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With the emergence of multidrug-resistant strains, Acinetobacter baumannii infection is
becoming a thorny health problem in hospitals. However, there are no licensed vaccines
against A. baumannii. Acinetobacter trimeric autotransporter (Ata) is an important known
virulence factor located on the outer membrane of bacteria. Herein, we carried out a series
of experiments to test the immunogenicity of a short C-terminal extracellular region of Ata
(Ataa, only containing 39 amino acids) in a murine model. The short peptide Ataa was
fused with the cholera toxin B subunit (CTB), which has been reported to have
immunoadjuvant activity. The fusion protein showed no inflammation and organ
damages, and have the ability to elicit both Th1 and Th2 immune responses in mice.
The bactericidal activities against A. baumannii and prophylactic effects of the fusion
protein were further evidenced by a significant reduction in the bacterial load in the organs
and blood. In addition, the candidate vaccine could provide broad protection against
lethal challenges with a variety of A. baumannii strains. Moreover, when CpG was added
on the basis of aluminum adjuvant, the immune response, especially cellular immunity,
could be further strengthened. Overall, these results revealed that the Ataa is a promising
vaccine target against A. baumannii infection.

Keywords: Acinetobacter baumannii, acinetobacter trimeric autotransporter adhesin (Ata), CpG, CTB,
subunit vaccine
INTRODUCTION

Acinetobacter baumannii, a Gram-negative bacterium, is an opportunistic pathogen that usually
causes nosocomial infections (1, 2) through wound sites and mechanical ventilation (3, 4), resulting
in high mortality rates (5, 6), especially in the ICU, where it can reach 40% (6). Although the use of
antibiotics facilitates the treatment of bacterial infection, the bacterium has developed multiple
mechanisms of resistance to antibiotics, such as regulation of antibiotic transport through bacterial
membranes, mutational alteration or enzymatic modification of antibiotic target (7). In 2017, the
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World Health Organization released a list of 12 “global priority
pathogens,” in which carbapenem-resistant A. baumannii was
classified as “critical” grade (8).

Vaccination is one of the most cost-effective strategies to
control the infection of multidrug-resistant A. baumannii. At
present there are no licensed A. baumannii vaccines on the
market. Whole-cell vaccines and outer membrane vesicle
vaccines have been proven to induce strong immune responses
in murine models (9–12). However, safety concerns related to the
complexity of components, incomplete inactivation, and the
presence of LPS were often raised (13). Subsequent studies
have focused on single-component vaccines (e.g., subunit
vaccines). Some promising antigens, such as OmpA, OmpW,
OMP22, FilF, BamA, and Bap, have been proven to generate
protective effects (14–19). In addition, the capsular
polysaccharide (CPS) of A. baumannii could also be used as
effective antigens for the development of vaccines. However, the
diversity of the CPS structure (over 100 unique capsule loci) (20,
21) impedes the development of CPS-based vaccines.

Acinetobacter trimeric autotransporter (Ata) of A. baumannii
ATCC 17978, belongs to the trimeric autotransporter adhesin
superfamily and is secreted through a type V secretion system.
Trimeric autotransporter adhesins act as key virulence factors in
many Gram-negative bacteria; participate in adhesion, biofilm
formation, immune evasion, angiogenesis, and cell death; and
mediate adhesion to extracellular matrix proteins in a murine
pneumonia model (8, 22, 23). Ata is a potential vaccine target,
and research has shown that antibodies against Ata are highly
opsonic against A. baumannii and show low-to-moderate killing
activity against four A. baumannii strains (22, 24). Further, a
263-amino acid conserved fragment from the C-terminus of Ata
was confirmed to elicit a specific antibody response and provide
protection against the challenge in mice. The immunized sera
also reduced the formation of biofilm and the adherence of A.
baumannii (25). This evidence suggests that the C-terminal
fragment from Ata is a promising target for the development
of an A. baumannii vaccine. However, as a subunit vaccine, the
low immunogenicity of the antigen requires immune
enhancement strategies, such as the introduction of delivery
systems or the use of adjuvants, to achieve an effective immune
response. In the delivery system of prophylactic vaccines,
proteinaceous carriers are ideal because of their high safety and
biocompatibility. However, proteinaceous antigens (especially
large antigens) are prone to interfere with the carrier resulting
in protein misfolding and structural instability. Therefore, a
shorter epitope is beneficial for the further design of the vaccine.

The B subunit of cholera toxin (CTB), which forms a
pentameric ring structure, is widely used as a delivery vehicle
and adjuvant for various antigens (26–30). Studies have shown
that the coupling of CTB with antigens can stimulate specific Th1
and Th2 immune responses. In general, the CTB pentamer can
bind to GM1, which is widely distributed on the surface of B cells
and dendritic cells.Thus, CTB-based vaccines offer advantages in
vaccine delivery, endocytosis, and antigen presentation.
However, steric hindrance between CTB and the antigen might
disrupt the formation of pentamers, suggesting that the selection
Frontiers in Immunology | www.frontiersin.org 2
of a smaller antigen could benefit the formation of pentamers
and antigen presentation (31).

In this study, we used only 39 amino acids of Ata as an
antigen and evaluated its immunogenicity by coupling with CTB.
After confirming its safety, a series of animal experiments were
carried out, and they indicated that both Th1 and Th2 immune
responses were induced and efficient protective effects were
demonstrated through lethal and non-lethal infection models.
In particular, we found that when CpG was added with
aluminum adjuvant, both cellular immunity and humoral
immunity could be further strengthened, among which the
cellular immunity response was more enhanced. Overall, our
results reveal that the candidate antigen, prepared based on 39
amino acids of Ata, is a promising protective target for
vaccination against A. baumannii infection.
MATERIALS AND METHODS

Bacterial Strains, Plasmids, and
Growth Conditions
Escherichia coliDH5awas used to clone plasmids, and BL21(DE3)
was used for the expression of the recombinant protein CTB-Ataa.
A. baumannii ATCC 17978 was purchased from ATCC, and the
clinical isolates XH733 and MDR-ZJ06 were kindly provided by
professor Yunsong Yu (Department of Infectious Diseases, Sir Run
Run Shaw Hospital, College of Medicine, Zhejiang University). All
of the E. coli and A. baumannii strains were grown in Luria–
Bertani broth or on solid medium containing 1.5% agar. The Ataa
peptide was fused to the C-terminus of CTB (GenBank: X76390.1)
with a flexible linker (GGSG). The full-length CTB-Ataa coding
sequence was codon-optimized, synthesized by Sangon Biotech
(Shanghai) Co., Ltd., and inserted into pET30a between NdeI and
XhoI. pGEX4T-ata was constructed to produce GST-Ataa, which
was used in the ELISA assay.

Expression, Renaturation, Purification, and
Qualification of CTB-Ataa
E. coli BL21(DE3)/pET30a-CTB-Ataa cells were cultured in a
shake flask at 37°C to an OD600 of 0.6. CTB-Ataa expression was
induced by 0.5 mM IPTG at 30°C for 12 h. Cells were collected
by centrifugation, resuspended by 20 mM Tris-HCl (pH 8.5),
and disrupted through a homogenizer with four passes at
700 bar. The CTB-Ataa inclusion bodies were solubilized by
lysis buffer (8 M urea and 5 mM DTT), diluted with refolding
buffer (20 mM Tris (pH 8.5), 1 mM GSSG, and 1 mM GSH), and
purified by anion-exchange chromatography and size-exclusion
chromatography. The recombinant CTB-Ataa was analyzed by
RP-HPLC (Agilent ZORBAX 300SB-C8, 5 mm, j4.6 × 250 mm)
with a gradient of 0 to 100% elution buffer (95% acetonitrile 0.1%
TFA) in 40 min and SEC-HPLC (TSK gel G2000SWXL, 5 mm,
j7.8 × 300 mm) with PBS.

GM1 Binding Assay
A 96-well plate was coated with 100 mL GM1 solution (2 mg/mL)
overnight at 4°C. After washing three times, 300 mL of 5% skim
April 2022 | Volume 13 | Article 884555
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milk was added to each well. After incubation at 37°C for 1 h and
washing three times again, samples with different dilutions from
3.3 nM were added and incubated at 37°C for 1 h. After another
washing step, 100 mL of anti-CTB antibody (Sigma, Germany)
was added to the plate, followed by incubation at 37°C for
another hour. Then, the plate was washed again three times,
100 mL of HRP-labeled goat anti-rabbit antibody (Sigma,
Germany) was added, and the plate was incubated at 37°C for
1 h. At last, after washing the plate three times, 100 mL of TMB
solution (Solarbio, China) was added to the plate, followed by
adding 50 mL of 2 M H2SO4 to stop the reaction, and the dual-
wavelength detection was performed at 450 nm and 630 nm.

Immunization
Six-week-old female BALB/c mice (SPF) were purchased from
Beijing Vital River Laboratory Animal Technology Co., Ltd. All of
the animal experiments and procedures were performed in
accordance with the guidelines of the Academy of Military
Medical Sciences Institutional Animal Care and Use Committee
(Ethics Approval Code IACUC-DWZX-2020-027). Mice were
randomly grouped and for the evaluation of immune effects,
and mice were immunized three times at an interval of 2 weeks.
Two weeks after the second and third immunizations, blood was
collected and the serum was separated for further analysis.

ELISA
First, 96-well plates were coated with GST-Ataa (10 mg/mL, 100
mL/well) overnight at 4°C, washed three times with PBST (PBS
with 0.05% Tween 20), and blocked with 300 mL of 5% skim milk
in PBST at 37°C for 2 h. Next, the wells were incubated with 100
mL 3-fold serially diluted serum from 1:50 at 37°C for 1 h. After
another washing step, 100 mL of HRP-conjugated goat anti-
mouse IgG, IgG1, IgG2a, or IgG2b (Beijing Biodragon
Immunotechnologies Co., Ltd.) was added to each well, and
plates were incubated at 37°C for 1 h, followed by washing five
times with PBST, and then 100 mL of TMB solution (Solarbio Life
Sciences, China) was added to each well. The reactions were
stopped with 50 mL of 2 M H2SO4, and the dual-wavelength
detection was performed at 450 nm and 630 nm.

Opsonophagocytic Killing Assay
The opsonophagocytic assay was performed as previously
described (32). Briefly, HL60 cells (ATCC, CCL-240) were
cultured in RPMI1640 medium containing 10% heat-
inactivated fetal calf serum. After 3 weeks of continuous
culture, HL60 cells (6 × 105 cells/mL) were differentiated in
RPMI1640 containing 0.8% N N-dimethylformamide (Sigma,
Germany) for 4 days. HL60 cells (4 × 105 cells per well), A.
baumannii ATCC 17978 (1 × 103 CFUs per well), and
complement (Pel-Freez, USA) were added into the wells along
with the heat-treated mouse serum (56°C for 30 min for the
inactivation of endogenous complement components). After
45 min incubation at 37°C in 5% CO2, the microtiter plates
were placed on ice for 20 min to terminate the reaction. Finally,
the mixtures were diluted and plated in duplicate on LB plates for
bacterial counting. Serum killing rates were calculated by
comparing the number of CFU with naïve serum samples.
Frontiers in Immunology | www.frontiersin.org 3
Flow Cytometry
For cell surface marker staining, draining lymph nodes (dLNs) of
each mouse were individually collected and triturated into a
single cell suspension. Then the cells were stained with different
combinations of flow cytometry antibodies for 30 min at 4°C,
which included APC-conjugated anti-mouse CD3 (eBioscience,
USA), eFluor450-conjugated anti-mouse CD4 (eBioscience,
USA), PE-conjugated anti-mouse CD8a (eBioscience, USA),
APC-conjugated anti-mouse B220 (Biolegend, USA), Pacific
Blue-conjugated anti-mouse GL-7 (Biolegend, USA), PE-
conjugated anti-mouse CD95 (Biolegend, USA), FITC-
conjugated anti-mouse CD4 (Biolegend, USA), PE-conjugated
anti-mouse PD-1 (Biolegend, USA), and Brilliant Violet 421-
conjugated anti-mouse CXCR5 (Biolegend, USA). After washing
with staining buffer (eBioscience, USA), the cells were dispersed
in 500 mL of staining buffer (eBioscience, USA) and analyzed by
flow cytometry (Beckman Coulter, Cytoflex LX).

Determination of Bacterial Loads, Cytokine
Concentration, and Survival Rate
To evaluate the bacterial load, A. baumannii ATCC 17978 was
cultured at 37°C to an OD600 of about 2.0 and then diluted with
saline to approximately 2.0 × 107 CFU/200 µL. At 12 h after
intraperitoneal inoculation, blood (10 µL) was collected and
mixed with saline (990 µL), and organs (spleen and lungs)
were removed, homogenized with saline (1 mL), and then
collected in 2.0-mL microcentrifuge tubes as initial samples.
After sample was placed at 4°C for 15 min, the supernatant of
each initial sample was diluted and cultured on solid LB medium.
The bacterial colonies were counted after culturing overnight at
37°C. Blood samples were collected, and the serum levels of IL-
1b, TNF-a, and IL-6 were determined using ELISA kits
(Dakewe). ATCC strains (ATCC 17978) and clinical isolates
(MDR-ZJ06 and XH733) were used to evaluate the survival rates.
Each mouse was intraperitoneally injected 14 days after the third
immunization with 4.9 × 107 CFU/200 µL of A. baumannii
ATCC 17978, 1.0 × 107 CFU/200 µL of MDR-ZJ06, and 4.5 × 107

CFU/200 µLofXH733. Survival ratesweremonitored continuously
for 7 days.

Statistical Analysis
GraphPad Prism 8 was used for statistical analysis. The data are
presented as mean ± SD. Data were analyzed by one-way
ANOVA with Dunn’s multiple-comparison test for the
multiple group comparison. Differences were considered
statistically significant at P < 0.05 (****P < 0.0001, ***P <
0.001, **P < 0.01, *P < 0.05).
RESULT

Expression, Purification, and
Characterization of CTB-Ataa
Ata are expressed in a variety of A. baumannii strains, and its
extracellular translocator domain forms an a-helical structure.
The peptide consisting of 39 amino acids (Ataa), which used as a
April 2022 | Volume 13 | Article 884555
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candidate antigen in this study, acts as a neck between the b-
barrel membrane-inserted anchor and the surface-exposed
passenger domains (22) (Supplementary Figure 1). To
confirm the conservation of Ataa, 1393 Ata protein sequences
of A. baumannii were obtained from NCBI database and Ataa
was completely consistent with 94% (1303/1393) of the
sequences (Supplementary Figure 2), indicating a very high
conservation of Ataa. Although this high conservation gives it
the potential to serve as a vaccine target, it is difficult to induce an
effective immune response with such a short sequence. Our
previous results have revealed that the immunogenicity of
antigens could be greatly improved when coupled with CTB.
Thus, we investigated whether the specific immune response to
Ataa could also be enhanced by the carrier. Firstly, a fusion
protein consisting of Ataa and CTB was expressed through an
isopropyl-b-D-thiogalactopyranoside (IPTG)-inducible vector,
pET30a-CTBAtaa, in which CTB was fused at the N-terminus
of Ataa. The recombinant protein CTB-Ataa was highly
expressed in the form of inclusion bodies (Supplementary
Figure 3) and refolded by dialyzing against refolding buffer at
4°C overnight. Then CTB-Ataa was obtained through further
anion-exchange chromatography and size-exclusion
chromatography steps. Purified CTB-Ataa was detected by
Frontiers in Immunology | www.frontiersin.org 4
Coomassie blue staining and confirmed by Western blot with
antibodies against CTB (Figure 1A). The size-exclusion
chromatography results showed that the target protein was
eluted in 200-240 mL from a column with a total volume of
450 mL (Supplementary Figure 4), indicating the polymer form
of the product. The Coomassie blue staining results showed that
the purity of CTB-Ataawas very high. Then, SEC-HPLC and RP-
HPLC analyses further revealed that the purity of CTB-Ataa was
greater than 98% (Figure 1B and Supplementary Figure 5). In
addition, as expected, the retention volume of CTB-Ataa in
HPLC was in line with the size-exclusion chromatography
results, indicating that CTB may maintain its pentameric state
in the fusion protein. In order to further confirm this point,
non-reducing electrophoresis was carried out. Coomassie blue
staining revealed that the CTB-Ataa band located at a molecular
weight of about 100 kDa (Figure 1C and Supplementary
Figure 6). Moreover, dynamic light scattering (DLS) showed a
monodisperse sample with a size of 10 nm in diameter
(Figure 1D). This state can be maintained at 37°C for 7 days
(Figure 1E). Because the immune enhancement effect of CTB is
largely related to the binding ability of GM1, we further analyzed
the binding ability of CTB-Ataa to GM1 by ELISA. Although the
combination with GM1 was a little decreased compared with
A CB

D FE

FIGURE 1 | Preparation and characterization of CTB-Ataa. (A) Identification of purified CTB-Ataa by SDS-PAGE and Western blot with anti-CTB. (B) SEC-HPLC
(TSK gel G2000SWXL, 5 mm, j7.8 × 300 mm) to determine the purity of CTB-Ataa. (C, D) Purified CTB-Ataa was analyzed by non-reducing SDS-PAGE (C) and
DLS (D). (E) DLS analysis of CTB-Ataa size stability at different time points upon incubation at 37°C. Data are presented as means ± s.d. (F) The GM1 binding assay
was performed to detect the binding activity between CTB-Ataa and GM1. The plate was coated with GM1 at 2 mg/mL (100 mL/well), and commercial CTB and
purified CTB-Ataa were 3-fold serially diluted from 3.3 nM. Data are presented as means ± s.d.
April 2022 | Volume 13 | Article 884555
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natural CTB, it still maintained a strong binding ability for CTB-
Ataa (Figure 1F). These above results suggested that the fusion
protein CTB-Ataa was successfully prepared and maintained
pentameric structure and the GM1 binding ability.

Safety Evaluation of CTB-Ataa
To evaluate the safety of CTB-Ataa, BALB/c mice were
immunized with 40 mg CTB-Ataa (10 times the normal dose)
and a series of indicators were detected at different time points
(Figure 2A). Compared with control group (without any
treatment), there was no significant difference in average body
Frontiers in Immunology | www.frontiersin.org 5
weight in the CTB-Ataa group (Figure 2B). Meanwhile,
cytokines, including interleukin-1b (IL-1b), IL-6, and
interferon-gamma (IFN-g), in serum were detected at 0 h,
12 h, 24 h, and 7 days. Their concentrations were within the
safe range in both groups, and no significant difference was
observed (Figure 2B). Because these three indicators reflect the
acute inflammatory response, our results indicated that CTB-
Ataa has no systemic toxicity. Furthermore, serum biochemical
indices were detected 14 days after immunization. All of
the indices, including aminotransferase (AST), alanine
aminotransferase (ALT), blood urea nitrogen (BUN), lactate
A

B

C

D

FIGURE 2 | Safety evaluation of CTB-Ataa. (A) Schematic procedure of the safety estimation. (B) Body weight and inflammatory cytokine levels (IL-6, IL-1b, and
IFN-g) in serum at different time points after immunization with 10 times the normal dose. Data are presented as means ± s.d. (C) Detection of serum biochemical
indices, including ALT, ALP, AST, BUN, and LDH, 14 days after immunization. Data are presented as means ± range. (D) HE staining analysis of mouse organs
(including heart, liver, spleen, lungs, and kidney) 14 days after immunization.
April 2022 | Volume 13 | Article 884555
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dehydrogenase (LDH), and alanine aminotransferase (ALP),
were in the normal range (Figure 2C), indicating the
biocompatibility of the vaccine. In addition, HE staining
of organ sections showed no organ damage or acute
inflammation in the heart, liver, spleen, lung, and kidney 14
days after immunization (Figure 2D), which again confirmed the
safety of the vaccine.

Enhancement of the Specific Immune
Response of Ataa by Fusing With CTB
Having confirmed the safety of the vaccine, we next evaluated
the immune effect of Ataafused with CTB. BALB/c mice
were immunized three times with an interval of 14 days, and
some indices, such as the antibody titers against Ataa, the
opsonophagocytic activity of immunized serum, and the
protection against infection, were evaluated (Figure 3A).
First, we compared the effects of two commonly used
injection methods (subcutaneous and intraperitoneal).
Frontiers in Immunology | www.frontiersin.org 6
The results showed that although the serum antibody titer of
intraperitoneally immunized mice was slightly higher than that
of subcutaneously immunized mice, there was no significant
difference between them (Figure 3B). After being challenged
with a non-lethal dose (2.0 × 107 CFU/mouse) of A. baumannii
strain ATCC 17978, the mice were dissected and the bacterial
loads in the lung, spleen, and blood were detected. Significant
reductions in bacterial load were observed in the lung, spleen,
and blood in the two CTB-Ataa-immunized groups compared
with the control, while there was no significant difference
between the CTB-Ataa groups (Supplementary Figure 7).
Moreover, in the lungs, one of the main target organs of A.
baumannii, severe tissue injury was observed from control mice,
characterized by decreased alveolar expansion, alveolar structure
disruption, lung interstitial expansion and inflammatory cell
infiltration, while no obvious pathological changes were found
in the CTB-Ataa groups (Figure 3C). The challenge experiment
showed that the survival rates in subcutaneously immunized
A

B C D

E F G

FIGURE 3 | Immune response of CTB-Ataa. (A) Immunization and efficacy evaluation schedule. (B) Comparison of Ataa-specific IgG titers between different injection
strategies. (C) HE staining analysis of lung tissue after infection of immunized mice 12 h post-challenge with a non-lethal dose. (D) Survival rates of differently
immunized mice. (E) Ataa-specific IgG levels were measured in the serum of BALB/c mice immunized with Ataa+Al and CTB-Ataa+Al after immunization. (F) Ataa-
specific IgG subtypes (IgG1 and IgG2a) were detected after the third boost. (G) Opsonophagocytic assay. Mouse serum complement, HL60 cells, and (A) baumannii
ATCC 17978 were incubated in round-bottom 96-well plates with shaking and plated in LB medium to measure bacterial survival by counting colony-forming units,
and the percentage of killing was calculated. Data are presented as means ± s.d. Each group was compared using one-way ANOVA with Dunnett’s multiple-
comparison test. ****P < 0.0001, **P < 0.01.
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mice were a little lower (Figure 3D). Considering the consistency
with the further commercial application of the vaccine, we chose
subcutaneous immunization for subsequent studies.

Then, we evaluated the enhancement effect of CTB on the
specific antibody response in mice. BALB/c mice were
immunized with one of three treatments, Al(OH)3 adjuvant
(Al), Ataa+Al, or CTB-Ataa+Al, on days 0, 14, and 28. Blood
was sampled on days 13, 27, and 41 to facilitate quantitation of
antibodies against Ataa. ELISA-based measurement of the IgG
titers showed that only CTB-Ataa-treated mice showed an Ataa-
specific antibody response (Figure 3E), indicating that the
immunogenicity of Ataa was greatly increased by CTB.
Further, antibody subtype analysis results showed that the
titers of both IgG1 and IgG2a were increased, indicating the
enhancement of both specific humoral and cellular immune
responses (Figure 3F). In addition, to identify the anti-
microbial activity of the obtained serum, bactericidal activity
was assessed by opsonophagocytic assay. The results indicated
that, compared with naïve serum group, bacteria killed by HL60
cells increased to approximately 63% when complement
inactivated CTB-Ataa antiserum was present (Figure 3G).

Prophylactic Effects Against A. baumannii
Infection by CTB-Ataa
Encouraged by the great enhancement of the antibody response
by CTB-Ataa, we next evaluated the protective effects of the
vaccine against bacterial infection. All of the immunized mice
were challenged intraperitoneally with a non-lethal dose of A.
baumannii strain ATCC 17978 (2.0 × 107 CFU/mouse) 14 days
after the third immunization. The blood of mice was collected
12 h after infection and the inflammatory factors (including IL-
1b, IL-6, and TNF-a) in serum were measured (Figure 4A). The
results showed that the concentrations of the three factors were
strongly decreased only in CTB-Ataa-treated mice, while Ataa
alone showed little effect (Figure 4A), indicating that
immunization with CTB-Ataa can significantly reduce the
systemic inflammatory response caused by A. baumannii
infection. Correspondingly, the bacterial loads in the lung,
spleen, and blood dramatically decreased in CTB-Ataa-
immunized mice, but not in mice treated with Ataa alone
(Figure 4B), which showed that the vaccine prepared by fusing
CTB with Ataa could well reduce bacterial infection of organs.
Further, when the challenge dose was increased to 4.9 × 107

CFU/mouse, we found that the mice from both the Al and the
Ataa group were died within two days of pathogen challenge,
while 90% of the CTB-Ataa-treated mice survived (Figure 4C).
In addition, we also found that CTB-Ataa could exert protective
effects against two other A. baumannii clinical isolates
(Figure 4D and Supplementary Figure 8), indicating a
promising prospect for clinical application.

Further Enhancements of the Immune
Response and Protection of CTB-Ataa by
the Addition of CpG Adjuvant
To further increase the humoral and cellular immune responses,
we added CpG adjuvant on the basis of CTB-Ataa+Al. As is
Frontiers in Immunology | www.frontiersin.org 7
known, CpG is a TLR9 agonist and has been successfully used
as an adjuvant in commercial hepatitis B vaccines (e.g.,
HEPLISAV-B®). To evaluate the immune response types after
CpG addition, we analyzed the proportions of CD4+ and
CD8+ T cells from draining lymph nodes (dLNs) 7 days
after the secondary immunization according to the previous
immunization protocol. We observed significant changes in the
ratio of CD4+/CD8+ T cells between CTB-Ataa + Al and CTB-
Ataa + Al + CpG mice (Figure 5A). Compared with CTB-Ataa +
Al, the CD4+/CD8+ T cell ratio was decreased significantly in the
CTB-Ataa + Al + CpG group, suggesting the enhancement of the
cellular immune response. Moreover, the analysis of dLN
revealed that the proportions of both T-follicular helper (Tfh)
cells and B cells in the germinal center (GC) had increased when
CpG was added 7 days after the last immunization (Figure 5B
and Supplementary Figure 9). This result indicated that the
addition of CpG also enhances the humoral immune response.
Subsequently, we tested the antibody titers of mice after each
immunization and found huge increases, consistent with
previous results, of total IgG in serum after both the second
and the third immunization in CTB-Ataa, antibody titers were
higher in the CpG group (Figure 5C). Through the analysis of
two IgG subtypes, we found that the titers of both IgG1 and
IgG2a (especially IgG2a) were significantly increased by adding
CpG (Figure 5D). In addition, the results also suggest that
immunization with CTB-Ataa + Al + CpG can produce a
higher protection rate than immunization with CTB-Ataa + Al
or CTB-Ataa (Supplementary Figure 10).
DISCUSSION

At present, A. baumannii infection is a serious concern due to its
multiple antibiotic resistance (33), which limits the treatment of
infection with multidrug-resistant A. baumannii strains. Hence,
a safe and effective prophylactic or therapeutic vaccine against
this bacterium is urgently needed. In this study, we prepared an
A. baumannii candidate vaccine by fusing only 39 amino acids of
Ata (Ataa) with CTB. After confirming the safety of CTB-Ataa, a
series of animal experiments were performed, which proved that
the vaccine can elicit an effective immune response and provide
great protection against A. baumannii strains, including two
clinical isolates, while Ataa alone has no effect. Therefore, our
work not only provides a simple and promising A. baumannii
antigenic peptide, but it also reveals two effective immune
enhancement strategies (delivery carrier coupling and adjuvant
mixing) for short peptide antigens.

Trimeric autotransporter adhesins, which are secreted through
the Type V secretion system and form trimeric complexes,
contain an N-terminal signal peptide, a long stalk domain
(passenger domain), and a conserved membrane anchoring
domain, and are extremely diverse in amino acid length (from
hundreds to thousands) (34, 35). Ata, expressed by about 78% of
A. baumannii clinical isolates, assists in the formation and
maintenance of biofilm (22) and adheres to abiotic surfaces
(36), human cells, and extracellular matrix components. It may
April 2022 | Volume 13 | Article 884555
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play an important role in immune evasion, probably by binding to
host glycan receptors (galactose, N-acetylglucosamine, and
galactose (b1−3/4) N-acetylglucosamine) (23). Therefore, Ata
was presumed to be an ideal antigen for vaccination, which was
verified by several studies (24, 25). In the present study, we
focused on the extracellular part of Ata. Although no immune
response was detected when Ataa alone, both humoral and
cellular immunity can be significantly improved after fusion
with CTB. Our results revealed that the antibody against this
short peptide is protective, and thus Ataa can be used as a
promising antigen for A. baumannii vaccine design. It is worth
noting that, to our knowledge, Ataa, only 39 amino acids, is the
shortest reported A. baumannii antigen at present. It is
Frontiers in Immunology | www.frontiersin.org 8
compatible with more delivery proteinaceous carriers, avoid
misfolding and can be coupled with other epitopes. Moreover,
our previous results have shown a simple biological method to
prepare an A. baumannii polysaccharide conjugate vaccine. By
using a protein glycosylation system, A. baumannii surface
polysaccharide could be coupled with CTB (32). Thus, based
on the current results, we can further prepare peptide–
polysaccharide dual antigen vaccines in the future.

According to our results, the immune response is greatly
improved when the peptide antigen is fused with CTB,
suggesting that the carrier plays an important role in the
enhancement of antigen immunogenicity. The same effect can
be found in conjugate vaccines, which are produced by coupling
A

B

C D

FIGURE 4 | Efficacy evaluation of the CTB-Ataa vaccine. (A) Inflammatory cytokine levels 12 h post-challenge with a sublethal dose. (B) Bacterial loads of lung,
spleen, and blood 12 h post-challenge with a sublethal dose. (C, D) Survival rates post-challenge with a lethal dose. ATCC 17978 (4.9 × 107 CFU) and XH733 (4.5 ×
107 CFU) were intraperitoneally injected 14 days after the third injection. Data are presented as means ± s.d. Each group was compared using one-way ANOVA with
Dunnett’s multiple-comparison test. ****P < 0.0001, ***P < 0.001.
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the weakly immunogenic polysaccharide antigen with carrier
protein (37–39). Polysaccharide antigens could be transformed
from TI antigen to TD antigen with the help of carriers (40–42).
In addition, various vaccine delivery systems have the ability to
significantly improve the immune response of antigens (43).
Among them, the widely focused nano-sized carriers can not
only realize the clustering of antigens, but also efficiently target
lymph nodes and present antigens (44). Although the antigen we
prepared is too small to be observed by transmission electron
microscopy, the size of the vaccine can be improved by coupling
Ataa with CTB, and a strong immune enhancement effect was
observed. Thus, our next research direction is the development of
more efficient delivery vectors to further improve the immune
response to Ataa. In conclusion, the efficient vaccine delivery
system is of great significance to improve the immune effects of
antigens, especially weak immunogenic antigens.

CTB has been used as an adjuvant in bacterial and viral
vaccines (45–48). It probably directly interacts with antigen
presenting cell (49). Many studies have reported that CTB-
antigen vaccines stimulate immune responses with a Th2 type
profile (50–52). These antigens could be internalized by antigen
presenting cells and further presented through MHC II pathways
to activate the humoral response. In addition, some researchers
have also found that CTB-based vaccines have the capacity to
Frontiers in Immunology | www.frontiersin.org 9
induce a Th1 immune response (29, 53–55), which mainly
resulted from the activation of signaling pathways encouraging
the antigen presenting cells to secrete Th1 cytokines. Some CTB-
based vaccines could induce a polarization of Th1 responses
through transcutaneous immunization (53, 56), which might be
attributed to the different microenvironment in the regulation of
immune responses and dendritic cell heterogeneity between
mucosal and non-mucosal tissues. Thus, our results showed
that both Th1 and Th2 responses to Ataa were enhanced when
fused to CTB and mixed with CpG. Besides, MHC I-restricted
antigen presentation plays a key role for CD8+ T cell activation.
Previous studies have reported CTB has the capacity to enhance
MHC I-restricted antigen presentation, due to GM1 binding-
dependent cytoplasm transportation (29, 57). We found that
CTB still maintained the binding ability with GM1 when fused
with Ata, thus promoting the differentiation of CD8+ T cells.

Synthetic CpG oligodeoxynucleotides function as pathogen-
associated molecular patterns recognized by TLR9, and they are
gradually becoming popular adjuvants. CpG could stimulate both
innate and adaptive immune responses, and many studies have
revealed that CpG has the ability to enhance antigen-specific Th1
biased immune responses (58, 59), and the enhancements of
protection against bacteria and viruses have been illustrated in
human and animal models (60–63). In this work, the Ataa-
A B

C D

FIGURE 5 | Immunostimulatory effects of CpG. (A) The ratio of CD4+/CD8+ T cells on day 7 after the second injection. (B) The proportion of Tfh cells (CXCR5+ PD-
1+ among the CD4+ cell population) and GC B cells (GL7+ CD95+ among the B220+ cell population) in dLNs on day 7 postvaccination. (C) Ataa-specific IgG titers on
day 13 postvaccination. (D) Ataa-specific IgG subtype titers and ratio of IgG1/IgG2a. Data are presented as means ± s.d. Each group was compared using one-way
ANOVA with Dunnett’s multiple-comparison test. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05; ns, P > 0.05.
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specific antibody responses could be augmented by fusing Ataa
with CTB, while this strengthening effect was further dramatically
improved when CpG was added. In particular, the improvement
of the cellular immune biased response was greater. This more
balanced immune response is conducive to the elimination of
pathogens from the body. Consistently, our previous results also
revealed that when CpG is combined with aluminum hydroxide
adjuvant, the specific immune response could be greatly improved
(64). This may be due to the negatively charged CpG which could
be better adsorbed by aluminum hydroxide (having a positive
charge on the surface), so as to prevent CpG degradation and
dilution. Thus, improving compatibility between adjuvants also
provides another strategy for the immune promotion of weak
immunogenic antigens.
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