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Two groups identified a novel human flavivirus in the mid-1990s. One group named the
virus hepatitis G virus (HGV) and the other named it GB Virus type C (GBV-C). Sequence
analyses found these two isolates to be the same virus, and subsequent studies found
that the virus does not cause hepatitis despite sharing genome organization with hepatitis
C virus. Although HGV/GBV-C infection is common and may cause persistent infection in
humans, the virus does not appear to directly cause any other known disease state. Thus,
the virus was renamed “human pegivirus 1” (HPgV-1) for “persistent G” virus. HPgV-1 is
found primarily in lymphocytes and not hepatocytes, and several studies found HPgV-1
infection associated with prolonged survival in people living with HIV. Co-infection of
human lymphocytes with HPgV-1 and HIV inhibits HIV replication. Although three viral
proteins directly inhibit HIV replication in vitro, the major effects of HPgV-1 leading to
reduced HIV-related mortality appear to result from a global reduction in immune
activation. HPgV-1 specifically interferes with T cell receptor signaling (TCR) by reducing
proximal activation of the lymphocyte specific Src kinase LCK. Although TCR signaling is
reduced, T cell activation is not abolished and with sufficient stimulus, T cell functions are
enabled. Consequently, HPgV-1 is not associated with immune suppression. The HPgV-1
immunomodulatory effects are associated with beneficial outcomes in other diseases
including Ebola virus infection and possibly graft-versus-host-disease following stem cell
transplantation. Better understanding of HPgV-1 immune escape and mechanisms of
inflammation may identify novel therapies for immune-based diseases.

Keywords: Pegivirus, GB virus, immune modulation, viral co-infection, Flavivirus
INTRODUCTION AND BACKGROUND

Following the discovery of hepatitis C Virus (HCV), it became clear that there are cases of post-
transfusion hepatitis that are not caused by hepatitis B virus (HBV) or HCV (1). Since none of the
hepatitis viruses are readily cultivated in laboratory cell culture systems, progress in identifying additional
etiologies of post-transfusion hepatitis proved difficult. In the mid-1990s, two companies independently
used recently developed molecular methodologies to identify a human RNA virus in samples obtained
from individuals with non-A, non-B, non-C post-transfusion hepatitis (2–4). The viral genome sequence
and organization shared many similarities with HCV and other members of the Flaviviridae (2, 4–6),
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and one of the groups discovering the virus named it Hepatitis G
Virus (HGV) (4), while the other was called GB virus type C (GBV-
C) (2). “G.B.” were the initials of a surgeon who developed
fulminant hepatitis in the 1960s, and whose serum caused
transmissible hepatitis in marmosets [reviewed in (1, 7]. This
“GB” serum was passaged in marmosets, and two viruses were
identified in these materials that were called GB virus A and B
(GBV-A, GBV-B) (3). Using these viral sequences as a guide, PCR
methods were developed that identified a human virus and this
virus was called GBV-C (2).

The “GB” serum reagents were extensively studied in the
1960s and 70s under the premise that they may contain the
elusive cause of post-transfusion hepatitis, which ultimately
proved to be HCV and not the GB agent (8–10). Following
identification of HGV/GBV-C, virologic and serologic studies
found that this virus is common in humans and that infection
correlates with exposure to blood-born and sexually transmitted
infections (4, 11–23). The related GBV-A and GBV-B proved to
be non-human primate viruses, and there is no evidence that the
surgeon “GB” was infected with GBV-C (reviewed in (7, 24).
Further, numerous studies demonstrated that HGV is not
specifically associated with acute or chronic hepatitis (14, 21,
25–28). In the majority of infections viremia persists for more
than one year and may persist for decades in a subset of
individuals (17, 18, 29). The underlying host factor(s)
responsible for viral clearance remain unknown.

Since the virus does not appear to cause hepatitis, and there is
no evidence that the surgeon G.B. was infected with this virus, the
two names describing this virus were not logical. A 2011 proposal
to assign the “GB viruses” into a novel genus named “Pegivirus”
this was accepted by the International Committee on the
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Taxonomy of Viruses (ICTV) in 2013 (7, 30). Pegiviruses were
comprised of viruses that demonstrated distant sequence
relatedness to other members of the family Flaviviridae based on
phylogenetic alignments of the RNA dependent, RNA polymerase.
In addition to having a distinct phylogenetic position most closely
related with the hepaciviruses within the Flaviviridae, pegiviruses
differ from other hepaciviruses in genome organization features
including an apparent lack of a nucleocapsid protein, a different
internal ribosomal entry site (IRES) structure in the 5’ non-coding
genome region, and less predicted glycosylation of the envelope
glycoprotein E2 (reviewed in (7). The name “pegivirus” was
derived from “Pe” for “persistent” and “G” representing the
historical naming of the virus as HGV and GBV-C (7).

Although initially found only in primates and bats, the host
range of pegiviruses has greatly expanded following the advent of
next-generation sequencing (31–34). The genus currently has at
least 11 host species (Pegivirus A to K) and additional host
species are continuing to be identified. Pegivirus A members
infect NewWorld primate monkeys (35–37), and bats (38), while
members of Pegivirus C infect humans and chimpanzees (2, 4,
39, 40) and other Old World monkeys (41, 42). Human pegivirus
is regularly called HPgV-1 although this has not been formally
assigned by the ICTV. Excluding HPgV-1 (pegivirus C), species
B through J infect a wide range of primates and non-primate
hosts including horses, domestic cats, lemurs, bats, dolphins,
pigs, and rodent species (31, 38, 43–50). Figure 1 outlines the
chronology of Pegivirus discovery.

Limited information suggests that pegiviruses do not transmit
readily between host species; however, HPgV-1 can infect
chimpanzees (51), and a baboon isolate of Pegivirus C can
infect rhesus macaques (42, 52). Remarkably, novel viruses
FIGURE 1 | History of Pegivirus Discovery.
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sharing pegivirus and hepacivirus features are found in non-
mammalian hosts including sharks, lizards (Australian gecko),
and geese (53–56). The goose pegivirus is reported to replicate in
goslings, embryonated goose eggs, and primary goose embryo
fibroblasts, and thus is the first pegivirus efficiently cultured in
vitro (55). Until the goose pegivirus was recently described, no
pegivirus has been described that replicate efficiently in cell
culture systems and this has greatly hampered understanding
of the biology of this enigmatic virus. The ability of all of the
pegiviruses to cause persistent infection has not been confirmed.

A second human pegivirus closely associated with HCV
infection was discovered in 2015 (57, 58). This virus is referred
to as HPgV-2 or HHPgV-1, while the original HGV/GBV-C is
referred to as HPgV-1. HPgV-2/HHPgV-1 is closely associated
with HCV and is a different virus (not a different genotype) than
HPgV-1. HPgV-2 is much less prevalent. Although there are few
reports elucidating the pathogenic outcomes of this infection, in
contrast with HPgV-1, the virus shares some virologic features
with HCV including a predicted type IV IRES and highly
glycosylated E2 protein (58). Nevertheless, a recent study
shows that, like HPgV-1, HPgV-2 appears to be lymphotropic.
More study of this virus is needed (59). Since current knowledge
related to HPgV-2 is limited, the virus is not in the same
phylogenetic lineage as HPgV-1 and is not known to influence
other diseases, HPgV-2 will not be discussed further in
this review.

HPgV-1 infection occurs globally, and phylogenetic studies
identify 7 genotypes that are geographically distributed (60–
Frontiers in Immunology | www.frontiersin.org 3
64). The virus is thought to be ancient based on several lines of
evidence. First, genotypes are distributed in patterns that
mimic human migration from Africa (7, 61) and the genetic
distance between genotypes is similar to that of mitochondrial
DNA between peoples of different races (61). South American
populations comprised of mixed European and indigenous
ancestry have a mixture of genotypes 2 (European/N.
American) and 3 (Asian), while indigenous South Americans
have genotype 3. Further, the prevalence of the virus in
indigenous populations is similar to that of other regions of
the world (61, 65–67). Finally, HPgV-1 is closely related to
both old world and new world pegiviruses, suggesting that the
virus was in primates prior to the split of the continents (61).
Taken together, it has been suggested that HPgV-1 was present
in primordial humans. Of note, recombination between
genotypes has been described, which may complicate
phylogenetic analyses and interpretation of genotypic
distributions (68).

HPgV-1 shares many features with HCV. The viral genome is ~
9.4 kB long, has a positive polarity and serves as the messenger
RNA being translated off of its 5’ non-coding IRES (2, 4, 6, 35, 69,
70). The genome includes a long open reading frame that is
translated into a C-terminal polyprotein with structural proteins
post-translationally processed by cellular signal peptidase, and
nonstructural proteins processed by two viral proteases (NS2 and
NS3) and the NS3 co-factor (NS4A) (71, 72). A schematic of the
viral genome, translation product polyprotein, and final protein
composition is shown in Figure 2.
A

B

D

C

FIGURE 2 | Schematic of the genome organization of pegiviruses. Pegivirus genomes range from 8.9 to 11.3 kb, and those with longer genomes (e.g. HPgV-2)
produce two additional structural proteins (X and Y). The genome (A) has a highly structured 5’ noncoding region (NCR) that contains an internal ribosomal entry site
directing translation, and a 3’ NCR. The positive sense viral genome is translated and encodes a single polyprotein (B) that is co- and post-translationally cleaved
into the final viral proteins (C or D). Structural proteins are cleaved by host cell signal peptidases. Nonstructural proteins NS2-NS3 are cleaved by the NS2-NS3
autoprotease while NS3 to NS5 proteins are cleaved by the NS3-NS4A protease complex. All pegiviruses have two structural proteins (envelope glycoproteins E1
and E2), and those with longer genomes have two additional predicted structural proteins - a basic protein of unknown function upstream of E1 (Y) and some
pegiviruses contain a predicted glycoprotein downstream of E2 (X). The RNA dependent, RNA polymerase resides in NS5B. The human pegivirus (HPgV-1) genome
is approximately 9.4 kb and the final protein organization is shown in the middle panel (B).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Stapleton Human Pegivirus Interference With HIV
TRANSMISSION AND EPIDEMIOLOGY

HPgV-1 is transmitted via blood exposure, sexual exposure, and
from mother to child (11, 12, 17, 21, 73–79). Based on
transfusion studies, HPgV-1 infection typically lasts for > 6
months and is cleared in more than 50% of infections within 2
years (12, 18, 80). In a subset of individuals, viremia persists for
more than two years, and for longer in some individuals (29, 81).
In those who clear viremia, antibodies to the major viral envelope
glycoprotein (E2) are usually detected and these antibodies are
somewhat, though not completely protective (82–84).
Interestingly, more than 90% of viremic individuals do not
have detectable E2 antibodies, and no reproducible antibody
pattern against any viral protein is elicited, suggesting a
mechanism of immune evasion not described for other virus
infections (reviewed in (7, 24, 28).

Based on E2 antibody and viremia prevalence studies, HPgV-
1 is extremely common (12, 17, 21, 76, 84, 85). Viremia
prevalence among healthy blood donors in developed countries
ranges from 1.8% to 6% and E2 antibody prevalence ranges from
10 to 15% (7, 29, 67, 84, 86–89). The prevalence of infection in
developed countries is estimated to be as high as 20% based on
viremia and antibody determination, and infection is two to five
times more frequent in developing countries and in individuals
with other sexually transmitted or bloodborne infections (7, 29,
67, 84, 86–89). Since antibodies are lost in some individuals over
time, prevalence estimates based on viremia and antibody
detection likely represent an underestimate of true infection
rates. A recent analysis of 79 studies including a meta-analysis
of 63 of these found the global prevalence in healthy volunteer
blood donors to be 3.1%, with geographic differences ranging
from 1.7% in North America to 9.1% in South America (88).
Complicating determinations of prevalence, reinfection of people
who have lost antibodies is described (29, 90), and a small
proportion of viremic individuals have detectable E2 antibodies
(29, 91). The mechanisms underlying viral clearance and the
combination of viremia with E2 antibodies are unclear.

Of note, no country screens blood donors for HPgV, despite
the fact that viremia is common (2, 4). The argument against
screening includes the fact that roughly one in 30 donations
would need to be discarded in the U.S., greatly reducing blood
availability for an infection, HPgV-1, that does not appear to
cause significant disease. A recent study found that there are
more than 17.9 million units of blood products transfused in the
U.S. in 2017 (92), suggesting that approximately 1,000 blood
product units containing HPgV-1 are transfused every day in the
United States (92).

As noted above, HPgV-1 prevalence is higher among
individuals who are highly exposed to bloodborne or sexually
transmitted infections compared to healthy blood donors (21, 67,
76, 93, 94). In people living with HIV (PLWH) for example, 39%
were viremic and 45% had detectable E2 antibody in the
Multicenter AIDS Cohort study group, suggesting near universal
infection (29). The proportion of PLWHwho cleared viremia over
six years of observation also appears to be lower than that of
healthy blood donors (29, 81). Viremia rates in PLWH
vary between studies, ranging from 15% to 41% [reviewed in
Frontiers in Immunology | www.frontiersin.org 4
(84, 95–97]. Further evidence of reduced clearance in PLWH is
drawn from the finding that the ratio of E2 antibody to viremia is
higher among people living with HCV infection (98). Given the
rate of HPgV-1 viremia in healthy blood donors and the increase
prevalence among people with other transmission risks, it appears
that perhaps one third of humans experience HPgV-1 infection
during their lifetime (7, 84).
DISEASE ASSOCIATIONS

HPgV-1 infection has been studied in a wide variety of people with
and without chronic diseases. Taken together, studies do not show
that the virus is clearly responsible for any acute or chronic disease
(1, 28, 95, 98–105). Specifically, HPgV-1 is not associated with more
extensive HCV-related disease, post-transplant liver disease or non-
A to non-E hepatitis. This appears to be related to viral tropism, as
evidence strongly suggests that the virus is lymphotropic.
Supporting this hypothesis, removal of the donor liver in HCV/
HPgV-1 co-infected individuals undergoing liver transplant results
in a transient, but profound reduction in HCV viral load with no
significant change in quantitative HPgV-1 viremia (106). HPgV-1
RNA is found in T bone marrow and spleen tissues (107–109), and
in circulating T and B lymphocytes, monocytes, and NK cells (94,
110–116). Epidemiological studies also suggest that HPgV-1 is
lymphotropic, and viral transmission mimics that of HIV (21, 76,
91, 94, 97, 117, 118).

Incubation of HPgV-1 with healthy donor peripheral blood
mononuclear cells (PBMCs) or culture of PBMCs from HPgV-1
viremic individuals results in low level release of viral RNA into
culture supernatant fluids, and T cell and NK cell functions are
altered in vitro and in vivo (see below) (111–115, 119–121). The
virus cannot be passaged for more than a few cycles in cell
culture, and thus circulating PBMCs do not appear highly
permissive for infection (94, 113). The primary cell type
infected by HPgV-1 has not been identified, and there is no
animal model of HPgV-1 infection to address this question
directly. A pegivirus animal model was developed in rhesus
macaques using a baboon pegivirus as the inoculum (42, 52).
The distribution of baboon pegivirus RNA was consistent with
studies of humans showing that bone marrow is the major
location of both positive and negative (replicative) forms of
HPgV-1 RNA (42, 109). Of note, this model may not be
predictive of human pegivirus 1 infection, as there are
sequence differences between simian and human viruses in
critical regions of the genome.

Nevertheless, the specific cell type that is primarily infected
and produces HPgV-1 in vivo remains a key unanswered
question in HPgV-1 biology. Given the bone marrow location
and distribution of virus RNA in human PBMCs, it has been
speculated that a hematopoietic stem cell is the primary site of
infection, and that a key replication factor (receptor,
transcription factor, etc.) necessary for efficient and productive
infection is lost during cell differentiation. Nevertheless, high
total body levels of virus are present in infected individuals, with
average plasma viral loads ranging from 1 x 105 genome
equivalents/mL (GE/mL) to as high as 1 x 107 GE/mL (67,
May 2022 | Volume 13 | Article 887760
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122). Of note, viral load is distributed in a bi-phasic pattern.
Approximately two thirds of healthy blood donors have an
average viral load of 5 x 106 GE/mL while the remaining one
third of individuals have a viral load of approximately 8 x 103

GE/mL (67). The reason for this biphasic distribution in viral
load is unclear but may relate to host specific immunity, or
perhaps to prior infection with some existing adaptive immune
responses. It would be interesting to follow these subjects
longitudinally to see if clearance rates over time differ based on
viral load.

A variety of diseases have been studied to determine if there is
an association with HPgV-1, and there is no clear association
with fulminant hepatitis (98, 123, 124), aplastic anemia (15, 125,
126), hepatocellular carcinoma (103, 127, 128), multiple sclerosis
(MS) (129), porphyria cutanea tarda (130), oral lichen planus or
oral carcinoma (131), and others reviewed in (26–28, 95).
However, there are two clinical situations in which HPgV-1 is
associated with disease, non-Hodgkin’s lymphoma (NHL) and
sporadic encephalitis.

In several studies including a meta-analysis, HPgV-1
infection is associated with approximately a 2.8-fold increased
risk of developing NHL (132–135). HPgV-1 has also been
associated with sporadic encephalitis, and viral RNA and
antigens were detected in post-mortem brain tissues from two
people with this condition (136, 137). A variant of HPgV-1
containing a deletion in the NS2 coding region was identified in
the brain tissue of one subject, and this NS2 deletion virus
appeared to replicate better in astrocytes than the wild type
HPgV-1. HPgV-1 replication has recently been demonstrated in
human astrocytes and microglia in vitro, though replication was
not identified in neurons or an oligodendrocyte-derived cell line
(137). HPgV-1 infection of human glia cells led to the
suppression of peroxisome-associated gene expression which
was accompanied by reduced expression of interferon-beta,
interferon regulatory transcription factors 1 and 3, and
mitochondrial antiviral signaling protein. These changes were
consistent with findings in the brain tissue obtained from the
patients with HPgV-1 and sporadic encephalitis (137). Given the
high prevalence of HPgV, the high serum and PBMC viral load,
and low rates of sporadic encephalitis, it remains unclear if
HPgV-1 commonly infects neural tissue or has any direct
neurological outcomes in those without encephalitis. Of note,
in the rhesus model of pegivirus infection neural tissues did not
demonstrate increased levels of viral RNA (42). It will be
important to clarify the host feature(s) associated with putative
HPgV-1-related encephalitis.

Among pegivirus infections in non-human species, no
definitive association has been identified with a specific disease
entity. Early reports suggested that a divergent member of the
pegivirus genus found in horses (called Theiler’s disease-
associated virus) was responsible for Theiler’s disease (44, 138).
However, this conclusion was later shown to be spurious (139,
140). More recently, a novel pegivirus was identified in a research
colony of common marmosets (Callithrix jacchus) in animals
that died of lymphocytic enterocolitis (34). The investigators
named this new virus the “southwest bike trail virus” (SOBV).
Frontiers in Immunology | www.frontiersin.org 5
Although identified in ill marmosets, a prospective analysis of a
colony of 85 common marmosets failed to identify an association
between SOBV infection and lymphocytic enterocolitis or any
other disease. The prevalence of SOBV in common marmoset
was high (34%) illustrating the difficulty in assigning disease
causality for a prevalent virus (34). To date, SOBV has not been
identified in common marmosets found in the wild and it is not
clear if this species is the natural host for SOBV (34, 141).
CLINICAL EVIDENCE OF
VIRAL INTERFERENCE

In the first 5 years following the discovery of HPgV, more than
600 papers were published examining the potential clinical
outcomes of infection, with most of these studies conducted by
research groups whose focus was on viral hepatitis. Once there
was clear evidence that HPgV-1 does not cause acute or chronic
liver disease (26, 27), research interest and publication rates fell
rapidly. However, small studies from Japan, Germany, the U.S.
and France described the role of HPgV-1 in liver disease in HIV
coinfection (76, 83, 142, 143). These reports confirmed that
HPgV-1 was not associated with liver disease; however, people
with HIV and HPgV-1 coinfection appeared to have prolonged
survival compared to those with HIV alone. These data were
subsequently confirmed in two large, cross-sectional studies of
people with HIV infection. The relative risk of mortality was 3.7-
fold (95% C.I. 2.5 – 5.4) higher among those without HPgV-1
infection in a U.S. study (94) and also significantly higher in a
German study (122), although relative hazard rates and
confidence intervals were not described for the latter.
Interestingly, HPgV-1 viral loads were inversely related to HIV
RNA levels, and HPgV-1 infection did not prevent CD4
depletion (67, 94, 122, 144). Nevertheless, CD4 counts were
higher overall in those with HPgV-1 compared to those
uninfected in several studies (67, 76, 94, 122, 145, 146).

A legitimate criticism of these early studies related to the fact
that the duration of HIV infection was unknown at the time of
HPgV-1 sampling. If HPgV-1 were acquired late in infection this
would bias prevalence towards those living longer with HIV (118).
An alternative explanation for the beneficial observation suggested
that HPgV, increasingly recognized as a lymphotropic virus, was
simply a marker of conserved CD4 cells. If so, CD4 depletion
accompanying HIV infection would lead to a loss of HPgV-1
viremia (Van der Bij et al., 2005). This latter explanation was not
consistent with the finding that survival was reduced in PLWH
who presented with very low CD4 counts (< 50/mm3) (94, 147).

To address these limitations, two studies were conducted in
HIV cohorts with known or an estimated time of HIV infection. In
the Multicenter AIDS Cohort Study group, HPgV-1 viremia and
E2 antibody were characterized in 271 individuals with
documented HIV seroconversion within 12 months of the first
positive HIV antibody test. In this “early” group, no survival
benefit was observed; however, follow up testing 5-6 years
following seroconversion found that those without HPgV-1
infection were 2.83-fold more likely to die in subsequent
May 2022 | Volume 13 | Article 887760
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observation compared to those who were persistently HPgV-1
viremic (29). In addition, almost 20% of HPgV-1 viremic
individuals cleared HPgV-1 in the first 5 to 6 years after
seroconversion. Individuals who cleared viremia had
significantly higher mortality than those who were persistently
viremic (3.85-fold) suggesting either that HPgV-1 clearance results
in the loss of a beneficial factor, or that clearance of viremia is
related to a host variable that overcomes HPgV-1 immune escape
mechanisms and which hastens HIV-related disease. Two
additional studies confirmed that loss of HPgV-1 viremia was
associated with significantly increased mortality (118, 148).

The Amsterdam HIV Study Group also examined the role of
HPgV-1 on survival in people living with HIV. Although their
data were highly consistent with the MACS study, the authors
applied several statistical models to the data and came to different
conclusions (118). Similar to the MACS study, the primary,
unadjusted analysis found that mortality was significantly lower
(RH 0.52, 95% CI 0.32-0.85) in those with persistent HPgV-1
infection. Three additional statistical models were applied to these
data. In the first model, which was controlled for age at
seroconversion, antiretroviral therapy, CCR5 genotype, baseline
CD4, and HIV RNA 1 year after seroconversion, persistent HPgV-
1 viremia was significantly associated with reduced mortality (RH
0.57, 95% CI 0.35-0.94). In the second model, the same variables
plus time-varying HIV viral load were controlled and there
remained a survival benefit (relative hazard of mortality 0.47,
95% CI 0.35 – 0.93) in those with persistent HPgV-1 infection. In
the third model, time-varying CD4 count was added to the other
cotrolled variables, and there remained a survival benefit (RH
mortality 0.74, 95% CI 0.45 – 1.25); however, statistical
significance was lost. The authors concluded from these data
that HPgV-1 viremia is a marker of CD4 T cell number and
that HPgV-1 is not a causative factor in the improved survival
observed in the other models (118).

Limitations of the Amsterdam study include that the date of
seroconversion was calculated and not measured directly. Since
the calculated method of HIV infection has a relatively wide time
window for seroconversion (149), the duration of HIV infection
in this group was far less accurate than in the MACS study.
Secondly, several studies demonstrate that CD4 decline is slowed
in HPgV-1 infected PLWH (29, 76, 94, 122, 145). Since death in
HIV-1 infection is caused by immune deficiency directly
correlated to CD4 depletion, CD4 count is in the causal
pathway for death. Controlling for time-varying CD4 removes
the differences in CD4 decline in those with and without HPgV-1
infection, and from a statistical standpoint, controlling avariable
in the causal pathway should remove any potential benefit of
HPgV-1 (147). Nevertheless, there remained a 26% reduction in
mortality in those with persistent HPgV in this model. This
suggests that pegivirus viremia influences mortality by more than
expected from its altered rate of CD4 depletion (147, 150). A
meta-analysis of published studies meeting rigorous criteria
confirmed a reduction in mortality in HIV infection for those
with HPgV-1 co-infection (RH 0.41) (96).

Despite a large number of studies showing survival advantage,
lower HIV VL, and higher CD4 in those with HIV and HPgV-1
Frontiers in Immunology | www.frontiersin.org 6
coinfection, the interpretation of the Amsterdam data continues
to reduce acceptance of the apparent beneficial effect of HPgV-1
on HIV survival. Since there is not a good animal model for
HPgV, and human challenge experiments proposed to the FDA
were not allowed to proceed (using licensed blood products),
Koch’s postulates have not been confirmed. A close proxy to
Koch’s postulates was assessed by Vahidnia et al., who tested
plasma samples obtained from people living with HIV who had
received blood transfusions in the 1980s and 1990s. Pre- and
post-transfusion samples and samples from the transfused blood
product were available for HPgV-1 viremia testing, and
individuals who acquired HPgV-1 from transfusion were
found to have a reduced risk of death (RH 0.22) compared to
those who did not acquire HPgV-1 (151), confirming a direct
role for HPgV-1 infection and prolonged survival in
HIV infection.

Finally, two studies found that HPgV-1 infection in women is
associated with reduced HIV transmission from mother to child
in the pre-highly active antiretroviral therapy era. A U.S. study
found an association between maternal HPgV-1 viremia in the
third trimester and reduced HIV infection in the child (152). A
large study in Thailand found that, among infants who acquired
HPgV-1 during delivery, HIV transmission was reduced by 87%,
further supporting an HPgV-related reductions in HIV disease
outcomes (78).

Taken together, the data demonstrating a survival benefit
among PLWH who have HPgV-1 coinfection is thus supported
by numerous clinical studies. Two papers recommend studying
HPgV-1 infection as a “biotherapy” for HIV infection (153, 154).
To date, regulatory groups have not approved this approach. The
following section will summarize data investigating mechanisms
by which HPgV-1 might influence HIV disease outcomes.
POTENTIAL MECHANISMS OF HPGV-1
INTERFERENCE WITH HIV

Evidence of a Direct Antiviral Effect
Infection of healthy human PBMCs with HPgV-1 for 24 hours
prior to adding HIV results in more than a 90% reduction in HIV
production (94, 119, 155). The extent of inhibition in HIV
replication was reduced if HPgV-1 was added simultaneously
or 24 hours after HIV infection, although HIV replication was
still significantly reduced (94). Of note, PBMC infection with
HPgV-1 is inefficient, and replication kinetics are extremely
virus- and host-cell specific (113). Maintaining fresh PBMCs
obtained from infected individuals in cell culture leads to low
levels of HPgV-1 production over long periods of time, up to 10
weeks in many instances (114, 115). In this approach, the
majority of PBMCs die in the first week but a small population
of minimally metabolically active lymphocytes persist and release
low levels of HPgV-1 RNA into the culture supernatants. Early
studies found that expression of the HIV co-receptor CCR5 was
reduced on CD4+ and CD8+ T cells in individuals with HPgV-1
and HIV co-infection compared to HIV mono-infected (156,
157). This result was recapitulated and extended in vitro (155),
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and incubation of PBMCs with HPgV-1 upregulated chemokine
ligands for the two HIV co-receptors, CCR5 and CXCR4.
Further, co-receptor expression was reduced under these
conditions (155, 158).

Studies were designed to examine the ability of specific viral
components to inhibit HIV with the hope of identifying novel
antiviral agents that may have low risk of mutational escape.
Expression of the NS5A protein in a CD4+ T cell line resulted in
highly (>90%) suppressed HIV inhibition (159, 160). By making
expressing a series of NS5A deletions, the inhibitory region was
found to reside in a small (16 amino acid) E2 peptide region. HIV
inhibition was observed with viruses representing different
genotypes, and NS5A reduced CD4 and CXCR4 expression
and increased production of the CXCR4 ligand SDF-1 (159,
161, 162). HIV inhibition required expression of the NS5A
peptide region, as cells expressing NS5A coding RNA with a
frameshift inserted to abolish protein synthesis did not inhibit
HIV. (159) (Figure 3).

In addition to NS5A, recombinant HPgV-1 envelope (E2)
protein inhibited HIV replication in vitro (158, 163, 164). Similar
to the approach used with NS5A, expression of HPgV-1 E2 in
CD4+ T cell lines also potently inhibited HIV replication.
Deletion mutagenesis identified a 17 amino acid E2 peptide
previously shown to be involved in virus cellular binding was
sufficient to inhibit HIV replication (McLinden et al., 2006;164,
165). As with NS5A, point mutations in this E2 peptide reversed
the inhibition, and synthetic peptides containing the HIV TAT
transduction domain peptide to provide entry into cells resulted
in HIV inhibition compared to control peptides (164).
Additional peptide regions of HPgV-1 E2 or E1 interfere with
HIV replication (164, 166–174). Of note, E2 peptide regions
shown to inhibit HIV in vitro are not consistent between
different experimental systems; however, HPgV-1 E2- and E1-
mediated HIV inhibition correlated with reduced HIV entry in
most reports (163, 164, 166, 169–173).
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In addition to reducing HIV entry, HPgV-1 E2 protein
appears to have additional effects on HIV replication by
inhibiting HIV GAG assembly and release (175). Specifically,
expression of HPgV-1 E2 inhibited Gag processing with no
change in the GAG precursor Pr55, but with reduced levels of
the capsid regions CA24 and MAp17, both of which are
phosphorylated motifs (175, 176). Glycosylated HPgV-1 E2
disrupted GAG trafficking to the plasma membrane, and
reduced HIV particle production (175). Taken together HPgV-
1 E2 protein and possibly an HPgV-1 fusion motif on E1 inhibits
HIV replication in vitro.

The cellular receptor for HPgV-1 remains uncharacterized.
An early study suggested that HPgV-1 E2 binds to CD81 (177),
which serves as the major HCV E2 binding receptor on cells
(178, 179), However, subsequent studies using CD81 deificient
cell lines and competition experiments showed that CD81 is not
required for E2 cell binding (180). Although these finding
suggest that potential, peptide-based or small molecule HIV
inhibitors based on HPgV-1 peptides might be developed, the
widespread use of highly active, combination antiretroviral
therapies essentially removed the need to pursue this novel
therapeutic approach.

A third HPgV-1 protein has antiviral activity in vitro. The
HPgV-1 NS3 serine protease inhibits HIV replication in vitro, and
this inhibition requires protease activity (72). Further, HPgV-1
NS3 protease inhibits the induction of host Type 1 interferon
responses independent of its antiviral activity (181). Type 1
interferons are important contributors to a complex, cross-
regulatory immune network, thus HPgV-1 interference with this
network may enhance viral replication by reducing innate
immune responses, or be antiviral by reducing host immune
activation, a key element in HIV-1 pathogenesis (182).While
HPgV-1 viremia is associated with the greatest reduction in
mortality in studies of people living with HIV (PLWH), two
studies identified an association between the presence of HPgV-
FIGURE 3 | Expression of HPgV NS5A peptides inhibits HIV replication, adapted from References (159, 162). Schematic representation of the region of NS5A
protein stably expressed in CD4+ T cells. The regions that inhibited HIV replication are shaded. Full-length NS5A protein (414 amino acids) is shown on top, and
deletion proteins below. The 16 aa peptide from 152 – 167 was sufficient to inhibit HIV replication. Scrambling the order of the 16 amino acids or mutating the
putative phosphorylation site (serine) at amino acid 158 abolished HIV inhibition (scr), while mutating this to a glutamic acid (phosphomimetic) restored HIV inhibition
functions. FS represents the full-length RNA for NS5A in which a frame shift insertion was created to abolish NS5A protein expression.
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1 E2 antibody and improved survival in those without viremia or
E2 antibody (29, 91). Characterization of HPgV-1 E2 antigenicity
is limited, although anti-peptide antibodies were detected directed
against inconsistent regions of the E2 protein (183, 184). These
studies do not contain controls with and without HPgV-1 viremia,
or pre- or post-HPgV-1 infection, and it is not clear that these tests
can differentiate active or cleared viremia, thus their utility in
diagnostic assays is untested.

Limited numbers of well characterized E2 monoclonal
antibodies (MAbs) have been generated (185), and one of these
antibodies reacts with the same 17 amino acid peptide region
responsible for HIV inhibition in cell culture systems (164, 186).
Seven of the eight human MAbs generated by DNA
immunization recognize conformational epitopes on E2, and
based on competition studies, bind to clustered and overlapping
epitopes identifying a putative single, immunodominant
antigenic site on the virus particle (185, 186). The one
antibody that bound a linear epitope reacted with two
overlapping peptides. Surprisingly the antibody did not bind to
the 9 amino acid overlap domain and additional amino acids
from either the N-terminus or C-terminus of this overlap was
required for antibody binding, suggesting a conformational
component to the antibody binding site (186).

Since two clinical studies found an association between
HPgV-1 E2 antibodies and improved survival, HPgV-1 E2
MAbs were incubated with HIV and surprisingly these
neutralized HIV infection (165). Rabbit and murine sera
post-E2 immunization also neutralized HIV infectivity and
precipitated HIV particles from diverse HIV lineages while
pre-immunization sera did not (165). Thus, HPgV-1 E2
antibodies raised against recombinant protein or peptides
have neutralizing activity against HIV and appear to react
with non-gp120 regions of the HIV envelope (165). HPgV-1
E2 protein was included in a multivalent HIV vaccine candidate
that shows promise against infection; however, the relative
importance of this heterologous antigen remains to be
elucidated (187).

Clinical and Laboratory Evidence for
HPgV-1 Immune Modulation
Several lines of clinical evidence emerged suggesting that HPgV-
1 modulates host immune responses, and that these
immunomodulatory consequences of infection may influence
HIV pathogenesis. Early studies found reduced levels of CCR5
levels on CD4+ and CD8+ T cells in HPgV-HIV co-infected
individuals compared to those without HPgV-1 (156, 157, 188,
189). This was initially considered an antiviral effect reducing
HIV entry; however, CCR5 is upregulated by immune activation,
a key requirement for HIV replication and pathogenesis (190–
193). As noted above, in vitro studies resulted in reduced CCR5
and or CXCR4 levels and upregulation of inhibitory chemokine
ligands (155, 158, 159). The effect of HPgV-1 on HIV
reactivation was evaluated using PBMCs obtained from PLWH
who were virally suppressed for more than 6 months. HPgV-1
reduced IL-2 and PHA stimulated latent HIV reactivation in
vitro, suggesting that HPgV-1 may hinder activation-induced
Frontiers in Immunology | www.frontiersin.org 8
therapeutic “cure” strategies for HIV, especially since up to 41%
of PLWH HPgV-1 coinfection (84, 114, 194).

Several clinical studies suggest that HPgV-1 reduces immune
activation. For example, longitudinal measurement of circulating
cytokine levels in HIV infected individuals found that HPgV-1
coinfection is associated with maintenance of a Th1 profile while
those with mono-infection become polarized towards a Th2
profile (145). This is supported in vitro as NS5A expression in
a CD4+ T cell line downregulated CD4 and key Th2 cytokines
(e.g. IL13) (195). Some data suggest that HPgV-1 genotypic
differences may alter cytokine levels (196).

Recombinant IL-2 was tested as an adjunctive therapy for
HIV in the 1990s (197). Although IL-2 therapy resulted in highly
significant increases in CD4 counts, clinical endpoints were not
improved and therapy had many side effects and was never
pursued for clinical use (197). To assess the potential relationship
between HPgV-1 infection and IL-2-mediated CD4 expansion,
HPgV-1 RNA was characterized in samples obtained from HIV-
positive subjects prospectively enrolled in a randomized trial of
IL-2. Surprisingly, CD4 counts did not increase in those with
HPgV-1 co-infection whereas those without HPgV-1 had a rise
of more than 1,000 CD4 cells/mm3, suggesting that HPgV-1
interferes with CD4 expansion and IL-2 signaling (198).
Examining this in vitro, recombinant HPgV-1 E2 protein
reduced IL-2 receptor mediated STAT5 activation following
IL-2 receptor stimulation (199). Further, HPgV-1 E2 protein
reduced T cell proliferation and cell surface markers of T cell
activation following stimulation through the T cell receptor
(TCR) (121, 199).

Maidana-Giret et al. found that HPgV-1 was associated with
reduced CD4+ and CD8+ T cell activation markers (CD38, HLA
DR) during acute HIV infection (188). This was confirmed in
individuals with chronic HIV infection, with HPgV-1 co-infected
people having significantly reduced activation marker expression
regardless of viral suppression, and also with reduced frequency
of circulating double negative T cells (189, 200). Immune
activation markers were not only reduced in T cells, as HPgV-
1 coinfection was associated with reduced activation markers on
B cells, monocytes, and NK cells (201). Since HIV induces
chronic immune activation, and increased activation markers
are highly predictive of HIV disease progression, these studies
suggest that HPgV-1 mediates its associated survival benefit by
dampening immune activation (202).

A series of CD4+ T cell lines expressing E2 protein or E2
protein deletions identified a 13 amino acid peptide region that
was sufficient to reduce TCR-mediated activation (121). HPgV-1
reduced activation of the proximal tyrosine Src kinase (LCK) in
the TCR-induced signaling cascade, and the region involved was
independent of the peptide region that inhibited HIV replication
(121, 164) (Figure 4). The E2 amino acid sequence required for
TCR signaling inhibition is predicted to be a substrate for LCK,
and mutation of the tyrosine in this peptide restored TCR
function. Further, HPgV-1 E2 was phosphorylated by LCK in
vitro, suggesting that E2 competitively inhibits TCR-mediated T
cell activation and IL-2 release (121, 199). In addition, IL-12
receptor-mediated NK cell activation is reduced by HPgV-1 and
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recombinant E2 (203), consistent with clinical observations that
NK cell activation is reduced in HPgV-HIV coinfected
individuals compared to those with HIV monoinfection (201).

Of note, TCR signaling is not abolished by HPgV-1 or E2, and
increasing the stimulus overcomes the inhibition in vitro. This is
consistent with the finding that people who have HPgV_1
infection are not clinically immune compromised. Further,
since HIV inhibition and TCR interference require different
regions of the E2 protein, it suggests that both antiviral and
reduced T cell activation influence HIV replication.

The innate antiviral immune response influences HIV disease
progression, so potentially HPgV-1 might activate innate
immunity in PLWH and thus slow disease progression. Lalle
et al. found enhanced activation of the interferon system and
circulating dendritic cells including promotion of interferon-
gamma and activation and maturation of circulating dendritic
cells in HPgV-1 co-infected individuals compared to HIV-mono
infection (204). In contrast, Hoseini et al. did not find any
differences in interferon producing cells among HPgV-1 – HIV
coinfected individuals (205), and serum cytokines revealed a
reduction in proinflammatory cytokines one year after HPgV-1
infection, although in the acute phase of HPgV-1 (first three
months after infection), pro-apoptotic cytokines were
upregulated (206). Chronic HPgV-1 coinfection in HIV was
associated with significantly lower numbers of Fas-expressing
CD4+ T cells when compared to HIV mono-infected (207). Since
Fas expression correlates with Fas-mediated apoptosis, HPgV-1
Frontiers in Immunology | www.frontiersin.org 9
may potentially slow CD4+ depletion by reducing apoptosis and
T cell activation (115, 116, 156, 157, 188, 189, 199, 200, 203, 207).

Like HCV, HPgV-1 viremia can be cleared in individuals
treated with alpha-interferon (208–212), though factors
predicting interferon susceptibility have not been identified.
Like HCV, sequence polymorphisms in the HPgV-1 NS5A
protein correlate with interferon sensitivity, (213–215). Two
HPgV-1 proteins have direct anti-interferon activities. NS5A
blocks dimerization of PKR following interferon stimulation
(215), and as noted above, the NS3 serine protease blocks the
induction of Type 1 interferons and this requires active HPgV-1
protease activity (181).

Taken together, clinical studies illustrate that HPgV-1
infection is associated with reduced immune activation despite
the presence of high viral loads, and laboratory studies identify
several mechanisms by which HPgV-1 interferes with immune
cell functions. Mechanisms supported by in vitro or in vivo
evidence are summarized in Figure 5. Since HPgV-1 is not
associated with immune suppression, the effects of HPgV-1
appear to reduce but not block immunologic hyper-activation.
Since HIV disease progression is largely driven by chronic
immune activation, it is likely that these immunologic effects
of HPgV-1 contribute to the beneficial outcomes observed in
numerous clinical studies. Since immune activation can be
stimulated with sufficient stimulus, HPgV-1 appears to provide
a beneficial dampening of immune activation without resultant
immune deficiency.
FIGURE 4 | HPgV E2 protein has two discrete regions that interfere with either HIV replication or T cell activation adapted from References (121, 164). Schematic
representation of the regions of E2 protein expressed by stably transfected CD4+ T cells that either inhibit HIV replication or blunts T cell receptor (TCR) signaling.
HPgV E2 regions that both inhibited HIV and TCR signaling are shaded. Those that only interfere with TCR are white. E2 regions inhibiting HIV replication have
narrow, forward slash shading, while regions that did not interfere with either HIV replication or TCR signaling are wide, backslash shaded. Full-length HPgV E2
protein with the C terminal transmembrane domain deleted (331 amino acids) is shown on top, and deletion proteins below. Scrambling the order of the 17 amino
acids interfering with HIV replication abolished HIV inhibition. Mutation of a tyrosine in the TCR inhibitory peptide to an alanine abolished TCR inhibition. FS represents
the full-length RNA for E2 in which a frame shift insertion was created to abolish E2 protein expression.
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HPGV-1 INFLUENCES OTHER IMMUNE-
MEDIATED DISEASE STATES

Viral-mediated interference with T cell activation may be a
common feature of viral immune modulation (Stapleton JT,
2014), and in addition to HIV-1, there are at least three
additional diseases in which HPgV-1 infection is association with
beneficial clinical outcomes. Although studies of HCV and HPgV-1
did not identify synergistic pathology, a beneficial role for HPgV-1
infection was found in individuals with triple infection with HIV,
HCV and HPgV-1 compared to those with HIV and HCV
coinfection (216). Specifically, HPgV-1 infection was associated
with slower progression of HCV-related liver disease, and also
with reduced LCK activation in intrahepatic T cells (216, 217).
Since HCV pathogenesis is driven by immunologic destruction of
infected hepatocytes, reducing T cell activation and proliferation
likely contributes to the improved outcomes in HCV-induced liver
disease (24, 218).

Similarly, Ebola virus infection is associated with cytokine
storm and high mortality rates (219). Studies in West Africans
with Ebola found that mortality in those with HPgV-1
coinfection was 47% compared to 78% in those without
HPgV-1 coinfection, presumably due to the effects of HPgV-1
on immune activation (219). Although there have not been
studies reported to date to address this, it would be of interest
to see if primary COVID-19 outcomes are ameliorated by HPgV-
1 infection since severe SARS-CoV-2 infection is associated with
cytokine storm (220).
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One additional immune-mediated clinical disease may be
influenced by HPgV-1 infection. Vu et al. found that, following
stem cell transplantation, both the rate of severe graft-versus-
host-disease and overall mortality were reduced in individuals
with HPgV-1 infection (221). This finding requires confirmation,
but given the effects of HPgV-1 on immune activation, there is
biologic plausibility supporting a beneficial interaction (222).
CONCLUSIONS AND KEY QUESTIONS
REGARDING HPGV

HPgV-1 is associated with an increased risk of lymphoma and
possibly with sporadic encephalitis. However, given the high
prevalence of infection and lack of commonly recognized disease
states, in concert with the finding that persistent infection is
beneficial in HIV coinfected individuals (and possibly other
disease states), HPgV appears to represent a largely symbiotic
infection within the human virome that has little or no
pathogenicity. Several direct anti-retroviral actions of HPgV-1
have been identified, and these likely contribute to the improved
survival observed in people living with HIV. Examination of the
structural components of anti-HIV peptides may facilitate the
development of cellular-based, small molecule HIV inhibitors,
and identifying the cross-reactive HIV antigen(s) recognized by
HPgV-1 E2 antibody may facilitate development of HIV vaccines
(159, 164, 165, 168, 169, 171, 173).
FIGURE 5 | Proposed model of mechanisms by which HPgV interferes with T cell activation, proliferation, and depletion. Virus particles containing HPgV E2 protein
interact with T cell and other immune cells and genomic RNA is translated in the cytoplasm, producing additional E2 protein. The effects of HPgV particles and/or
intracellular E2 proteins interfere with T cell receptor-mediated activation of Lck, reducing cellular IL-2 release. HPgV also interferes with IL-2 receptor function further
reducing T cell activation and proliferation. These effects can be overcome with sufficient TCR stimulus.
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In addition to developing HIV therapeutics, HPgV-1 is highly
associated with immune modulation of human T cells, B cells,
NK cells and monocytes, suggesting that this aspect of the virus
provides beneficial, anti-inflammatory effects without inducing
clinically evident immune compromise (188, 189, 201). In
persistently viremic individuals, high rates of viral replication
are observed concurrently with reduced markers of immune
activation and in most, no detectable anti-HPgV-1 antibodies
detected (7).

As a relatively non-pathogenic, lymphotropic virus that
infects and preferentially replicates in bone marrow and
spleen, HPgV-1 potentially could be used as either a novel
gene therapy delivery system or as a bio-vaccine for HIV (153,
154). Further study of the role of HPgV infection on disease
outcomes in immune-mediated diseases could provide insights
into the natural history of many immune-mediated diseases,
including most recently COVID-19. The effect, if any of HPgV-1
on SARS-CoV-2 infection has not been examined at the time
of writing.

Currently, the biggest problem hindering HPgV-1
development for therapeutic use relates to the difficulties in
growing the virus in vitro. While virus replicates in lymphocytes,
NK cells, and neural cells in vitro (110–113, 115, 116, 120, 137,
203), infection cannot be maintained in cell culture for more than
handful of passages, suggesting either abortive infection or slow
infection with dilutional loss of infected cells. Specifically, most of
the cells in PBMC cultures obtained from HPgV-1 infected
individuals die rapidly, leaving a small subset of primary
mononuclear cells that survive for weeks to months producing
low levels of virus (115). In CD4+ Jurkat T cell lines, intracellular
viral RNA and antigens are detected following infection (113, 119);
however, the amount virus released slowly decays, and after several
passes of supernatant fluids to new, uninfected cells, the infection
is lost. Since HPgV-1 slows cellular proliferation induced by IL-2
or TCR-stimulation (121, 199), this may reflect a virus-driven
interference with Src kinase-mediated cellular proliferation,
resulting in gradual loss of infected cells that produce such low
levels of virus that infection of new cells is gradually lost.

Many approaches to identify specific cell types that support
HPgV-1 replication have been attempted including use of CD34+
human stem cells, interferon-resistant cells, and other innate
knockout cell lines without success (116). The recent finding that
goose pegivirus replicates well in embryonated goose eggs and
primary goose embryo fibroblasts raises hope that novel culture
systems can be developed for HPgV-1 (55).
Frontiers in Immunology | www.frontiersin.org 11
Another important limitation in HPgV-1 research is the
validated association of HPgV-1 infection with the
development of lymphoma and the recent suggestion of an
association with encephalitis. Given the effects of HPgV-1 on
immune activation, the most logical explanation for increased
risk of lymphoma relates to a reduction in immune surveillance,
though a direct causal effect on lymphoma needs to be excluded
(133–135). The two to three-fold increase in risk of lymphoma in
HPgV-1 viremic individuals is significant, but does not explain
the vast majority of lymphoma cases. Further, the age of HPgV-1
infection (sexually active adolescents to late-mid life) is the
opposite that of maximal lymphoma risk (223).

In summary, HPgV-1 is a highly prevalent, low- or non-
virulent human infection that reaches high viral loads in plasma
and is associate with reductions in human immune activation
markers. Pegiviruses are increasingly being identified in diverse
hosts, and their apparent longevity in humans and non-human
primates suggests that they convey an overarching beneficial
effect on health. Future studies to determine the breadth and
magnitude of these effects are warranted.
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