumor growth in
vivo, we showed a significant decrease in the growth and weight
of B16-F10 tumors expressing HIF-1aDel versus those expressing
HIF-1aFL. Such effects were observed in immunocompetent but
not in immunocompromised NOD scid gamma (NSG) mice
lacking mature B, T, and NK cells (26). These data emphasize
that targeting hypoxia in tumors inhibits tumor growth via the
immune system. Indeed, we revealed a significant increase in the
infiltration of CD45+, NK, CD4+, and CD8+ cells into HIF-1aDel

versus HIF-1aFL (Figure 3). These data strongly suggest that
targeting the transcription activity of HIFs can switch the
microenvironment of tumors from cold non-inflamed/not-
infiltrated into hot inflamed and infiltrated by cytotoxic
immune cells.
Frontiers in Immunology | www.frontiersin.org 4
The infiltration and trafficking of immune cells to the tumor
microenvironment relies on the establishment of a chemokine
network. The recruitment of T cells and natural killer (NK) cells
into the tumor can be achieved by chemokines CXCL9, 10, 11, 16
as well as CX3CL1. CCL19 and 21 can promote the recruitment
of DCs into T-cell priming sites, thus leading to T-cell activation
(27). CXCL16 has been associated with the infiltration of tumor-
infiltrating lymphocytes (TILs) and better prognosis in colorectal
cancer (28). We previously reported that driving NK cells to
melanoma tumors depends on the release of CCL5 to the tumor
microenvironment by tumor cells (29). Other studies showed
that the chemokines CCL2, 3, 4, and 5 as well as CXCL9 and 10
were involved in T-cell migration into a melanoma tumor
microenvironment (30). By assessing the chemokine network
in HIF-1aDel tumors, we see that the increased infiltration of
major cytotoxic immune cells described above was associated
with the release of proinflammatory chemokines in the tumor
microenvironment—notably CCL5 and CCL2. Therefore, we
believe that targeting the transcriptional activity of HIF-1a in
tumor cells contributes to the establishment of an inflammatory
microenvironment, which helps recruit cytotoxic immune
effector cells.

The translational value of our study is underlined by the
data generated in preclinical mouse model and using a cohort
of melanoma patients. Treatment of melanoma-bearing
mice with acriflavine, reported to prevent HIF-1a/HIF-1b
heterodimerization, improved immunotherapy strategies based
on TRP-2 peptide vaccination and anti-PD-1 antibody. We
FIGURE 3 | Impact of targeting the transcription activity of Hif1a on driving immune cells into melanoma tumor microenvironment. Hypoxic melanoma are
“cold” poorly infiltrated by immune cells. Deletion, in Hif1a, of the domain responsible for the formation of a heterodimer with Arnt by CRISPR/Cas9 gene-
editing technology, prevents its transcription activity. In hypoxic cells expressing deleted Hif1aDel, the pro-inflammatory (C-C motif) ligand 5 chemokine (Ccl5)
is overexpressed by a mechanism which is not fully understood. The release of Ccl5 by tumor cells in the tumor microenvironment drives major cytotoxic
immune cells and contributes to the establishment of pro-inflammatory “hot” tumor.
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further showed that melanoma patients having low Winter
hypoxia score survive better and show increased CCL5 as well
as high tumor infiltration by NK and CD8 T-cells versus those
having a high hypoxia score.
HIF-1a INDUCES TUMOR ESCAPE FROM
IMMUNE SURVEILLANCE BY
UPREGULATING THE EXPRESSION OF
IMMUNECHECKPOINTS AND ACTIVATING
VARIOUS SURVIVAL PATHWAYS IN
TUMOR CELLS

Accumulating evidence points to a critical role of HIFs in
regulating various immune checkpoints [reviewed in (31)].
Briefly, HIF-1a binds directly to the HRE motif in the
promoter of PD-L1 gene and induces its expression in various
cancer cells such as melanoma, lung, breast, and prostate cancer.
Such overexpression resulted in tumor escape from immune
surveillance (32, 33) (Figure 4). Similarly, the constitutive
accumulation of HIF-2a in clear cell renal cell carcinoma
(ccRCC), due to the mutation status of VHL, facilitates PD-L1
upregulation (34). In addition to tumor cells, HIF-1a also
operates in the immune suppressive cells present in hypoxic
tumor microenvironment. In MDSCs, HIF-1a directly
Frontiers in Immunology | www.frontiersin.org 5
upregulates PD-L1 expression resulting in impaired cytotoxic
T lymphocytes (CTL) activity (32).

VISTA is an additional immune checkpoint regulated by
HIF-1a. VISTA is expressed on several myeloid cells
infiltrating hypoxic tumors including CD11bhighGr1+ MDSCs.
The recruitment of MDSCs to the tumor microenvironment is
mediated by hypoxia-dependent upregulation of stromal-derived
factor 1 (SDF1, CXCL12) (35). HIF-1a, but not HIF-2a, binds to
VISTA and induces its expression—this process in turn
suppresses T-cell proliferation and activity (36) (Figure 4).

CD47 is an inhibitory immune checkpoint expressed on the
cell surface of tumor cells and involved in blocking the
phagocytosis following the interaction with its ligands: signal
regulatory protein a (SIRPa) and thrombospondin-1 (TSP-1).
These two proteins are expressed on the surface of macrophages
and dendritic cells (37). CD47/SIRPa or TSP-1 interaction
delivers a strong “don’t eat me” signal to block phagocytosis
(38). Upregulation of CD47 is associated with the expression of
HIF-1a downstream target genes. The expression of CD47 is
upregulated by HIF-1a in triple-negative breast cancer cells
resulting in a stem cell phenotypic switch through which
cancer cells escape from phagocytosis (39). The upregulation of
CD47 by hypoxia has also been reported in pancreatic
adenocarcinoma (40, 41) (Figure 4).

In addition to regulating the expression of immune
checkpoints and the establishing immunosuppressive tumor
FIGURE 4 | Role of HIF-1a in the regulation of immune checkpoints expression in both tumor and immune cells. In hypoxic microenvironment, HIF-1a binds to the
HRE motifs found in the promoters of PD-L1, CD47 and VISTA. As a result, HIF-1a-depenedent overexpression of PD-L1 and CD47 in tumor cells leads to tumor
escape from CTL-mediated killing and macrophage-mediated phagocytosis, respectively. In MDSC, HIF-1a-dependent upregulation of PD-L1 and VISTA increases
their immunosuppressive properties in the tumor microenvironment. bHLH, basic-helix-loop-helix; PAS, Per-Arnt-Sim domains; Pro, Proline residue; N- and C-ODDD,
NH2-terminal and COOH-terminal Oxygen-Dependent Degradation Domains; N- and C-TAD, NH2-terminal and COOH-terminal transactivation domain.
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microenvironment, the accumulation of HIF-1a in tumor cells
decreases tumor cell susceptibility to CTL-mediated lysis
through several mechanisms [reviewed in (31)]. Briefly, these
mechanisms include the activation of autophagy (24, 42), the
upregulation of stem cell self-renewal transcription factor Nanog
(43, 44), and the induction of microRNA (miR)-210 involved in
repressing the non-receptor protein tyrosine phosphatase type 1
(PTPN1), homeobox A1 (HOXA1), and tumor protein p53-
inducible protein 11 (TP53I11) (45).

Hypoxia also impairs NK-mediated killing of tumor cells by
downregulating and/or shedding the major histocompatibility
complex (MHC) class I polypeptide-related sequence A (MICA)
on the surface of cancer cells (46, 47). In hypoxic tumor cells, the
activation of autophagy leads to the degradation of the serine
protease granzyme B (GZMB) released by NK cells. This in turn
led to tumor escape from NK-mediated killing (48, 49).

In addition of NK cells, hypoxia also impacts the activity of T
cells. Briefly, under hypoxia, activated T cells are able to adapt
changes in energy supplies by switching their metabolism to
glycolysis and regulating extracellular-adenosine receptor
signaling. Such adaptation alter the balance between T helper 1
cells and T helper 2 cells and results in impairing the anti-tumor
immune response [reviewed in (50)]. In this context, it should be
highlighted that hypoxia-dependent regulation of A2A
adenosine receptor (A2AR)–mediated signaling is considered
as one of the major mechanisms of the establishment of
immunosuppressive tumor microenvironment [reviewed
in (51)]
TARGETING HYPOXIA: A
TRICKY APPROACH

Several reports indicate that the increased tumor aggressiveness
is partially associated from hypoxia-induced genomic instability.
It is currently well established that tumor cells exposed to
hypoxic stress are able to acquire genetic instability through
altered translation of DNA repair proteins. Therefore, hypoxic
tumor cells display defective repair as well as an increased
mutation rate. It is widely admitted that PD-L1 expression,
tumor mutation burden (TMB) development, immune cell
infiltration at the tumor site and neoantigen load are all
thought to be influenced by tumor genomic instability (52).
Clearly a more holistic approach that considers the complexity of
hypoxia effects to better discriminate between the beneficial roles
of hypoxic stress from the hostile ones is crucial. Given the dual
effect of hypoxia, a clear understanding of how hypoxic stress
induces tumor resistance and genomic instability resulting in an
increased tumor immunogenicity is of paramount importance
for identifying the time window of hypoxia targeting to improve
cancer immunotherapy. Nevertheless, there is currently a Phase
III clinical trial (NCT04195750) aiming to compare the efficacy
and safety of HIF-2a inhibitor MK-6482 (also known as
WELIREG) with the mTOR inhibitor everolimus in previously
treated advanced ccRCC patients. Among the patients enrolled
Frontiers in Immunology | www.frontiersin.org 6
in the trial are those treated with anti–PD-1/PD-L1 or VEGF-
targeted therapy which are randomly assigned to MK-6482 or
everolimus arm. The estimated study completion will be in 2025.
WELIREG or MK-6482 is the first inhibitor approved in U.S.
which reduces the transcription and expression of HIF-2a target
genes associated with cellular proliferation, angiogenesis and
tumor growth.
CONCLUDING REMARKS

This review provides an additional clue supporting the role of
targeting hypoxia in improving the benefit of cancer
immunotherapy. Hypoxia has long been considered an
attractive target to overcome resistance and improve the
benefits to various therapies including immunotherapy.
Numerous strategies have been proposed to inhibit hypoxia
and target the transcription activity of HIF-1a such as the
development of hypoxia-activated prodrugs or small molecules
interfering with the transcription activity of HIFs (53–55).
Several experimental studies offer preclinical proof-of-concept
that strategies targeting hypoxia can improve the therapeutic
benefits of current cancer therapies. However, there are still no
approved drugs that selectively target hypoxia or HIF-dependent
pathways despite they have clear anticancer effects. Obviously,
such lack of selectivity does not disqualify these drugs as
anticancer agents, but it becomes challenging to attribute the
potential effect observed in patients to their anti-hypoxic
properties. Nevertheless, the failure of developing selective
drugs could be attributed to the biological complexity of HIF-
1a pathways. Indeed, HIF-1a controls a highly complex network
connecting several signaling pathways and various overlapping
mechanisms in tumor cells and other cells in the tumor
microenvironment. Such properties make HIF-1a undruggable.
Therefore, we strongly believe that better dissecting hypoxia-
inducible responses and understanding HIF-dependent signaling
would lead to novel targets and new treatment opportunities.

The key role of hypoxia in hijacking the anti-tumor immune
response is now firmly grounded in a substantial body of
research. Therefore, the use of hypoxia modulators—especially
those interfering with the transcription activity of HIF-1a—
holds much promise for improving the therapeutic benefit of
cancer immunotherapies. There is no doubt that combining
hypoxia modulators with cancer immunotherapy approaches
provide a unique opportunity for innovative combination
strategies. Additional efforts are needed for highly selective
hypoxia inhibitors, which remain an unmet need and are
among the greatest challenges in cancer therapy.
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