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Oncogenic signaling pathway-
related long non-coding RNAs
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immunotherapy response in
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Background: The clinical outcomes of breast cancer (BC) are unpredictable

due to the high level of heterogeneity and complex immune status of the

tumor microenvironment (TME). When set up, multiple long non-coding RNA

(lncRNA) signatures tended to be employed to appraise the prognosis of BC.

Nevertheless, predicting immunotherapy responses in BC is still essential.

LncRNAs play pivotal roles in cancer development through diverse

oncogenic signal pathways. Hence, we attempted to construct an oncogenic

signal pathway–based lncRNA signature for forecasting prognosis and

immunotherapy response by providing reliable signatures.

Methods:We preliminarily retrieved RNA sequencing (RNA-seq) data from The

Cancer Genome Atlas (TCGA) database and extracted lncRNA profiles by

matching them with GENCODE. Following this, Gene Set Variation Analysis

(GSVA) was used to identify the lncRNAs closely associated with 10 oncogenic

signaling pathways from the TCGA-BRCA (breast-invasive carcinoma) cohort

and was further screened by the least absolute shrinkage and selection

operator Cox regression model. Next, an lncRNA signature (OncoSig) was

established through the expression level of the final 29 selected lncRNAs. To

examine survival differences in the stratification described by the OncoSig, the

Kaplan–Meier (KM) survival curve with the log-rank test was operated on four

independent cohorts (n = 936). Subsequently, multiple Cox regression was

used to investigate the independence of the OncoSig as a prognostic factor.

With the concordance index (C-index), the time-dependent receiver operating

characteristic was employed to assess the performance of the OncoSig

compared to other publicly available lncRNA signatures for BC. In addition,

biological differences between the high- and low-risk groups, as portrayed by

the OncoSig, were analyzed on the basis of statistical tests. Immune cell

infiltration was investigated using gene set enrichment analysis (GSEA) and

deconvolution tools (including CIBERSORT and ESTIMATE). The combined
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.891175/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.891175/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.891175/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.891175/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.891175/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.891175&domain=pdf&date_stamp=2022-08-04
mailto:yyz1006@hotmail.com
mailto:caomeng814@njmu.edu.cn
https://doi.org/10.3389/fimmu.2022.891175
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.891175
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2022.891175

Frontiers in Immunology
effect of the Oncosig and immune checkpoint genes on prognosis and

immunotherapy was elucidated through the KM survival curve. Ultimately, a

pan-cancer analysis was conducted to attest to the prevalence of the OncoSig.

Results: The OncoSig score stratified BC patients into high- and low-risk

groups, where the latter manifested a significantly higher survival rate and

immune cell infiltration when compared to the former. A multivariate analysis

suggested that OncoSig is an independent prognosis predictor for BC patients.

In addition, compared to the other four publicly available lncRNA signatures,

OncoSig exhibited superior predictive performance (AUC = 0.787, mean C-

index = 0.714). The analyses of the OncoSig and immune checkpoint genes

clarified that a lower OncoSig score meant significantly longer survival and

improved response to immunotherapy. In addition to BC, a high OncoSig score

in several other cancers was negatively correlated with survival and immune

cell infiltration.

Conclusions:Our study established a trustworthy and discriminable prognostic

signature for BC patients with similar clinical profiles, thus providing a new

perspective in the evaluation of immunotherapy responses. More importantly,

this finding can be generalized to be applicable to the vast majority of human

cancers.
KEYWORDS
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Introduction

Breast cancer (BC) is one of the most common cancers

worldwide and is the major cause of cancer-related death in

women (1). Based on the differences in historical and molecular

levels, BC can be classified into five subtypes: HER2-positive

(HER2), triple-negative/basal (Basal), normal-like (Normal),

and luminal-A and B (LumA and LumB) (2, 3). So far, a

combination of surgery, chemotherapy, hormone therapy,

radiation therapy, and targeted therapy has been administered

in the treatment of BC (4). Unfortunately, the considerable

functional heterogeneity of diverse immune cell types in BC

intrinsic subtypes has contributed to variations in the prognosis

of BC patients (5, 6). With progress in research, the immune

system has been found to play a vital role in tumorigenesis and

cancer development (6). Previous reviews have summarized that

protumorigenic and pro-inflammatory immune cells in the

tumor microenvironment (TME) in BC consist of myeloid-

derived suppressor cells (MDSCs), M2 macrophages,

neutrophils, Th2 CD4+, Th17 CD4+, and FoxP3+ CD4+ T

cells (T-regs) as well as T helper cells of type 1 (Th1) CD4+,

CD8+ cytotoxic T lymphocytes (CTLs), M1 macrophages,

dendritic cells (DCs), and natural killer (NK) cells, respectively
02
(7, 8). Tumor-infiltrating lymphocytes (TILs) have been

considered as predictive (9, 10) and prognostic (11, 12)

biomarkers of immunotherapy in patients undergoing TNBC

and HER2 BC treatment. However, to our current knowledge,

there will be challenges to putting TIL assessment into clinical

practice, mainly due to the lack of best TILs, upskilled clinicians,

and prospective clinical trials (12). Thus, to obtain precise

evidence for setting up an appropriate individual treatment

strategy, there still remains an urgent need for credible

signatures that provide trustworthy evidence for evaluating

prognosis and response to immunotherapy in BC.

Long non-coding RNA (lncRNA) is an abundant type of

RNA in the human transcriptome, with a transcript length of

over 200 nucleotides, which lacks the capability to code protein

(13). LncRNAs participate in 70% of gene expressions by

enhancing or inhibiting the effects of DNA, RNA, and protein

(14) and are strongly associated with cancer development,

progression, and prognosis (15). Furthermore, lncRNAs play

essential roles in many oncogenic signal pathways (16). Studies

have confirmed that Linc00514 has the ability to regulate

tumorigenicity and promote metastasis through the Jagged1-

mediated Notch signal pathway in BC (17). While lncRNA

AU021063 promotes BC metastasis by activating the Mek/Erk
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signaling pathway (18), the lncRNA NIKLA could inhibit NF-kB
activation. Effectively, low levels of NIKLA in BC may be the

underlying mechanism behind BC metastasis and poor

prognosis, whilst a rising NIKLA level can be stimulated by

Nuclear factor kappa-B (NF-kB), thus generating negative

feedback (16, 19).

Furthermore, the results from previous research that built an

oncogenic lncRNA landscape for BC identified 55 lncRNAs that

are primarily involved in the regulation of immune system

activation, TGFb, and Jak-STAT signal pathways (20).

Previous studies have affirmed that the prediction of cancer

prognosis can be achieved by establishing lncRNA signatures.

Hong et al. constructed a predictive landscape for human

hepatocellular carcinoma by examining 36 pairs of immune-

related lncRNAs (21). An 11-lncRNA prognosis signature that

correlates with immune cell infiltration in BC has also been set

up (22). Furthermore, a novel upregulated-lncRNA GATA3-

AS1 contributing to tumor development and immune evasion by

degrading GATA3 and stabilizing PD-L1 has been found in

TNBC (23), suggesting that lncRNA has a strong association

with cancer progression as it affects the immune checkpoint.

Currently, the signatures of oncogenic signaling pathways and

tumor immune infiltration–associated lncRNAs have been

preliminarily explored but without sufficient description. The

purpose of our study is to build a novel signature that displays

tumor immune infiltration–related lncRNA identification

through the analysis of oncogenic signal pathways for

implementation in evaluating the immunotherapy responses

and clinical outcomes of BC subtypes.

In this study, we identified lncRNAs that are highly related

to BC prognosis through 10 critical tumor- signaling pathways,

after which we established a novel prognostic signature entitled

OncoSig. We demonstrated the OncoSig as a predictor of

prognosis and immunotherapy response, which is composed

of 29 lncRNAs that are highly correlated with biological

characteristics, immune features, overall survival (OS), gene

mutation, and so on. Additionally, the pan-cancer analysis

revealed that OncoSig is significantly related to the prognosis

of 21 cancer types, indicating its reliability and clinical value.
Materials and methods

Data source and preprocessing

The basic clinical and RNA sequencing (RNA-seq) data

(RNA SeqV2) of 33 cancers were retrieved from The Cancer

Genome Atlas (TCGA) database using the Bioconductor

package TCGAbiolinks (version: 2.20.0) (24), where expression

data were normalized by FPKM (fragments per kilobase of exon

model per million mapped fragments) and then transformed

using log2(FPKM + 1). Mutation data for breast-invasive

carcinoma (BRCA, also noted as TCGA-BRCA) patients were
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also obtained from the TCGA using TCGAbiolinks. In addition,

four microarray datasets of BC were available from the Gene

Expression Omnibus [accession numbers: GSE21653 (25),

GSE20685 (26), GSE31448 (27), and GSE103091 (28, 29)], and

their expression was corrected and normalized using the robust

multiarray averaging (RMA) procedure (30).

The TCGA-BRCA dataset was used to establish the OncoSig

prognostic signature for BC patients, and four independent

microarray datasets were employed to assess the performance

of this signature. Datasets from TCGA for the other 32 cancers

were used to explore the broader prognostic performance of the

OncoSig in pan-cancer. The details of these datasets mentioned

above can also be found in Supplementary Table S1.
Identification of oncogenic signaling
pathway-related long non-coding RNAs

By matching the RNA-seq expression profiles of genes and

the annotation file GENCODE (version 25), we extracted genes

annotated as “long non-coding RNAs” from the GENCODE

project. The lncRNAs starting with “MT-” and “RP” were

filtered out, and 3,006 unique lncRNAs were retained. To

identify oncogenic signaling pathway–related lncRNAs, we

first exclusively wielded the microarray model of the R

package GSVA (version 3.48.1) (31) to assess the activity [also

called the enrichment score (ES)] of 10 oncogenic signaling

pathways for each patient in the TCGA-BRCA cohort. These 10

pathways are Receptor Tyrosine Kinase (RTK)-RAS, Notch,

Hippo, b-catenin/Wnt (Wnt), PI-3-Kinase/Akt (PI3K), Cell

cycle, TGFb Transforning growth factor beta (TGFb), Myc,

P53, and Nrf2; their corresponding genes can be collected

from a previous study (32). Then, for each pathway, the

correlation between lncRNA expression and the ES for each

pathway was calculated, and the top 5% was retained. Finally,

498 unique lncRNAs were obtained (see Figure 1).
Development of oncogenic signaling
pathway–related long non-coding
RNA signatures

A total of 1,109 BC patients (only tumor samples) were

randomly allocated to the training group (n = 554) and testing

group (n = 555). For the training group, lncRNAs significantly

associated with OS were filtered out from 498 unique lncRNAs

through the univariate Cox regression analysis in combination

with clinical data. Further, relying on the least absolute shrinkage

and selection operator (LASSO) Cox regression model (R package,

glmnet), resulted in the retention of 29 lncRNAs (see Table S2).

Finally, a prognostic signature was proposed as a linear

combination between the retained lncRNA expression values

and their weights, which were derived using multivariate Cox
frontiersin.org
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regression (see Figure 1 and the following equation). The testing

group was initially used to assess the prognostic performance of

the signatures generated from these 29 lncRNAs.

OncoSig  patientð Þ =  o
29

i=1
coef lncRNAið Þ � expr lncRNAið Þ

Additionally, to improve the robustness of the signature, the

training and testing groups (i.e., the TCGA-BRCA cohort) were

merged to produce the final coefficients of these lncRNAs, as

listed in Table S2.
Kaplan–Meier survival curve

KM survival curves were combined with the log-rank tests to

assess whether the different risk groups (e.g., high- and low-risk

groups determined by the OncoSig) demonstrated significantly

different patterns of survival (surv cutpoint function, R package

survminer, version 0.4.2), with their survival curves being

considered as having a significant statistical difference when

the p-value ≤0.05.
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Differentially expressed genes associated
with groups depicted by the OncoSig

The identification of DEGs between the groups (i.e., high-

and low-risk groups) depicted by the OncoSig involved two

steps: 1) assessing differences between the groups using the

limma package (version, 3.48.1) (33) and 2) with |log2FC| ≥ 1

and adjusted p-value ≤ 0.01 [Benjamini–Hochberg method (34)]

as the filtering conditions. The genes that met both these

conditions were considered significantly different.
Functional enrichment analysis and gene
set enrichment analysis

The gene annotation enrichment analysis of DEGS between

the groups, as depicted by the OncoSig, was used to derive

statistically different gene ontology (GO) terms. It was

performed using the R Bioconductor package clusterProfiler

(version 4.0.2) (35), where GO terms with the Benjamini–
FIGURE 1

Analysis overview. Transcriptomic, mutational, and clinical data for breast cancer (BC) patients were collected from The Cancer Genome Atlas
(TCGA) database. The GSVA tool was used to assess the enrichment scores (ESs) of 10 oncogenic signaling pathways in each patient. Long non-
coding RNAs (lncRNAs) were extracted based on the annotation information in GENECODE, and the correlation coefficients between the
lncRNA levels and ESs of each prognostically relevant pathway were calculated. Only the top 5% of relevant lncRNAs were retained for each
oncogenic signaling pathway and further combined with clinical data to screen for lncRNAs significantly associated with prognosis, resulting in
the retention of 29 lncRNAs. The weighting coefficients for these lncRNAs were estimated using multivariate Cox regression to generate the
OncoSig signature. Lastly, BC and pan-cancer cohorts were used to assess the potential biological characteristics of the signatures as well as
their broader clinical value.
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Hochberg (27) adjusted at p-value ≤0.01 were considered

significantly different.

To evaluate the infiltration of immune cells, a compendium

of 782 marker genes related to 28 tumor-infiltrating immune cell

types was obtained from the study by Charoentong P et al. (36).

Again, gene set enrichment analysis (GSEA) was performed on

the marker gene sets of these immune cells using the

Bioconductor package clusterProfiler (version 4.0.2).
Cellular infiltration estimation

The stromal, immune, and tumor purity scores were

assessed for each patient using the ESTIMATE algorithm (R

package estimate, version 1.0.13) (37).

The relative fraction of 22 immune cell types for each patient

was estimated using CIBERSORT (https://cibersort.stanford.

edu/), where the signature gene expression profile (also called

the base matrix) was LM22 (38).
Immunophenoscore calculation

The immunophenoscore (IPS) quantifies four different

immune phenotypes, including antigen presentation, effector

cells, suppressor cells, and checkpoint markers, using several

immune responses or immune toleration markers provided in a

previous study (36). A higher z-score of IPS summarizing these

four categories indicates a more immunogenic sample (36, 39).
Performance comparison among
different breast cancer prognostic
signatures

To compare the performance of the prognostic signatures, a

concordance index (C-index)—which reflects the probability of

agreement between the predicted results and the actual observed

value—was employed. Three steps were adopted: (1) 200

patients were randomly chosen without replacement from the

TCGA-BRCA cohort; (2) the C-index corresponding to each BC

signature was calculated separately using the coxph function (R

package, survival, version: 3.3-1); and (3) the above steps were

repeated 100 times and, subsequently, the distribution of the C-

index for each signature was summarized.
Statistical analysis

Hierarchical cluster analyses were performed using

Euclidean distances and the complete linkage method, while

correlations between the gene expression of lncRNAs were

calculated using the Pearson method. The significance of
Frontiers in Immunology 05
differences between the two groups was obtained using the

Wilcoxon’s test function. Additionally, a linear regression

model was used to meet the trend of the scattered points. The

time-dependent receiver operating characteristic (ROC) curve

evaluated the performance of the OncoSig. Furthermore, a

multivariate Cox regression was carried out to assess the

independence of the OncoSig from other key clinical factors,

including age, PAM50 subtype, and tumor grade. Since the

PAM50 typing of BC was not available in the testing

microarray datasets (see Table S1), it was predicted using the

genefu package (40) (version: 2.24.2). To systematically

understand the prognostic value of the OncoSig in the

different BC cohorts, a prognostic meta-analysis was

performed by deploying a fixed effects model that used the R

package meta (version 5.2-0). All statistical analyses were

implemented using the tool R project for statistical computing

(version 4.1.0). The P-values (Wilcoxon’s test, Fisher’s exact test,

and Student’s t-test) when comparing the groups were two sided,

with ∗ p ≤0.05 considered as statistically significant.
Results

Identification of Oncogenic Signaling
Pathway– and Prognosis–Associated
Long Non-Coding RNAs

Ten crucial signaling pathways have been identified as

influencing cancer progression—Cell cycle, Hippo, Myc,

Notch, Nrf2, PI3K, RTK-RAS, TGFb, P53, and b-catenin/Wnt

(Wnt) (32). To characterize the impact of these pathways on BC,

we first fetched BC samples from the TCGA database and,

subsequently, calculated the activity of each pathway in each

BC patient using the single-sample GSEA method encapsulated

in the GSVA package (Figure 1, see Materials andMethods) (31).

Based on the activity scores and activities of different tumor

pathways in the BC cohort, we set up interaction networks

between 10 cancer pathways and analyzed their relationship

with the survival prognosis. The results showed RKT-RAS,

Notch, Hippo, Wnt, and TGFb as having strong positive

correlations that were significantly associated with survival

prognosis in BC patients (Figures 1, 2A). Although the MYC

pathway was significantly associated with patient prognosis, the

positive correlation with the other pathways was weaker

(Figure 2A). Interestingly, the Cell cycle pathway was

negatively correlated with TGFb, Nrf2, RKT_RAS, and PI3K,

and it served as a protective factor for the prognosis of BC

patients (Figure 2A). At the same time, no significant association

was observed between Nrf2, PI3K, and the prognosis of BC

patients (Figure 2A). Further, we compared the distribution of

the activity scores (also called ESs) of each of the 10 pathways

across the PAM50 subtypes to identify significant differences in

their activities in the different subtypes. On combining the
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FIGURE 2

Identification of oncogenic signaling pathway-associated lncRNAs using TCGA-BRCA transcriptome data. (A) Interaction of 10 oncogenic
signaling pathways. The size of the circles represents the prognostic effect of each cell type, while the color of the fill is scaled by the P-value.
Red and blue colors indicate positive and negative correlations, respectively. (B) A comparison of the ESs of the oncogenic signaling pathways in
the PAM50 subtypes. The Wilcoxon rank-sum test was used for statistical analysis. ***p ≤ 0.001, ****p ≤ 0.0001. (C) Heat map showing the
number of overlaps between lncRNAs highly associated with specific oncogenic signaling pathways and other pathways using hierarchical
clustering. The top 5% of the lncRNAs associated with specific oncogenic signaling pathways were selected. The upper bound of the color bar is
150. (D) The least absolute shrinkage and selection operator (LASSO) regression model revealed partial likelihood deviance in the 10-fold cross-
validation. (E) The LASSO coefficient profiles of prognosis-related lncRNAs in 10-fold cross-validation. (F) The forest plot of 29 candidate
prognosis-related lncRNAs associated with OS in the TCGA-BRCA cohort. (G) Gene ontology (GO) functional enrichment analysis for mRNAs
with coexpressed lncRNAs.
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clinical prognosis of PAM50 patients—normal-like over LumA

over LumB over HER2 over basal—we observed that the ESs of

the RTK-RAS and Cell cycle pathways were most consistent with

the PAM50 clinical trend. The RTK-RAS ES was the highest for

Normal-like and lowest for Basal. For the Cell cycle pathway, the

ESs for LumA activity and Basal were the lowest and the highest,

respectively (Figure 2B). These results depict the synergistic or

antagonistic relationships between 10 tumor-related pathways

and their impact on BC patients’ prognoses, revealing that

different pathways have different abilities to portray PAM50

subtypes (Figures 2A, B). Since the crosstalk between the

signaling pathways and lncRNAs impacts cancer progression

(17–19), we annotated the genes from the TCGA-BRCA cohort

using GENECODE and correlated the expressions of the

annotated lncRNAs (3006) with the ESs of eight pathways that

exhibited significant association with the prognosis in BC

patients, selecting only the top 5% of correlated lncRNAs in

each pathway (149 lncRNAs for each pathway). On analyzing

the lncRNAs shared among the different pathways, we found a

number of them present in RTK-RAS, TGFb, Hippo, Notch, and

Wnt, whereas P53, Cell cycle, and Myc shared fewer lncRNAs

with the other pathways, indicating solid specificity. Following

this, the hierarchical clustering also showed that there are two

different functional pathway modules, implying that their status

a n d r o l e i n t umo r p r o g r e s s i o n ma y b e q u i t e

different (Figure 2C).

To identify the pivotal lncRNAs that were highly associated

with the prognosis of BC patients, we combined the clinical data

and screened the lncRNAs mentioned above using LASSO-Cox

regression (Figures 1, 2D, E), which yielded 29 lncRNAs

(Figure 2F). Furthermore, to analyze the biological processes

in which these lncRNAs may be involved, we conducted a

coexpression analysis of the lncRNAs with mRNAs. For each

lncRNA, only the top 50 mRNAs with the highest coexpression

correlation were retained. Annotating the GO of these mRNAs

using the R package clusterProfiler (35) revealed that they are

mainly involved in T-cell activation, regulation, and

differentiation processes (Figure 2G). These results suggest that

29 lncRNAs are involved in tumor-associated pathways. Their

altered expression may affect normal gene damage repair

pathways by disrupting the balance of lncRNA-associated

regulatory networks, thereby affecting the stable regulation of

important pathways.
Proposing a Novel Long Non-Coding
RNA Signature for the Clinical
Stratification of Breast Cancer Patients

To explore the potential prognostic roles of the selected 29

lncRNAs associated with oncogenic signaling pathways in

clinical diagnosis, we first measured the correlations between
Frontiers in Immunology 07
their expressions, which showed that only a few of the

lncRNAs had a relatively strong positive/negative correlation

with each other. This finding indicated that these 29 lncRNAs

had a low degree of colinearity and good independence that

could help to provide a comprehensive picture of their impact

on the prognosis of BC patients (Figure 3A). Next, we divided

the TCGA-BRCA cohort into a training set (n = 554) and

testing set (n = 555) using random sampling without

replacement. For the training set, we coupled the expression

data of the lncRNAs with clinical characteristics and used

multivariate Cox regression to obtain 29 coefficients that

characterize the degree of prognostic impact of the lncRNAs.

The linear sum of these coefficients multiplied by the

expression of the 29 lncRNAs was indicated as OncoSig. The

training and testing sets were split according to their higher

and lower OncoSig scores, respectively, using optimal cut

points determined by the surv_cutpoint method (see

Materials and Methods), whereby significant differences (p-

value ≤ 0.01) in OS were noted for both groups (Figures 3B,

C), indicating that the novel OncoSig signature successfully

portrayed the prognosis of BC patients. To adjust for the

coefficients obtained previously, we merged the training and

testing sets and reused the multivariate Cox regression to

acquire a new OncoSig that better described the prognosis of

BC patients. The 5-year survival rate for the low-risk score

group of BC patients was 64.4%, which is significantly higher

than the high-risk group (35.8%) (Figure 3D). For this reason,

we used the adjusted OncoSig as the final signature of the 29

lncRNAs (see Table S2).

The area under the curve (AUC) of the signature was used

to further analyze the prognostic performance of the OncoSig,

presenting 0.787 and 0.784 at 5 and 3 years of OS, respectively

(Figure 3E). We also found that a higher-scoring OncoSig

group meant shorter survival time and signified more deaths

(Figure 3F). In addition, we investigated the composition of the

PAM50 patients in both groups stratified by the OncoSig to

find that Basal and HER2 patients dominated the high-risk

group, while Normal-like and LumA patients were in the low-

risk group (Figure 3G). Subsequently, a new question that

arises is whether OncoSig can be applied as a valid and

independent prognostic indicator in the BC cohort. For this

purpose, multivariate Cox regression analysis was employed

using covariates such as OncoSig, age, PAM50, and stage. The

results demonstrated that OncoSig, age, and stage III and IV

were significantly associated with prognosis in BC patients,

with OncoSig exhibiting the worst HR value, hinting that it

could certainly be the most crucial risk factor compared to

these key clinical characteristics (Figure 3H). In summary, this

evidence indicates that the higher the OncoSig score, the worse

the prognosis and vice versa. This result also establishes

OncoSig as an independent prognostic factor that contributes

to clinical diagnosis and research.
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Evaluating and comparing the prognostic
performance of the OncoSig

To estimate the prognostic value of the OncoSig more

broadly, we obtained four independent gene expression

datasets of BC from the GEO database —GSE21653 (25),

GSE20685 (26), GSE31448 (27), and GSE103091 (28, 29)—

each with its gene expression signal backgrounds corrected

and quantiles normalized using the RMA (30) package in R

(see Materials and Methods) and then calculated their OncoSig

scores. The results demonstrated that both the high- and low-

risk groups portrayed by the OncoSig were significantly different

in each of these independent test sets (p ≤ 0.05), consistent with

the trend reflected in the TCGA-BRCA cohort (Figure 4A). In
Frontiers in Immunology 08
addition, we needed to explore whether the OncoSig remained

available as an independent prognostic factor in the four testing

cohorts. For this purpose, a multiple Cox regression strategy was

applied, where the included covariates were age (i.e., ≥ 60 or

not), PAM50 typing, and tumor grade. It should be noted that, as

the clinical data in the GSE20685 and GSE103091 datasets did

not contain the PAM50 subtypes, the genefu (40) package in R

was used to make separate predictions for each sample in these

two datasets. In addition, as the clinical data for GSE103091 did

not include the tumor grade, this covariate was omitted in the

multiple Cox regression analysis. The results revealed that

OncoSig was statistically significant in all the testing cohorts

(p ≤ 0.05) (Figure 4B; Table S1), further suggesting that the

signature can be regarded as an independent prognostic factor in
A B C

D E
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G

FIGURE 3

Development and validation of an oncogenic signaling pathway–derived lncRNA signature for outcome prediction in the TCGA-BRCA cohort.
(A) Pearson correlation analysis for 29 lncRNA expressions divided into two submodules based on hierarchical clustering. (B–D) Kaplan–Meier
(KM) survival analysis for the overall survival (OS) curves of BC patients in training (B), testing (C), and the total set. (E) Time-dependent receiver
operating characteristic (ROC) curve at 3 and 5 years of OS. (F) High- and low-risk groups depicted by the OncoSig, ordered according to their
scores, presenting the corresponding survival status for the BC patients. (G) Composition of patients with the PAM50 subtype in the two groups.
(H) A multivariate analysis of the OncoSig, age, PAM50, and stage with OS in the TCGA-BRCA cohort.
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BC. Moreover, a prognostic meta-analysis was conducted to

examine the comprehensive prognostic value of all five BC

cohorts, signifying that a high OncoSig score indicated a

significant risk factor for the OS of BC patients (Figure 4C).

As a whole, these results denoted that the OncoSig could be a

potential attribute of BC patients and may be of great value for

clinical prognostic assessment.

To our knowledge, several prognostic signatures for BC

constructed using lncRNAs have been reported. These include

the five-lncRNA signature proposed by Li et al. (41), the

signature GILncSig using lncRNAs highly associated with

genomic instability constructed by Bao et al. (42), a signature

consisting of 11 lncRNAs identified by Shen et al. (22) on
Frontiers in Immunology 09
comparing differences between high and low immune

infiltration groups in BC cohorts, and a signature constructed

on 9 lncRNAs derived from autophagy-associated lncRNAs by

Zhang et al. (43). To compare the prognostic performance of the

OncoSig with the other lncRNA signatures for BC, we calculated

the risk score for each sample in the TCGA-BRCA cohort,

utilizing each of the four signatures mentioned above. As

shown in Figure 4D, the OncoSig predictions attributed the

highest AUC to the five-year OS, followed by the nine-lncRNA

signature constructed by Zhang et al., while the lowest AUC was

adjudged to the five-lncRNA signature constructed by Li et al.

(Figure 4D). Since the C-index responds to the probability that

the predicted outcome is consistent with the actual observed, we
A B

C D E

FIGURE 4

Prognostic performance of the OncoSig on four independent BC testing cohorts. (A) KM survival analysis for the OS curves of BC patients in
GSE21653, GSE20685, GSE31448, and GSE103091, respectively. (B) Multivariate analysis of the OncoSig, age, PAM50, and stage with OS using
the four testing cohorts, respectively. (C) Meta-analysis performed on the prognostic value of the OncoSig for patients in the five cohorts, using
a fixed effects model to calculate pooled HR values (top: meta-univariate; bottom: meta-multivariate). (D) The ROC analysis of 5-year OS of the
OncoSig versus other published prognostic signatures for BC. (E) Comparison of the performance of five BC signatures using the concordance
index (C-index), randomly permuted 100 times, with 200 patients randomly selected from TCGA-BRCA each time, and the C-index calculated
separately for each signature. The Wilcoxon rank-sum test was used for the statistical analysis. ****p ≤ 0.0001.
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further randomly sampled the TCGA-BRCA cohort to calculate

the C-index corresponding to the optimal stratification of each

signature risk score and repeated this activity 100 times (see

Materials and Methods). The results showed that the OncoSig

has the highest average C-index and is significantly different

from Zhang et al. (Figure 4E). Indeed, these results suggest that

the OncoSig has a better prognostic performance compared to

the other lncRNA signatures for BC.
Clinical and biological landscape of the
two groups, as described by the OncoSig

By comparing the expression levels of 29 lncRNAs in the

high- and low-risk groups, we found that all but three—

AF131215 .8, AL022344.7 , and GATA6-AS1—exhibited

significant differences (Wilcoxon test, p-value ≤ 0.01)

(Figure 5A). The relationship between the OncoSig scores and

clinical characteristics, which included age (≥60 or not), stage,

PAM50, and Pan-Gyn clusters, were further examined in the

TCGA-BRCA cohort to reveal significant differences

(Figure 5B). Specifically, Lumina A, the least- aggressive

subtype of the PAM50, presented the lowest risk score while

the HER2 and Basal types were the most aggressive with the

highest risk scores (Figure 5B). We also observed a positive

concordance between pathological staging and the OncoSig

score in BC patients, with a similar trend in the Pan-Gyn C1

to C5 clusters (Figure 5B). In addition, differences in the ES

scores of 10 oncogenic pathways obtained using the GSVA (31)

tool for the two groups depicted by the OncoSig were

investigated, where RTK-RAS, Wnt, and Myc showed

significant differences, while the other pathways showed none

(Wilcoxon’s test, p-value ≤ 0.01) (Figure 5C).

Next, the infiltration of 28 immune cell types gathered from

the previous study (36) of the two groups depicted by the

OncoSig for BC patients was assessed using the GSEA toolkit.

It was observed that these groups revealed distinct patterns of

immune infiltration, with patients in the low-risk group

enriched by an absolute predominance of immune

subpopulations (Figure 5D, see Materials and Methods).

ESTIMATE (37) was performed to estimate and compare the

stromal, immune, and tumor scores in both risk groups, all of

whom showed significant differences, with immune showing the

most significant difference (Figure 5E). To refine the differences

between immune infiltrations in the high- and low-risk groups,

we estimated the relative fraction of 22 immune cells for each

patient in both groups by using CIBERSORT coupled with the

base matrix “LM22,” wherein “B-cell naïve,” “T-cell CD8,”

“macrophage M0,” and “macrophage M2” demonstrated the

most significant differences (Figure 5F; see Materials and

Methods). Further, differentially expressed genes (DEGs) in

the high- and low-risk groups were identified. The GO

annotation of these DEGs indicated that the high-risk group
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was enriched in biological processes, such as cell development

and differentiation, while the low-risk group was more involved

in biological processes, such as immune response and regulation

(Figure 5G). Overall, these results adequately revealed a

profound association between OncoSig and immune

infiltration, with lower OncoSig scores associated with higher

levels of immune infiltration and vice versa (Figures 5D–G).

To further investigate the heterogeneity of single-nucleotide

polymorphisms in the risk groups depicted by the OncoSig, we

retrieved a dataset of mutations corresponding to BC patients

from the TCGA database. As revealed in Figure 5H, the top 10

genes with the highest mutation frequencies in each group were

presented separately, with alterations occurring in 136 of the 161

samples (84.47%) in the high-risk group and in 688 of the 802

samples (83.9%) in the low-risk group. Notably, TP53, SPTA1,

FLG, and RYR2 accounted for 39%, 9%, 8%, and 8% of the

mutation frequency in the high-risk group, respectively, while

PIK3CA (34%) and CDH1 (16%) were more prominent in the

low-risk group (Figure 5H). The mutational burden was also

investigated, showing significant differences between the groups

portrayed by the OncoSig (Figure 5I). Lastly, genes with

significant mutational differences between the two groups were

examined, with ERBB3, FMN2, DNAH10, MIA3, and FOXA1

observed to be the frequently mutating genes in the high-risk

group, while CDH1 was found to be enriched in the low-risk

group (Figure 5J). Effectively, the high- and low-risk groups

depicted by the OncoSig revealed significant heterogeneity in

their clinical characteristics and biological mechanisms,

suggesting the potential value of the OncoSig as a clinical

signature to predict the prognosis of BC patients.
Potential of the OncoSig as an Indicator
of Immunotherapy Response in
Breast Cancer

To explore the potential of the OncoSig as an indicator of

response to immunotherapy in BC patients, the IPS, which refers

to an arbitrary 0–10 score based on the sum of weighted average

Z-scores for antigen presentation, effector cell, suppressor cell,

and checkpoint markers (see Materials and Methods), was

calculated. The results displayed that the IPS was negatively

connected with the OncoSig scores and also revealed a

substantial difference between the high- and low-risk groups,

with the latter being more immunogenic (Figure 6A). A recent

study (44) has already elaborated that immune checkpoint

inhibitor (ICI) genes are of significant value in depicting

tumor progression. To further inquire into the complicated

interactions between OncoSig and ICI genes, the expression

patterns of ICI genes—including CD247 (PD-L1), PDCD1,

CTLA4, HAVCR2, and LAG3—in the different patient groups

stratified by the OncoSig were analyzed. The results revealed that

the OncoSig had a significant negative correlation with the
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FIGURE 5

Clinical and biological characteristics of stratification results of the OncoSig. (A) Box plot showing the statistical difference of the 29 lncRNA
expressions between high- and low-risk groups. (B) Clinical characteristics of the risk score obtained on a stratified analysis of the TCGA-BRCA
cohort. (C) Box plot showing the statistical difference in the ES of the oncogenic signaling pathways between high- and low-risk groups.
(D) Volcano plot for the enrichment of immune cell types in tumors with high and low OncoSig scores, calculated based on the normalized
enrichment score from the gene set enrichment analysis (GSEA). (E) Stromal, immune, and tumor scores from the ESTIMATE tool for the high-
and low-risk groups. (F) CIBERSORT predictions of the infiltration levels of 22 immune cells in the low- and high-risk groups. The dots represent
the immune cell–scaled expression values. (G) GSEA showing significantly enriched GO terms in low- and high-risk groups, respectively. (H) The
tumor mutational burden difference between the low- and high-risk groups. (I) Comparison of the relative distribution of the mutation load
between the low- and high-risk groups in the TCGA-BRCA cohort. (J) Table showing the significantly mutated genes between the low- and
high-risk groups. Only genes with more than 10 mutations were included in the Fisher’s exact test analysis. Notably, ns: not significant, *p ≤

0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. The Wilcoxon rank-sum test was used for the statistical analysis.
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expression levels of ICI genes (Figure 6B). Additionally, in the

TCGA-BRCA cohort, patients with low OncoSig exhibited high

levels of ICI gene expression compared to those with high

OncoSig (Figure 6B). This trend is consistent with previous

observations specifying that a high expression of immune

checkpoint genes is associated with a good outcome (45). It is

still unclear whether the OncoSig can reflect clinical results more

sensitively, with similar expression levels of ICI genes as above.

To clarify this confusion, the BC cohort was divided into four

groups using the stratification depicted by the OncoSig into

high/low (median values as cutoff points) expression levels of

each ICI gene. After this, the survival patterns of these four

groups were compared. The results demonstrated that patients

with low OncoSig and high expression of ICI genes had the best

prognostic performance, while those with high OncoSig and low

expression of ICI genes had the worst prognosis (log-rank test,

p-value ≤ 0.001) (Figures 6C–G). In particular, for high OncoSig

patients, stratified ICI gene expressions, that is, C3 and C4,

resulted in significant differences in survival. However, on

stratifying the cohort using ICI gene expression based on the

low OncoSig patients, that is, C1 and C2, no significant survival

differences were observed (Figures 6E–G). Accordingly, these

results implied that the OncoSig was closely associated with ICI
Frontiers in Immunology 12
immunotherapy response and, thus, could be a potential

predictive signature for BC patients.
Extending the effectiveness and clinical
value of the OncoSig using Pan-Cancer
RNA-Seq Data

To investigate the effectiveness and clinical values of the

OncoSig on other cancers, we obtained transcriptome expression

datasets coupled with clinical data from the TCGA database for

32 other cancer types (the full names and abbreviations of these

cancers can be found in Table S1) and scored each sample using

the OncoSig formula (see Materials and Methods). To assess the

prognostic ability of the OncoSig in other cancers, optimal cut

points and survival models were used to investigate the survival

patterns of the risk groups, with the results showing significant

differences between the stratifications depicted by the OncoSig in

21 cancer types (p-value ≤ 0.05), wherein 11 cancer types with a

p-value ≤ 0.01 were identified (excluding BRCA, Figures 7A, B).

On comparing the immune infiltration, estimated by

ESTIMATE (37), significant differences were observed between

the high- and low-risk groups for each of the 12 cancer types,
A B C

D E F G

FIGURE 6

Impact of immune checkpoint gene expression and OncoSig on clinical outcome. (A) Comparison of the relative distribution of
immunophenoscores (IPSs) between low- and high-risk groups in the TCGA-BRCA cohort (top). The scatter plot shows the correlation between
the correlated IPS score and the OncoSig score, while R indicates the Pearson correlation coefficient (bottom). (B) Comparison of the
expression pattern of immune checkpoint (ICI) genes between patients with higher and lower OncoSig scores in the TCGA-BRCA cohort. (C-G)
KM OS curves for the four groups stratified by the OncoSig and CD247 (C), PDCD1 (D), CTLA4 (E), HAVCR2 (F), and LAG3 (G). The Wilcoxon
rank-sum test was used for the statistical analysis.
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including bladder urothelial carcinoma (BLCA), head and neck

squamous cell carcinoma (HNSC), and kidney renal papillary

cell carcinoma (KIRP), with lower immune infiltration in the

high-risk group. This is consistent with the results observed in
Frontiers in Immunology 13
the BRCA (Figure 7C). Interestingly, there was also a significant

difference between the two groups in terms of uterine uveal

melanoma (UVM). However, the high-risk group still displayed

higher immune infiltration and vice versa. In contrast to the
E

F

A B

C D

FIGURE 7

Confirmation of the OncoSig using TCGA pan-cancer datasets. (A) Validation of the impact of the OncoSig on survival using TCGA pan-cancer
datasets. Background colors in pink indicate cancer types with p-values less than 0.01, while light blue indicates cancer types with p-values less
than 0.05. P-values were obtained using a log-rank test. (B) KM OS curves between patients with a higher and a lower OncoSig score in 11
cancer types. (C) Comparison of the relative distribution of immune scores derived from ESTIMATE between high- and low-risk groups in 11
cancer types. (D) Scatter plot showing the correlation between the correlated immune score and the OncoSig score. R indicates the Pearson
correlation coefficient. (E) GSEA for 431 marker genes of adaptive immunity reveals the relationship between low- and high-risk score groups in
adrenocortical carcinoma, bladder urothelial carcinoma, and uveal melanoma cancer types. (F) Heat map with hierarchical clustering showing
the expression of 29 lncRNAs between low- and high-risk score groups. Red and blue represent high and low expressions, respectively. The
Wilcoxon rank-sum test was used for the statistical analysis. ns: not significant, *p ≤ 0.05, ***p ≤ 0.001, ****p ≤ 0.0001.
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OncoSig in BRCA, a significant positive correlation was

observed when comparing the intrinsic association between

the OncoSig score and immune infiltration (Figure 7D). The

underlying reason for this may be that UVM belongs to the

immune “cold” tumor, that is, a low-density immune infiltrate

present both inside and outside the tumor (Figures 7C, D) (46,

47). In addition, no significant difference was observed in the

other tumor types (Figure 7C).

Next, to confirm the above results, we shifted our strategy and

adopted the GSEA to assess the activity of adaptive immune genes,

available from a prior study (36) (see Materials and Methods), in

the high- and low-risk groups denoted by the OncoSig. As shown

in Figure 7E, no significant enrichment was found between the

two groups in adrenocortical carcinoma (ACC); however,

considerable enrichment was discovered in the low-risk group

in BLCA and in the high-risk group in UVM (>Figure 7E), which

corroborates the observations in Figures 7C, D. The above results

suggest that the OncoSig still has prognostic potential in a wide

range of cancers, but whether this signature is a risk or a protective

factor may be profoundly influenced by the immune-hot and

-cold feature of the cancer itself. Finally, we examined the

panorama of expressions of these 29 lncRNAs in the high- and

low-risk groups of 11 cancer types; the hierarchical clustering

result revealed that they could be classified into three major

categories (Figure 7F)—the comparisons of the low-risk group’s

highly expressed lncRNAs (such as SFTA1P and LINC00346),

median highly expressed lncRNAs (such as LINC00398 and

AC009495.2), and lowly expressed lncRNAs (EDNRB−AS1 and

LINC00707) (Figure 7F). Despite this, the expression of these

lncRNAs still exhibited heterogeneity across cancers (Figure 7F).

Overall, these results demonstrated that the OncoSig can serve as a

potential predictive signature of response to BC treatment and has

the potential for pan-cancer application.
Discussion

BC is a highly prevalent and heterogeneous malignant

disease that occurs almost exclusively in women (1, 3).

Immunotherapy for BC has been considered an emerging

treatment approach in clinical circumstances. However, an

evaluation criterion is extremely necessary due to the

uncertainty of the response to immunotherapy and prognosis

in BC (6). Li et al. discovered that a new prognostic signature

consisting of 24 pairs of differentially expressed immune-related

lncRNA (DEirlncRNA) had close connection with tumor-

infiltrating immune cells and drug susceptibility (48). An

analogous study by Shen et al. identified 36 pairs of

DEirlncRNA for appraising the response to immunotherapy

and predicting the survival status of invasive BC (49). Along

the same lines, our observations highlight the importance of

lncRNA signatures pertaining to oncogenic signaling pathways.
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Previous studies have shown that complex interactions and

crosstalk among different signaling pathways are highly

relevant to the progression of the disease, making a proper

understanding of oncogenic alterations, its detailed mechanisms,

and the co-occurrence of these pathways essential for the

development of new therapeutic approaches to improve

patient care (16, 39). Nonetheless, directly and accurately

delineating the roles and alterations among crucial signaling

pathways in a clinical setting remains a difficult task.

LncRNAs have recently been identified to play fundamental

roles in regulating the activation of oncogenic signaling

pathways and, thus, can be utilized as specific molecular

markers to depict alterations in signaling pathways (16).

The current study demonstrated a new 29-lncRNA

signature (OncoSig) that is applied as an indicator of

immunotherapy response and prognosis in BC from the

perspective of interactions between genes and related

lncRNAs in oncogene signal pathways.

We originally established interaction networks between 10

cancer pathways and analyzed their relationships with the survival

prognosis of BC patients in TCGA. The results showed that the

RKT-RAS-, Notch-, Hippo-, Wnt-, and TGFb- signaling

pathways were strongly associated with worse survival

prognosis, while the Cell cycle pathway was significantly

associated with a better survival prognosis. Surprisingly, there

was a contradictory result. As Wang et al. noted, an immune

signature named immune-related prognostic score (IRPS), which

acted as a tumor suppressor, was appraised by the normalized ES

(NES). The results of the IRPS subtypes in the NES values of 10

common oncogenic pathways showed that the Hippo-, Notch-,

TGFb-, and Wnt-related and RAS pathways exhibited

pronounced lower NES values in the low IRPS group, while it

had a higher value in the high IRPS group, whereas the Cell cycle

and PI3K pathways had significantly lower NES in the high IRPS

group (45). We speculated on the major reason behind these

conflicting findings to conclude that our results reflected the entire

TCGA-BRCA data instead of partial data. In the process of data

collection, similar to the lncRNA signature of tumor-infiltrating B

lymphocytes developed by Zhou et al. in bladder cancer (50), we

initially sought RNA-seq data from the TCGA and extracted 3,006

lncRNA expression profiles by matching their lncRNA

annotations in GENCODE. Then, based on the critical role of

lncRNAs in regulating oncogenic signaling pathways in human

cancers (51, 52), we applied association analysis and LASSO

feature–selecting strategies to identify 29 lncRNAs that exhibited

high correlation with the signaling pathways, thus influencing

prognosis considerably. It brought a hepatocellular carcinoma

immune-related lncRNA signature into correspondence, which

was also screened by deploying LASSO regression analysis (21).

Afterward, we equally and randomly allocated the BC patients

from the TCGA into the training and testing sets. The high- and

low-risk groups were defined according to the optimal cutoff value
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of the OncoSig, as determined by the ROC curve. Next, the KM

survival curve was plotted using the log-rank test, which disclosed

that the OS of the high-risk group was worse than that of the low-

risk group in both the sets as well as the combined set.

Subsequently, we chose four independent GEO datasets and

classified them into two groups according to the best threshold

value of the OncoSig. To our astonishment, their KM survival

curves wholly displayed a higher OncoSig score and worse OS,

similar to the trend in the TCGA-BRCA cohort, implying that it

could be developed as a prognostic factor. Additionally, the

OncoSig remained an independent risk factor in the multivariate

Cox regression model, notwithstanding inequivalently variable

factors in five separate datasets and in the prognostic meta-

analysis. Above all, we concluded that the newly emerging

signature (OncoSig) could be widely applicable. Concurrently,

according to our calculations, the OncoSig predicted a five-year

OS with the highest AUC for the TCGA-BRCA dataset among

the five prognostic signatures. At the same time, it also exhibited

the highest average C-index, which estimated whether the

predicted probability was consistent with the actual observed

value in the above signatures. Evidently, there is no doubt that

the OncoSig has better prognostic merit than the other lncRNA

signatures for BC.

Similar to our approach, Zhang et al. demonstrated a nine-

autophagy-related lncRNA signature for evaluating BC

prognosis (43). By using the GSEA, patients in the low-risk

group were enriched with 19 immune cell subpopulations;

however, only 2 were enriched in patients with high risk. This

exhibits the same trend as an existing signature of tumor

immune infiltration–related lncRNA in non-small cell lung

cancer, which showed 4 immune cell subtypes in the high-risk

group and 10 in the low-risk groups (44). Oddly, Zhou et al.

obtained the opposite result in the NES, with 11 immune

subpopulations mainly concentrated in the high-risk patient

group, while only 2 were enriched in the low-risk group (50).

GSEA, immune infiltration, and gene function enrichment

analysis” need to be corrected as “Immune cells infiltration,

immune score and IPS score the high- and low-risk groups

stratified by the OncoSig. The TME of diverse cancers comprises

three main patterns: immune-desert, immune-excluded, and

immune-infiltrated/inflamed (53). We further concluded that

the high-risk group appeared to have more immune “cool”

tumors with less immune cell infiltration, whereas the low-risk

group contained more immune “hot” tumors with stronger

immune cell infiltration. This outcome aligns with existing

studies, which state that TCGA-BRCA patients have two

distinct immune landscapes (54).

Following this, to further ensure the reliability of the

OncoSig, we compared the tumor mutation burden (TMB) of

the two different risk groups identified by the OncoSig. Our

study suggested that ERBB3, FMN2, DNAH10, MIA3, and

FOXA1 were the frequently mutating genes in the high-risk
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group, while CDH1 predominated in the low-risk group, clearly

indicating a higher TMB in the former group when compared to

the latter. Karn et al. concluded that lower TMB and less

genomic heterogeneity are positively connected with better

survival of TIL-rich TNBC (55). Their reviews are consistent

with our results, albeit with distinct classification criteria. Our

study also disclosed that the Basel, LumB, and HER2 subtypes

accounted for larger proportions in the high-risk group than the

low-risk group; meanwhile, the LumA subtype showed the

opposite trend. Furthermore, Li et al. reported that an altered

CDH1 group involving mutations in the LumA subtype group

displayed better survival than a non-altered group (56). This

could explain our current result, indicating that a higher CDH1

mutation rate in the low-risk group is associated with better

prognosis in comparison to the high-risk group.

In this study, we focused on how a selected lncRNA affects

an oncogenic signaling pathway by altering the expression of

related genes and further evaluated the relationships of the

PAM50 subtypes. In particular, ICI-based immunotherapy has

made tremendous progress in the clinical management of BC

patients recently. However, the heterogeneity of tumors has

compelled the beneficiary group of this therapeutic strategy to

remain a minority. Consequently, it is crucial to select patients

who are most likely to profit from ICI by preassessing the

predictive signatures of their responses to ICI. Although

immune checkpoint genes, such as PD1/PD-L1 and CTLA4,

are currently available biomarkers used in clinical work, they are

insufficient independent predictors of ICI response (57, 58).

Meanwhile, despite high expression levels of PD-1/PD-L1,

response rates to immune checkpoint blockade therapy have

remained variable among BC patients. By comparing the

survival distribution of BC patients screened by the OncoSig

and immune checkpoint gene expression, we demonstrated that

the OncoSig enabled better discrimination between patients with

similar levels of gene expression, indicating that patients with

low OncoSig and high-level immune checkpoint gene expression

may experience greater ICI treatment response. Furthermore,

the prognosis of patients with similar OncoSig is, to some extent,

influenced by the differential expression of immune checkpoint

genes. Therefore, we can conclude that the Oncosig, resembling

the immunotherapeutic benefit score developed by Wang et al.

(59), has a distinctive characteristic of predicting response

to immunotherapy.

To further certify the dependability of the OncoSig, we

also obtained transcriptome expression datasets from the

TCGA database for 32 other cancer types. We exploited its

formula to score each sample of these cancers. Several

cancers, including BLCA, HNSC, and KIRP, except for

UVM, showed better survival and more immune infiltration

cells in the low-risk cohort than its high-risk counterpart. For

UVM, the potential cause of this phenomenon could be

attributed to the disparity in the immune context of UVM,
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since it belongs to the immune desert category, or the

heterogeneity of UVM, as it contains the pro-tumorigenic

immune cells (MDSCs, M2 macrophages, Th2 CD4+, etc.) of

the TME (7, 8, 53).

There are still a few other concepts that can be considered to

improve our study. First, the OncoSig requires the conduction of

live tissue specimen molecular analysis in the 5 BC subtypes to

verify its practicability. Furthermore, our pan-cancer analysis may

be a double-edged sword. Although it proved the credibility of the

OncoSig to a certain extent by covering multiple types of cancer, it

did not cover all the types. In the future, there is certainly a need to

design a clinical trial to evaluate the prognosis and

immunotherapy response of BC patients by using the OncoSig.

In conclusion, the present study uncovered a robust signature in

BC, termed as OncoSig, which acted as an oncogene and relied on

the correlations of oncogenic signaling pathways and lncRNAs. We

demonstrated a solid implementation of the OncoSig in the

evaluation of the prognosis for BC and several other cancers as

well as in the detection of immunotherapy responses, proving that it

might be helpful in distinguishing clinical outcomes in patients

suffering from BC and several other cancers.
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