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This mini review describes the role of gut and lung microbiota during respiratory viral
infection and discusses the implication of the microbiota composition on the immune
responses generated by the vaccines designed to protect against these pathogens. This
is a growing field and recent evidence supports that the composition and function of the
microbiota can modulate the immune response of vaccination against respiratory viruses
such as influenza and SARS-CoV-2. Recent studies have highlighted that molecules
derived from the microbiome can have systemic effects, acting in distant organs. These
molecules are recognized by the immune cells from the host and can trigger or modulate
different responses, interfering with vaccination protection. Modulating the microbiota
composition has been suggested as an approach to achieving more efficient protective
immune responses. Studies in humans have reported associations between a better
vaccine response and specific bacterial taxa. These associations vary among different
vaccine strategies and are likely to be context-dependent. The use of prebiotics and
probiotics in conjunction with vaccination demonstrated that bacterial components could
act as adjuvants. Future microbiota-based interventions may potentially improve and
optimize the responses of respiratory virus vaccines.
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INTRODUCTION

Although it is a successful strategy, immune responses to vaccination can vary among individuals in
the human population. One factor associated with this vaccine response variation is the microbiota
composition. The human gut microbiota is composed of trillions of commensal microorganisms
that can impact host physiology by metabolizing dietary components and synthesizing multiple
metabolites that interact with host cells, including immune cells (1). The gut microbial community
develops during early life together with the most extensive collection of immune cells in the body,
the gut-associated lymphoid tissue (GALT), where they can influence the development of each other
(2). However, the effects of the microbiome on the immune system go beyond acting locally in the
intestine. Bacterial fragments and metabolites can translocate across the intestinal barrier, entering
the circulation and reaching distant organs, including the lungs, where they can influence immune
cells (3). Therefore, interventions targeting the gut microbiota may be one strategy to reduce disease
burden and illness severity caused by respiratory tract infections (RTI) and increase vaccine
responses against respiratory pathogens.
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Most studies exploring the effects of the microbiota in
immune responses focus on mucosal immunology in the gut,
and responses to oral vaccination. However, the effect of the gut
microbiota can go beyond intestinal tissues and influence
responses to respiratory viruses ’ vaccines. The lung
microbiome is less diverse and contains smaller biomass than
the gut (4, 5), but both present Bacteroidetes and Firmicutes as
the dominant phyla (6–8). The colonization of the airways occurs
shortly after birth, with the maturation of the microbiome
occurring during the first 2-3 postnatal months in humans (9).
The airway microbiota composition is mediated mainly by
microbial immigration, microbial elimination, and the
proliferation rate of bacteria (4, 5), with minimal contributions
from selective pressures created by tissue growth conditions (7,
8). Thus, the gut and lung microbiota can have a role in the
immune response during respiratory virus infection and the
vaccine response against these pathogens. This mini review
explores the current evidence relating microbiota composition,
function, and its metabolites to the vaccine immune response
against respiratory viruses, as well as the use of prebiotics and
probiotics as natural adjuvants, describing the implication of this
evidence on future research of vaccine development and
potential interventions based on microbiota intervention.
SCIENTIFIC BACKGROUND

Microbiota, Respiratory Diseases and the
Immune System
It is becoming more evident that changes in the gut microbiota
composition are associated with respiratory diseases (10–12).
Studies in mice using antibiotic treatment to deplete gut
bacterial composition before airway infection challenge
demonstrated that reducing intestinal microbiome diversity led
to an increase in inflammation and mortality during the infection
(13–15). An increase in Bacteroidetes and a decrease in Firmicutes
phyla abundance in the gut was observed during respiratory
syncytial virus (RSV) and influenza virus infections (16). In
humans, alterations in alpha and beta diversity of gut microbial
composition can also be observed during lung infections (17–19).
In RSV infection, there was no significant difference in the
abundance of microbes in the gut. However, the bacterial
diversity had significantly changed, with an expansion of the
families Clostridiales, Odoribacteraceae, Lactobacillacea and
Actinomyces in infected patients compared to healthy controls
(17). In COVID-19 patients, it was observed an increased
abundance of Streptococcus, Clostridium, Lactobacillus and
Bifidobacterium and a decrease of Bacteroides, Roseburia,
Faecalibacterium, Coprococcus and Parabacteroides (18).
Bacterial community richness and diversity were decreased in
COVID-19 patients compared to healthy controls (19, 20). Certain
intestinal commensal microorganisms associated with a healthy
gut, such as Faecalibacterium prausnitzii and Eubacterium rectale
and the butyrate-producing bacteria from the families
Lachnospiraceae and Ruminoccocaceae were also decreased in
COVID-19 and H1N1 patients (19, 21). Although the
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commonalities between the type of taxa that are changed during
different diseases are present, most changes in microbial
composition tend to be context-dependent and vary from one
disease to another. The acknowledgment that multiple respiratory
diseases present clinical intestinal manifestations (22, 23) indicates
crosstalk at some level between these two mucosal surfaces. This
crosstalk has been termed the gut-lung axis (3, 24–26).

The evolution of the immune system and the emergence of
adaptive immunity coincided with the acquisition of a complex
microbiota by the host (27), reinforcing the idea that the
microbiome has a pivotal role in shaping the immune system.
For example, leukocytes express a range of receptors that recognize
microbial metabolites, conserved molecules associated with
bacterial structural components (28) and other molecules
synthesized by commensal bacteria. The disturbance of the
normal microbiota, named dysbiosis, can dampen the host’s
immune response, increasing susceptibility to complications
during disease (29). Mice lacking microbiota (Germ-free [GF]
mice) or antibiotic-treated mice have impaired responses to
respiratory infections (30) and decreased IgA-producing plasma
cells and the IgA repertoire (31, 32), confirming the idea that
commensal bacteria can shape host immunity. Moreover,
commensal bacteria regulate immune responses in the mucosal
airways after influenza infection. Antibiotic treatment during
respiratory infection in mice reduced the numbers of CD4+, CD8+
T cells, and IgA production. The number of dendritic cells (DCs)
migrating from the lung to draining lymph nodes was also
diminished. This effect was proposed to be mediated by a
decreased production of inflammasome-related cytokines, such as
IL-1b and IL-18, after antibiotic exposure (30). Interestingly, in the
same study, it was reported that the administration of TLR agonists
could rescue the immune responses against influenza infection after
antibiotic treatment was also demonstrated by other groups (33).

The crosstalk between immune cells and commensal bacteria
occurs mainly through cell adhesion contacts, especially in the
mucosal sites, and through the interactions between microbial
metabolites and receptors expressed by immune cells. One
example of such metabolites is the short-chain fatty acids
(SCFAs), a class of fatty acids produced by certain groups of
bacteria after the metabolization of soluble and certain insoluble
fibers ingested by the host (34). The SCFAs which have their
physiologic role best described are acetic acid (acetate), butyric
acid (butyrate), and propionic acid (propionate) (35). Through
different mechanisms, these bacterial metabolites can influence
different cellular processes, such as gene expression,
proliferation, differentiation, and apoptosis (34, 35). One of
these mechanisms is by acting on the cell surface, where the
SCFAs can be sensed by G protein-coupled receptors (GPRs)
expressed by several cell types, including immune cells. The
GPR41 and GPR43 receptors can recognize all three SCFAs,
whereas GPR109a can sense butyrate (35, 36). SCFAs can also
enter cells via passive diffusion through the cell membrane or
active transport by transmembrane proteins. Once inside, SCFAs
can be metabolized by immune cells, increasing acetyl-CoA
levels and subsequently fueling the TCA cycle and cell function
(37). Intracellular SCFAs that are not metabolized can further
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migrate to the nuclei, acting as natural inhibitors of histone
deacetylases (HDACs), leading to changes in gene expression
patterns (36–38).

The SCFA butyrate was shown to suppress immune responses
by promoting the expansion of regulatory T cells (Tregs) (39).
Butyrate’s ability to induce Treg differentiation is in part mediated
by its function as an HDAC-inhibitor, which in turn increases
histone acetylation in the Foxp3 and Il10 gene loci, supporting the
generation of Foxp3+ T cells (40, 41). Butyrate can also decrease
the expression of inflammatory genes in neutrophils and
macrophages, affecting their migration and cytokine production
(42–44). In contrast, other studies reported that butyrate could
increase macrophage antimicrobial response and promote T cell
memory development (45, 46). Interestingly, CD8+ T cells failed
to differentiate into memory cells during infection in mice lacking
microbiota, and deletion of GPR41 and GPR43 also impaired
these memory recall responses (46). Acetate was also shown to
modulate memory T cell responses (47, 48), promote IgA
production in a mechanism dependent on GPR43 expression in
dendritic cells (DCs) (49), and protect against respiratory
pathogens in a mouse model of bacterial infection (50). Mice
treatment with the SCFA propionate could modulate
hematopoiesis and increase the generation of dendritic cell
precursors with an enhanced phagocytic activity that protects
against allergic inflammation (51). A recent study from the same
group demonstrated that treatment with a high-fiber diet, which is
known to increase the systemic levels of SCFAs, also modulated
hematopoiesis during influenza infection in mice, promoting a
population of monocyte-derived macrophages that protected the
legs from tissue damage caused by excessive neutrophil infiltration
during infection. It also increased T cell cytotoxic activity (52).
Aside from SCFAs, other microbial metabolites have also been
reported to affect host immune responses, as reviewed elsewhere
(53–55). For example, some metabolites can bind to the aryl
hydrocarbon receptor (AHR) and are termed AHR ligands. These
metabolites were reported to be involved in developing of immune
responses (56). Activation of AHR is necessary for the generation
of innate lymphoid cell (ILC) populations, particularly IL-22-
producing group 3 ILCs (ILC3s) (57). Indoles are a class of
metabolites that can modulate ILC3s and promote IL-22
secretion (58). In addition, indoles also enhance epithelial
barrier function (59).

Taken together, these studies show that the presence of a
healthy microbiota is essential for the normal development of the
immune system and control of respiratory diseases, including
protection against respiratory viral infections. The concept that
microbial components can induce different immune responses
opens the possibility of developing strategies to harness this
immunomodulatory effect of the microbiome and use it in
combination with other interventions that seek to produce an
appropriate immune response, for example, during vaccination.

Microbiota and Respiratory Virus
Vaccine Responses
Vaccination is the most popular and cost-effective medical
intervention, estimated to prevent more than 2 million deaths per
Frontiers in Immunology | www.frontiersin.org 3
year globally, and decrease disease severity (41, 60). However, the
vaccinated individuals’ present variation in the immune response
induced by vaccines. For example, antibody titers induced by yellow
fever (61), seasonal trivalent inactivated influenza vaccine (TIV)
(62) and hepatitis B (HepB) (63) vaccines were shown to vary more
than 10-fold between individuals. The T cell response varied at
similar levels to that of antibodies (64, 65). A better understanding
of the mechanisms that lead to such variation is important to
develop strategies that overcome these limitations.

The microbiome composition was associated with differences
in responses to oral vaccination, including against respiratory
pathogens. A seminal study in this field reported a correlation
between the level of TLR5 expression and the antibody response
against influenza hemagglutinin in humans after influenza
vaccination (66). Subsequent work showing that TLR5-/- mice
present an impaired capacity to mount antibody responses
against TIV immunization confirmed the importance of this
receptor for the generation of appropriate antibody responses
after TIV immunization (67). The immune response was
restored with the oral administration of flagellated, but not
aflagellated strain of E. coli. Since flagellin is a well-known
ligand for TLR5, this work indicates that PRRs derived from
the gut microbiota can influence humoral responses to
vaccinations against respiratory pathogens. Intriguingly,
differences in intestinal microbiota composition did not affect
responses against adjuvanted vaccines, demonstrating some
limitations might exist in the extent to which commensal
bacteria can modulate distal responses (67).

The use of antibiotics before or during vaccination was also
demonstrated to modulate immune responses. In a randomized
clinical trial, healthy individuals received a broad-spectrum
antibiotic regimen (neomycin, vancomycin, and metronidazole)
from three days before immunization until one day after (68). In
this study, the lack of difference might be caused by pre-existing
immunity to influenza, also known as immunological memory.
The cells that mediate immune memory response were previously
generated and present a more robust and rapid response during
subsequent encounters with antigens. Thus, the authors suggested
that this pre-defined immune memory may not be as susceptible
as a primary response to the microbiota influence. To overcome
this limitation, the authors conducted a second clinical trial only
including individuals who had no exposure to influenza infection
or vaccination in the preceding three years (68). These individuals
had a marked decrease in the antibody titers before vaccination
compared to the groups from the first study. The antibiotic-treated
group had levels of IgG1 and IgA antibodies, and its avidity
significantly decreased compared to the untreated group (68).
These findings show that the impact of antibiotic exposure on the
immune response during vaccination is limited by the presence of
immunological memory, which seems to be more resilient to
perturbations in the microbiota. In early life, when immunological
memory is not well developed might be a better time for a
microbiota intervention to increase vaccine response.

Since the emergence of COVID-19, a global effort has been
made to try to understand how the disease develops and generate
an effective vaccine. A portion of these studies focused on the
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associations between the vaccine response and the microbiota
composition. One recent observational study reported that
specific bacterial taxa were associated with the presence of
higher neutralizing antibodies after vaccination. Interestingly,
the microorganisms that positively correlated with neutralizing
antibodies differed between the inactivated and the mRNA
vaccines (69). This shows that the effects of different bacterial
species in vaccine responses may be context-dependent. Also, the
abundance of Prevotella copri and two species of Megamonas
were reported to be increased in participants’ gut microbiota
with fewer adverse effects to both vaccines (69). Further studies
to understand the effects of gut commensal bacteria in COVID-
19 vaccine responses are still ongoing. One ongoing
observational study aims to analyze and compare the
microbiome composition of subjects that received different
COVID-19 vaccines and that recovered from the disease (70).

The findings discussed above show that the microbiota can
modulate immune responses to vaccination. However, other
factors known to influence these responses, such as route of
administration, and genetic and environmental factors, may
account for the variations observed. One limitation of these
studies is that they are primarily cross-sectional, correlating the
microbiome with vaccine responses at only one point in time. It
is known that the microbiota composition can vary considerably
over time depending on environmental exposure. For this
reason, more longitudinal studies are needed to better evaluate
the impact of the microbiota on vaccine responses.

The mechanisms associated with the effect of microbiota on
vaccine response are not all described yet However, one
explanation is that the microbiota constitutes a constant source
of natural adjuvants that activate different pattern recognition
receptors (PRRs) in host cells (71). One of these molecules, the
muramyl dipeptide (MDP), present in the peptidoglycan of both
Gram-positive and Gram-negative bacteria, is a ligand for the
nucleotide-binding oligomerization domain containing 2 (Nod2)
receptor and was implicated in enhancing antigen-specific IgG
responses after intranasal immunization (72). Furthermore,
Monophosphoryl lipid A (MPL), an agonist of TLR4 derived
from Salmonella enterica endotoxin is already in clinical use as
an adjuvant (73). Thus, alterations in the microbiota
composition can change which PRRs and pathways are
activated, leading to different innate and adaptive responses,
potentially modulating vaccine responses.

The effect of microbiota on vaccine response and recent
works showing how bacterial components can influence
immunity led to increase in studies focusing on using
prebiotic, probiotic and postbiotic treatments to increase
vaccine responses (74). In the next section, we discuss some of
the recent data regarding the effect of using these strategies in the
context of vaccination against respiratory pathogens.

Use of Probiotics and Prebiotics to
Improve Vaccine Responses
A probiotic is any live organism that confers a health benefit to
the host when administered in adequate amounts (75). Here, we
will limit our discussion of probiotics as beneficial bacteria
Frontiers in Immunology | www.frontiersin.org 4
introduced into the host. In that sense, daily probiotic
administration was shown to reduce the incidence of
pathogenic bacteria in the nasal cavity (76). On the one hand,
two meta-analyses analyzing various randomized clinical trials
using probiotics reported their capacity to reduce respiratory
infection duration and incidence (77, 78). In mice, the
administration of probiotic strains of bacteria, such as
Lactobacillus, as a prophylactic treatment was shown to
increase innate and adaptive response against influenza during
infection (79–81). On the other hand, studies with healthy
individuals showed that probiotics were ineffective for reducing
the incidence of respiratory tract infections (RTIs) (82–85).
However, two of these studies reported that although not
changing the incidence, probiotics reduced the duration and
severity of respiratory infections (82, 83).

Probiotics in both oral and intramuscular vaccine formulations
against HA and M2e influenza proteins boosted cellular and
humoral responses in mouse and chicken models (86, 87). One
study explored the feasibility of a new vaccine strategy using
Enterococcus faecium as a bacterial vector carrying influenza
antigens given orally and reported that this strategy induced
antigen-specific antibodies and protected mice against H1N1
lethal infection (86). The addition of Bacillus subtilis spores into
an intramuscular vaccine formulation of inactivated avian
influenza virus led to enhancement of H9N2 virus-specific
antibody IgG responses compared to the standard vaccine group
(87). Further, another study using Lactobacillus casei demonstrated
that bacterial microorganisms could be used as a vector to deliver
antigens against respiratory pathogens either orally or intranasally
administered and induce protective responses (88). These findings
demonstrate that probiotic strains can be incorporated into vaccine
components to help increase their efficacy.

To evaluate the use of probiotics to increase vaccine responses
against respiratory pathogens, most studies relied on randomized
clinical trials using intramuscular influenza trivalent inactivated
vaccines (TIV) as their immunization model. Three independent
studies using L. paracasei as their probiotic strain reported no
differences in antibody and cellular responses to influenza after
TIV vaccination (89–91). In contrast, two studies using a model of
influenza vaccination administered intramuscularly found increased
IgA antibodies in the saliva, higher seroconversion, and IgG titers
when L. paracasei was administered orally with other probiotic
strains (92, 93). Using L. plantarum as a probiotic strain, one study
reported an increase in influenza-specific IgA and IgG antibodies six
months after vaccination with a trivalent influenza vaccine (94).
Other studies involving probiotics and responses to TIV and other
vaccines to non-respiratory pathogens can be found in a meta-
analysis (95) and systematic reviews (96, 97). An interesting
observation from these studies is that the probiotic treatments
generally confer beneficial effects to only one or two of the
influenza strains present in the vaccine. Changes in the probiotic
composition also modify the specificity of the increased response.
More recently, an experimental study in mice showed that oral
administration of the probiotic strain Lactobacillus plantarum
GUANKE increased neutralization antibody levels and cellular
immune response after intramuscular DNA vaccination against
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SARS-CoV-2 (81). Currently, there are several ongoing clinical trials
assessing the utility of probiotics in enhancing antiviral immune
responses tomultiple SARS-CoV-2 vaccines (98). Thus, these results
suggest that different probiotic species can be harnessed to increase
specific memory responses to different strains of pathogens,
although further work is needed to confirm this hypothesis.

Another strategy to expand certain commensal bacteria in the
gut is prebiotics. These molecules are characterized as substrates,
or nutrients, that can be metabolized by beneficial bacteria
present in the host and therefore expand this specific microbial
population (75). After birth, maternal milk can be considered a
prebiotic, as it presents many components that help shape a
healthy microbiota, such as oligosaccharides, IgA antibodies and
Frontiers in Immunology | www.frontiersin.org 5
hormones (99–101). Notably, these milk substrates were shown
to induce the expansion of Bifidobacterium species of bacteria in
the gut, which increased mucosal barrier function and protection
against infections (102, 103). Breast milk also contains bacterial
cells that initially colonize the infant’s gut and continue to
influence gut microbiota composition throughout life (104).
Examples of bacterial genera found to be supported by breast
milk are Veillonella and Rothia (104), which are known to
increase protection against asthma (105).

The use of prebiotics derived from fermentable carbohydrates
and plant-based compounds was shown to reduce the incidence,
duration, and severity of RTIs (95, 106–108). These studies show
that this beneficial effect is mediated by alterations in the
FIGURE 1 | Schematic view of the microbiome-immunity relationship in the context of vaccination. Recent studies demonstrate that there is an association between
microbiota and vaccine responses. Gut microbiome composition can be modulated through dietary intake and other environmental factors such as the use of
antibiotics or probiotic consumption. With the discovery that abundance of specific bacterial taxa is correlated with increased immune responses after vaccination,
therapeutic strategies using pre- or probiotics in combination with vaccination could represent an effective alternative to increase vaccine responses. Created with
BioRender.com.
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microbiota composition and suggests that changes in the host’s
nutrition could also lead to similar results. Regarding the use of
prebiotics in vaccination against respiratory pathogens, it was
demonstrated that they could increase seroprotection against
H1N1, but not the H3N2 and B strains of influenza after
vaccination with TIV (97). No difference was observed in
seroconversion rates. Furthermore, many dietary components
other than prebiotics have immunomodulatory functions,
including certain vitamins and carbohydrates (109, 110). These
components should be investigated for their potential ability to
increase vaccine responses. Thus, it will be essential to perform
further studies to evaluate how the increase in the abundance of
probiotic strains can increase immunity and if the use of bacterial
metabolites can bypass the need to alter microbiome
composition and still present beneficial effects.
CONCLUSION AND PERSPECTIVES

The microbiota composition is one of the factors that could
contribute to some variability observed in vaccine responses.
Recent studies demonstrated how microbiota could play a role in
modulating the immune response elicited by vaccines. Those
findings indicated that this effect is mediated by specific bacteria
and depends on the context of the vaccine approach. Overall,
these studies reinforce the idea that strategies to maintain a
normal microbiota, including the use of pre- or probiotics, and
the incorporation of bacterial molecules in the form of adjuvants
into vaccine composition, can improve vaccine immune
response (Figure 1). Since the beneficial effects of these
bacterial metabolites come primarily from their interactions
with cell surface receptors in host cells, the development and
use of synthetic molecules that activate the same receptors with
similar strength may be a feasible alternative to bypass the need
to use bacterial cells to produce these components (111).

Despite the increasing knowledge that there is an association
between a healthy gut microbiome and more effective responses
to vaccination against respiratory pathogens, possible limitations
of the applications of this as therapeutics should be noted. It is
known that most probiotic microorganisms and bacterial
metabolites applied in these studies have immunomodulatory
effects, leading to a reduction in the overall inflammatory
Frontiers in Immunology | www.frontiersin.org 6
response. This suppression of inflammation could potentially
lead to inadequate vaccine response. This idea is highlighted in
the context of oral vaccines from studies reporting that oral
vaccines perform poorly in developing countries (112–114),
where the population is reported to have an increased gut
microbiome diversity (115). The potential limitations of
probiotics and their immunomodulatory effects in systemic
vaccination modes should be further explored in the future.

Moreover, a decrease in inflammatory mediators does not
necessarily preclude the development of an effective memory
response. As we discussed in this mini review, bacterial
metabolites such as SCFAs, which have regulatory effects,
could also support the development of memory CD8+ T cells
(46) and increase the production of antibodies by B cells (49).
Immunomodulatory molecules, such as IL-10, are relevant for
the maturation of the memory T lymphocytes population (116).
Therefore, further work is needed to validate the applicability of
these approaches and identify the limits of this microbiota-
mediated modulation of immunity.
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35. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR. Regulation of
Immune Cell Function by Short-Chain Fatty Acids. Clin Transl Immunol
(2016) 5(4):e73. doi: 10.1038/cti.2016.17

36. Blacher E, Levy M, Tatirovsky E, Elinav E. Microbiome-Modulated
Metabolites at the Interface of Host Immunity. J Immunol (2017) 198
(2):572–80. doi: 10.4049/jimmunol.1601247

37. Kim CH. Control of Lymphocyte Functions by Gut Microbiota-Derived
Short-Chain Fatty Acids. Cell Mol Immunol (2021) 18(5):1161–71.
doi: 10.1038/s41423-020-00625-0

38. Sepahi A, Liu Q, Friesen L, Kim CH. Dietary Fiber Metabolites Regulate
Innate Lymphoid Cell Responses. Mucosal Immunol (2021) 14(2):317–30.
doi: 10.1038/s41385-020-0312-8

39. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M,
et al. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic
Treg Cell Homeostasis. Science (2013) 341(6145):569–73. doi: 10.1126/
science.1241165

40. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al.
Metabolites Produced by Commensal Bacteria Promote Peripheral
Regulatory T-Cell Generation. Nature (2013) 504(7480):451–5.
doi: 10.1038/nature12726

41. Zimmermann P, Curtis N. Factors That Influence the Immune Response to
Vaccination. Clin Microbiol Rev (2019) 32(2):e00084–18. doi: 10.1128/
CMR.00084-18

42. Vinolo MAR, Rodrigues HG, Hatanaka E, Sato FT, Sampaio SC, Curi R.
Suppressive Effect of Short-Chain Fatty Acids on Production of
Proinflammatory Mediators by Neutrophils. J Nutr Biochem (2011) 22
(9):849–55. doi: 10.1016/j.jnutbio.2010.07.009

43. Chang PV, Hao L, Offermanns S, Medzhitov R. The Microbial Metabolite
Butyrate Regulates Intestinal Macrophage Function via Histone Deacetylase
Inhibition. Proc Natl Acad Sci USA (2014) 111(6):2247–52. doi: 10.1073/
pnas.1322269111

44. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al.
Commensal Microbe-Derived Butyrate Induces the Differentiation of
Colonic Regulatory T Cells. Nature (2013) 504(7480):446–50.
doi: 10.1038/nature12721

45. Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F,
et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial
Program in Macrophages. Immunity (2019) 50(2):432–45.e7. doi: 10.1016/
j.immuni.2018.12.018

46. Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K, et al.
Microbiota-Derived Short-Chain Fatty Acids Promote the Memory
Potential of Antigen-Activated CD8+ T Cells. Immunity (2019) 51(2):285–
97.e5. doi: 10.1016/j.immuni.2019.06.002

47. Balmer ML, Ma EH, Bantug GR, Grählert J, Pfister S, Glatter T, et al.
Memory CD8(+) T Cells Require Increased Concentrations of Acetate
Induced by Stress for Optimal Function. Immunity (2016) 44(6):1312–24.
doi: 10.1016/j.immuni.2016.03.016

48. Balmer ML, Ma EH, Thompson AJ, Epple R, Unterstab G, Lötscher J, et al.
Memory CD8+ T Cells Balance Pro- and Anti-Inflammatory Activity by
Reprogramming Cellular Acetate Handling at Sites of Infection. Cell Metab
(2020) 32(3):457–67.e5. doi: 10.1016/j.cmet.2020.07.004
May 2022 | Volume 13 | Article 889945

https://doi.org/10.1016/j.chom.2018.10.019
https://doi.org/10.1371/journal.ppat.1006798
https://doi.org/10.1038/nm.4176
https://doi.org/10.1128/mBio.03236-19
https://doi.org/10.1097/SHK.0b013e3182184ee7
https://doi.org/10.1136/gutjnl-2015-309728
https://doi.org/10.1038/s41385-020-00361-8
https://doi.org/10.1038/s41385-020-00361-8
https://doi.org/10.3389/fimmu.2018.00182
https://doi.org/10.3389/fimmu.2018.00182
https://doi.org/10.1186/s12866-020-01816-5
https://doi.org/10.1016/j.medmic.2020.100023
https://doi.org/10.1053/j.gastro.2020.05.048
https://doi.org/10.1053/j.gastro.2020.05.048
https://doi.org/10.1136/gutjnl-2020-323020
https://doi.org/10.1093/cid/ciaa709
https://doi.org/10.1186/1471-2334-10-3
https://doi.org/10.1038/embor.2012.32
https://doi.org/10.1038/s41590-019-0451-9
https://doi.org/10.1038/s41385-019-0160-6
https://doi.org/10.3389/fimmu.2021.635471
https://doi.org/10.1146/annurev-immunol-093019-112348
https://doi.org/10.1146/annurev-immunol-093019-112348
https://doi.org/10.1038/nature06246
https://doi.org/10.1038/nri.2017.7
https://doi.org/10.1073/pnas.1019378108
https://doi.org/10.1002/eji.200838432
https://doi.org/10.1002/eji.200838432
https://doi.org/10.1084/jem.20111980
https://doi.org/10.1007/s00284-013-0380-z
https://doi.org/10.1016/B978-0-12-800100-4.00003-9
https://doi.org/10.1038/cti.2016.17
https://doi.org/10.4049/jimmunol.1601247
https://doi.org/10.1038/s41423-020-00625-0
https://doi.org/10.1038/s41385-020-0312-8
https://doi.org/10.1126/science.1241165
https://doi.org/10.1126/science.1241165
https://doi.org/10.1038/nature12726
https://doi.org/10.1128/CMR.00084-18
https://doi.org/10.1128/CMR.00084-18
https://doi.org/10.1016/j.jnutbio.2010.07.009
https://doi.org/10.1073/pnas.1322269111
https://doi.org/10.1073/pnas.1322269111
https://doi.org/10.1038/nature12721
https://doi.org/10.1016/j.immuni.2018.12.018
https://doi.org/10.1016/j.immuni.2018.12.018
https://doi.org/10.1016/j.immuni.2019.06.002
https://doi.org/10.1016/j.immuni.2016.03.016
https://doi.org/10.1016/j.cmet.2020.07.004
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gonçalves et al. Microbiota and Vaccine Responses
49. WuW, Sun M, Chen F, Cao AT, Liu H, Zhao Y, et al. Microbiota Metabolite
Short-Chain Fatty Acid Acetate Promotes Intestinal IgA Response to
Microbiota Which is Mediated by GPR43. Mucosal Immunol (2017) 10
(4):946–56. doi: 10.1038/mi.2016.114
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