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Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity,
whose cellular origins are mainly macrophages, neutrophils and other cells.
Although the detailed function of Ym1 remains poorly understood, Ym1 has
been generally recognized as a fundamental feature of alternative activation of
macrophages in mice and hence one of the prevalent detecting targets in
macrophage phenotype distinguishment. Studies have pointed out that Ym1
may have regulatory effects, which are multifaceted and even contradictory, far
more than just a mere marker. Allergic lung inflammation, parasite infection,
autoimmune diseases, and central nervous system diseases have been found
associations with Ym1 to varying degrees. Thus, insights into Yml's role in
diseases would help us understand the pathogenesis of different diseases and
clarify the genuine roles of CLPs in mammals. This review summarizes the
information on Ym1 from the gene to its expression and regulation and focuses
on the association between Ym1 and diseases.

KEYWORDS
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Introduction

Ym]1, known as chitinase-like protein 3 (Chil3), is a member of chitinase-like proteins
(CLPs) specifically produced by rodents, which is also referred to as eosinophil
chemotactic factor (ECF-L) since it was originally purified as eosinophilic crystals in
mice with pulmonary inflammation. Chitinases refer to a class of chitin-degrading
enzymes produced in the host, which have been proven to play a protective role in innate
immunity against the chitin-containing pathogens, including parasites, fungi, and
arthropods (1). CLPs lose their activity on chitin degradation due to mutations of key
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sites in the enzyme domain, but still participate in various
inflammatory responses in mammals. Among the three CLPs
in mice (Ym1l, Ym2 and BRP-39), and two in humans (YKL-39
and YKL-40), YKL-40 retains the chitin-binding property, while
Yml has a specific binding affinity for chitin-like saccharides
such as glucosamine (GIlcN) oligosaccharides, heparin and
heparan sulfate (HS), which is presumed to belong to a new
lectin family (2).

The producing cells of Yml are alternatively activated
macrophages (M@) denoted as M2 or M2a (3), and
neutrophils (4). It is expressed under the physiological state,
and is induced by type 2 cytokines in the pathological condition,
which often leads to a significant upregulation in the acute stage
of inflammation. The enriched Yml even forms crystals in
specific pathological environments (5). Ym1 has been used as
a marker of M2 and is involved in the modulation of Mg
activation, the expression of Th2 cytokines and IL-17, the
chemotaxis of neutrophils (and probably eosinophils) and
other inflammatory responses (6, 7).

Ym1 has been confirmed to contribute to the immunopathology
of certain diseases in the lung, brain, skin, joint, etc (6-8). However,
the influencing factors of these diseases are complicated and diverse,
and the existence of Yml-highly-similar homologs becomes a
constraint in its research techniques. Therefore, the role of Yml in
disease pathogenesis remains unclear.

Basics of Chil3 gene

As a rodent-specific gene, Chil3 is situated in the F2.2 region
of mouse chromosome 3. As early as 1998, Chil3 was reported to
locate in the center of mouse chromosome 3, which is also an
equivalent region to human chromosome 1 p13 (9). The same
conclusion was also obtained by Southern blotting in 2001,
indicating that Chil3 is a single copy gene (2). What people
first learned about Chil3 was its cDNA sequence out of the
mouse peritoneal exudate cDNA library, which was deposited in
the GenBank database (GenBank M94584) in 1992.
Subsequently, the second full-length ¢cDNA sequence ECF-L
was deposited in the database (GenBank D87757) in 1996.
Now people know the Chil3 gene is composed of 20,011 pairs
of bases, containing 11 exon sequences, and the position of exon-
intron splice site is consistent with that of human CHI3LI gene,
but there is no splice site corresponding to the last Chil3 splice
site in human genes (9). For the transcriptional start site, 20
nucleotides upstream of the translation start codon ATG in exon
1 were determined by primer extension analysis, and now it’s
generally believed that there are 43 nucleotides upstream of ATG
in exon 1. Meanwhile, there are four signal transducer and
activator of transcription (STAT)-binding sites TTCNxGAA
near the upstream of exon 1, in which only the first and the
third one could bind STAT6-containing complexes with high
affinity in the EMSA experiments (10). In addition, for Yml
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protein, it was found to be a single peptide chain containing 373
residues, excluding the first 21 leading peptide and the last 4
carboxyl terminal residues, clearly divided into a large /o barrel
(TIM barrel) domain and a small a+p domain (11, 12). The
information on Chil3 gene, RNA and protein are summarized
in Figure 1.

All gene sequences of CLPs are highly similar, in the same
or different species, but there are still differences among them.
Since Chil3 gene are similar to all the known human
chitinase-like genes (~ 50% nucleotide similarity), the exact
human ortholog of Chil3 cannot be clearly defined by now (9).
At the same time, there is a high degree of homology between
Chil3 and Chil4 genes in mice (9). Although the basic
expression patterns of Chil3 and Chil4 do not overlap
substantially, the first 1,200 nucleotides upstream of exon 1
of Chil3 are 92% identical to those of Chil4 and contain a
STAT-binding site, while the first 1,700 nucleotides
downstream of exon 1 of Chil3 are 93% the same as those
of Chil4. This high genomic similarity indicates that Chil3
and Chil4 are generated by relatively recent gene duplication
events (10). At the evolutionary level, the research on GH18
family proteins showed that mouse CLP genes (Chil3, Chil4,
etc.) evolved from the rodent Chia gene. A replication event
produced CLPs, which lost its catalytic motif before further
branching and expanding, may lead to the birth of Chil3,
Chil4, and their predicted homologous pseudogenes GM6522
(previously assumed Ym3, Ym4 were parsed into single
predicted pseudogenes by the database) (13). The similarity
of Yml and Ym2 once hindered the determination of the
research object. At the RNA level, reverse transcription-
polymerase chain reaction with specific primer pairs
targeting the differences of Chil3 and Chil4 sequences
allows the identification of the two genes (10, 14). At the
protein level, Ym1 and Ym2 share a considerable number of
sequences (91.7% of the amino acid sequences are the same,
33 different amino acids). In early years studies, monoclonal
antibodies against Ym1 had the same effect on Ym2 (15), so
immunological detection had to work in conjunction with
mRNA in situ hybridization to make a distinction (16).
However, in a recent study, specific antibodies targeting
Yml and Ym?2 respectively have been developed, and the
two proteins now can be distinguished successfully (17). For
early studies where Yml and Ym2 were not clearly
distinguished, in this review we collectively refer to the
relevant research objects as Ym protein.

Ym1 expression and its regulation

The expression patterns of C/CLPs including Ym1 have
obvious tissue specificity, thus here we try to summarize Yml
expression accordingly under both physiological and
pathophysiological conditions (as shown in Figure 2).
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FIGURE 1

Ym1 protein

The information of Chil3 gene, RNA and protein. Chil3 gene is situated in the F2.2 region of mouse chromosome 3, it is composed of 20,011
pairs of bases, containing 11 exon sequences, which are 1,539bp in length. Four STAT binding sites are located near exon 1. The 1,197nt CDS
sequence encodes the Ym1 protein containing 398 residues. Ym1 protein, excluding the first 21 leading peptides and the last 4 carboxyl terminal
residues, can be divided into a large /o barrel (TIM barrel) domain and a small a+B domain. Ym1 also has several carbohydrate-interacting
residues though it has no chitinase activity, and these residues are marked on the diagram.

“a+B domain TIM barrel domain part 2

Physiological condition

In healthy adult mice, Ym1, with different cellular origins, is
constitutively expressed in the spleen, bone marrow and notably
in lungs (16). Ym1 was originally purified from the supernatant
of mouse splenocyte culture as an eosinophil chemokine (18),
and the expressing cells were identified as immature neutrophils

in red pulp (16). In the lung, alveolar macrophages (AMs) (16,
17, 19, 20) and neutrophils (4) constitutively contain YmI. In the
bone marrow, Ym1 was reported to be expressed in myeloid cells
(20), and subsequent studies have further located the expressing
cells as myeloid progenitor cells (destined to be monocytes or
neutrophils) (19) and immature neutrophils and large
mononuclear cells (16). And as neutrophil progenitors mature,
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FIGURE 2

Expressing cells of Ym1 in mice under physiological and pathophysiological conditions. Brain produces Ym1 by M2-typed microglia normally, by
microglia in the parasitic infection and autoimmune neuroinflammation, and by microglia, Mg and neutrophils in injuries. Lungs express Ym1 by
alveolar macrophages (AMs) and/or neutrophils in normal, allergic lung inflammation and parasitic conditions. Thoracic cavity and peritoneal
cavity express Ym1 in parasite infection respectively by thoracic lavage cells and Mg in peritoneal exudative cells. Spleen and bone marrow are
also main normal origins of Ym1 performed by immature neutrophils. The former also produces increased Ym1 in M during parasite infection,

and the latter does it by monocytes when repairing tissue injuries.
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their Ym1 expression will decrease to undetectable (16). Some
bone marrow-derived cells, like osteoclast precursors (early
immature proliferative mononuclear phagocytes) and mature
osteoclasts (OCs) (21) and connective tissue type-like mast cells
(22), were also detected to produce Yml. Subsequent studies
related to central and peripheral nervous system pointed out that
alternatively activated microglia could also produce Yml in
physiological condition, though at a relatively low level (23).
And the accumulation of Ym1 protein in olfactory epithelia was
observed during normal aging process (24).

For fetal mice, it might be noteworthy that during the
development, the trace of Ym1 expression coincides with the
migration of tissue resident M@. Ym1 is initially expressed in
the yolk sac and then in the liver, spleen and bone marrow where
early myeloid precursor cells in hematopoietic tissues undertake
Ym1 expression, and later the expression of Ym1 in newborn
mice reaches its peak in the liver and spleen (19). Similarly, the
vast majority of tissue resident M@ are derived from
erythromyeloid progenitor cells (EMPs) in the yolk sac,
including microglia in brain and AMs in lung, and EMPs then
migrate and colonize in the newborn fetal liver as well (25). For
newborn mice, Yml in the lung becomes detectable only about
two weeks after birth, while their liver and spleen gradually
decrease Yml production, and finally, the expression status
becomes consistent with that of adult mice (19). In general,
AMs and lung have a close link with Yml in terms of the
development and physiological expression, also in terms of
pathology and diseases actually, thus considerable research has
been devoted to relevant fields.

Pathophysiological condition

Yml can be transiently induced according to various
inflammatory stimuli. Allergic airway inflammation is one of
the major causes of increased Ym expression. Ym1 is produced
by AM (26) and contained in bronchoalveolar lavage fluid
(BALF) (15, 27). Besides, parasite response enhances
pulmonary Yml production as a universal feature (28). A
quintessential example of Yml response to parasites was
provided by the gastrointestinal nematode Nippostrongylus
brasiliensis (N. brasiliensis), in which Ym1 was detected in M@
and neutrophils of lungs mainly, accompanied by a rising
secretion but a reduced cell ratio (4).

In peritoneal cavity, the expression of YmI mainly appears
in parasite infection, related to activated M¢ in peritoneal
exudative cells, such as acute-phase response caused by T.
spiralis (2) and Brugia malay (29). Similarly, the infection of
parasite L. sigmodontis in thoracic cavity could also cause
thoracic lavage cells to upregulate Ym1 expression (28).

In central nervous system (CNYS), its expression level is
upregulated during certain phases of neurotraumatic and
neurodegenerative diseases, drug-induced epilepsy, autoimmune
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neuroinflammation as well as parasite infection (19, 24, 30), for
which it has been regarded as a significant marker of the
alternatively activated microglia/M@. Nevertheless, the specific
cellular origins and time course concerning Ym1 expression under
these circumstances remain elusive. Mice infected with
Angiostrongylus cantonensis (A. cantonensis) were found to
synthesize Ym1 primarily via microglia, while the infiltrating
macrophages contributed more to producing Ym1 in the stroke-
injured mice (31). It is also noteworthy that neutrophils can
express Ym1 in the focal cerebral ischemia mice (32). In marked
contrast to the CNS, YmI can be secreted by the supporting cells
in the olfactory epithelium, and its distribution is less confined,
ranging from the injured olfactory mucosa to the dorsolateral
turbinates of the nasal cavity (24).

In other tissues and organs Yml expression in specific
situations can be found as well. After Trypanosoma brucei
brucei (T. b. brucei) infection, significant expression of Ym
protein was detected in splenic M@ (3). In the draining lymph
nodes after parasitic infection, antigen-presenting cells were
reported as the only cell group producing Ym1, most highly in
B cells and M¢ (28). In traumatic wounds, Ym1 expression was
restricted to granulation tissue, closely related to neutrophils
rather than M@ (33). Most of the pathological upregulation of
Yml mentioned above emerged in the acute stage of
inflammatory injury. Bone marrow, however, was observed an
augment in Yml expression in the repairing period of tissue
injury as well, explained by the fact that precursor cells of Ly6C"
monocytes differentiate and proliferate into Yml-expressing
monocytes (Ym1*Ly6C™), which would infiltrate into
corresponding injury sites (34).

In sum, under the stimulation of different pathogenic factors
or in different phases of the same pathological process, the
specific synthesis sites of Ym1 are different. These differences
are gradually becoming crucial components of a proliferation of
studies. What can be applied to various parts is that M@
(including microglia) and neutrophils constitute the dominant
Ym1 expressing cells in the pathological state.

Regulation of Ym1 expression

Previous studies have found that multiple inflammatory
factors or stimulating drugs are able to induce or regulate the
expression of Ym1 (as shown in Figure 3). It has been confirmed
that Ym1 expression is mediated by STAT6 and induced by IL-4/
IL-13 in M@, dendritic cells (DCs) (3, 10, 35-38) and microglia
(39, 40), and Yml1 is the reigning Ym protein subtype induced by
IL-4 (41). The effects of IL-4 and IL-13 are different to some
extent, and IL-13 might offer a more powerful inducement on
Yml expression in vivo (38). Intraperitoneal injection of anti-IL-
4 antibody can block the expression of Yml, but only the
concomitant blocking on IL-4 and IL-13 can eliminate the
induced Ym protein expression in BAL (10).
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Schematic regulation of Ym1 expression. Various cytokines, drugs, microbial antigens are possible regulators. IL-4 and IL-13, the popular M2
drivers, were confirmed to promote Ym1 expression in both the in vitro and in vivo studies. TGF-B, Bm-MIF-1, LPS and Simvastatin were also
found to be associated with Ym1 upregulation, and IFN-y might correlate with its downregulation, while divergent views of dexamethasone
remain in place. However, how Ym1 expression is fine-tuned by these signals remains elusive. The figure particularly illustrates the well-studied
IL-4/STAT6 pathway. When stimulated by IL-4, STAT6 is phosphorylated, forming a homodimer and translocating to the nucleus, activating the
gene transcription of Chil3. STAT6 can further activate PPAR-vy, which enhances Chil3 expression cooperatively.

In addition, lipopolysaccharide (LPS) could boost the Ym
protein expression induced by IL-4 in vitro, while IFN-y could
diminish the influence of IL-4, even causing Ym protein
undetectable (3, 37). Glucocorticoids like dexamethasone were
reported to induce Yml through STAT6, which have a co-
enhancement effect with IL-4 on Ym1 (35). Simvastatin, a lipid-
lowering drug, was also found to intensify Yml expression
dependent on IL-4R (co-receptor of IL-4 and IL-13) (42). In
vivo, endogenous TGF-B was reported to upregulate IL-4Ro,
giving rise to a significant enhancement to the M2 activation of
microglia caused by IL-4, thus increasing the synthesis and
secretion of Ym1 (39, 40). Interestingly, opposite to its effects
in vitro, dexamethasone was found to counteract the influence of
IL-4 and reduce Yml expression in the ovalbumin (OVA)-
induced asthma model (43). A cytokine homolog Bm
macrophage migration inhibitory factor (MIF)-1 generated by
the helminth parasite Brugia malayi showed an upregulating
effect on Yml expression, in which case, IL-4 or IL-5 was not
necessary for the induction of YmI, but it remained unclear
whether type 2 cytokines like IL-13 were required (29).

Moreover, accumulating evidence has suggested that the
activation of immuno-metabolic regulatory peroxisome
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proliferator-activated receptor (PPAR)y facilitates Ym1l
expression in a STAT6-dependent manner. 15dPGJ2 (a natural
PPARyligand) (44) and rosiglitazone (a PPARYy agonist) (32, 45)
were reported to contribute to the Yml upregulation, while
GW9662 (a selective antagonist) significantly blunted IL-4-
induced Yml expression (46). Further, ChIP analysis proved
Yml as one of the direct target genes of PPARY (47), and the
integrin on/Ps may play a crucial role in PPARY-induced Ym1
upregulation (48).

In general, it is prevalent to use Ym1 as one of the detecting
markers of M2 M@ (3), especially for M2a activation induced by
IL-4/13 (49). Ym1 has also been proposed as a marker of
alternative neutrophil (N2) polarization (32, 50). However, a
recent study has found that the M2 phenotype was enhanced in
Chil3-deficient mice, demonstrating that Yml may control or
limit the M2 activation of M@ (6). Ym1 protein was also found to
be absorbed by wound healing M@ in Stat6-deficient mice (33),
which might suggest that there could be some loopholes in the
application of Yml as a M@ phenotype marker, and it is
recommended to define the M@ phenotype together with other
markers. Besides, Ym1 was observed as a unique one with
increased expression among STAT6-associated M2 markers
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when STAT6 expression was augmented by the inhibitor of heat
shock protein Bl (HSPB1) (51). These facts indicate that Ym1
serves as a function performer rather than a marker and zoom in
the question that what the exact role of Yml is in M2 and
relevant progress.

Role of Ym1 in diseases
Allergic lung inflammation

Allergic asthma is a chronic inflammatory disease of the lower
respiratory tract, clinically leading to manifestations as recurrent
wheezing, dyspnea, chest tightness and paroxysmal cough. Its
pathophysiological features are inflammatory responses such as
increased IgE synthesis, airway hyperresponsiveness, mucus
hypersecretion and airway remodeling. The similar airway
inflammation in lung can be modeled in mice challenged by
some typical protein antigens like OVA or certain allergens like
house dust mite (52). Recent studies have shown that the
mechanisms driving the development of mild and severe asthma
are different (53). Patients with mild and moderate asthma present
a typical response, that is, helper T cell type 2 (Th2) inflammation,
mediated by cytokines such as IL-4, IL-5 and IL-13, and

. 37KDa
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FIGURE 4
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eosinophilia (54). In contrast, patients with severe asthma could
present a low Th2 and a high Th17 response, accompanied by
neutrophil inflammation in airway (55). It was also found in
mouse model that hyperresponsiveness could be induced without
Th2 response but with increased IL-17 expression (56).
Importantly, Ym1 has been found to be involved in the airway
inflammation model in mice, and may lay effects on both types of
mechanisms as shown in Figure 4.

On the one hand, Yml can intensify Th2 inflammatory
response. The study on Chil3-deficient mice supports the effect of
Ym1 on Th2 cytokines conclusively, as a fall was detected in the
expression of IL-4 and IL-5 in Chil3-deficient mice during OVA
induced pulmonary inflammation (6). This immunoregulatory
effect of Ym1 was realized by M2 M¢ in disease. In human body,
although the role of M2 M@ has not been determined in asthma, it
has been confirmed that the function of AMs in asthmatic patients
is different from that of normal people (57). In the mouse model of
allergic lung inflammation, M@ tend to the M2 phenotype, which is
considered unnecessary and should be inhibited by the body (58).
Some studies, however, believe that the immune molecules on the
M2 surface can mediate the uptake and clearance of allergens and
control the development and severity of allergic inflammation, thus
serving as protectors (59). Additionally, Yml or M2 could be
unnecessary in the development of allergic airway disease, as IL-

Eosinophil recruitment

Th2 cytokines
(IL-4, IL-5, IL-13, etc.)

M2 phenotype

IL-17A

Neutrophil recruitment

Understanding of Ym1 behavior in allergic lung inflammation in mice. The overall effect of Ym1 in Th2 allergic lung inflammation is intensifying
eosinophil recruitment. Ym1 plays that in a combinatorial manner. Ym1 depresses 12/15(S)-lipoxygenase (12/15-LOX) in CD4™ T cells and its
catalysate 12-hydroxyeicosatetraenoic acid (12(S)-HETE), leading to the rise of Th2 cytokines. And Ym1 limits M2 polarization by downregulating
the activation of STAT6 and PPAR-y in macrophages. It might also regulate phenotypes directly by digesting glycosaminoglycan on macrophage
surface. Matrix metalloproteinase (MMP) 2/9 engage in this system as Ym1 catalytic crackers, whose products may help to eosinophil
recruitment. Ym1 recruits neutrophils as well, which may depend on IL-17 responses and contribute to lung inflammation. At the end of allergic

lung inflammation, Ym1 may affect fibrosis to some extent.
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4Ra-impaired mice were still found classic airway inflammation in
histologic pathology with decreased level of Ym1 and other M2
markers (60). Considerable research has been devoted to exploring
the role of M2 Mg in allergic lung inflammation with the detection
of Ym1 as a marker, rather less attention has been paid to that
whether Yml itself influenced these models. It was found that
Chil3-deficiency could enhance the alternative activation of Mg by
regulating the activation of STAT6 and PPARY pathways to alleviate
pulmonary inflammation (6). Besides, Ym1 might also influence
M@ more directly due to its weak B-N-acetylglucosaminidase
activity, which means a possibility to contribute to the digestion
of glycosaminoglycans (5). Yml was presumed to involve in fine-
tuning at the level of HS in M@, thereby affecting the activation of
Mg (49). DCs have also been demonstrated to generate Ym protein
in response to IL-13 in the OVA-induced respiratory allergy, in
which case Ym protein downregulated the activity of 12/15(S)-
lipoxygenase (12/15-LOX) and the following products, 12-
hydroxyeicosatetraenoic acid (12(S)-HETE), thereby enhancing
the ability of CD4" T cells to produce Th2 cytokines such as IL-
5, IL-13, etc (61).

In addition, Ym1 may recruit eosinophils with the
participation of matrix metalloproteinase (MMP) family. It
was proposed that Ym1 protein might be modified or cleaved
by MMPs to participate in the chemotaxis of eosinophils (62). In
the complete Aspergillus allergen (CAA)-induced mouse model,
multiple cleavage fragments of Yml protein were observed in
BALF of wild-type mice, while more complete Ym1 protein in
that of MMP2 and MMP9 double null (MMP2/97") mice, and
the number of eosinophils was also reduced. Yml was also
proven to be the substrate of MMP2/9 and products would be 37
kDa, ~27 kDa and ~8 kDa peptide fragments. As MMPs are
reported to clear allergic inflammatory cells in the lung by
hydrolyzing protein, and MMP2 and MMP9 could also
regulate the activity of Th2 chemokine, Ym1 may play a role
in linking MMPs and eosinophils and participate in regulating
the migration of allergic inflammatory cells to the pulmonary
vesicle. By far, however, this view still lacks direct evidence.

On the other hand, in recent years, considerable literature
has grown up around the role of IL-17 and neutrophils in allergic
lung inflammation, and the influence of Ym1 is worthy of more
attention. Ym1 may influence the recruitment of neutrophils by
regulating IL-17 produced by YT cells, which plays a key role in
neutrophil-mediated defensive immunity (7, 63). And after anti-
Ym1 antibody treatment, the number and proportion of
neutrophils in the lung were decreased, and the expression of
IL-17A and IL-17A target genes were also reduced (7). But in
this case, eosinophilia, goblet cell proliferation and apnea
enhancement did not show significant difference, so that
further investigation is needed to prove the role of Yml in IL-
17 related allergic inflammation in lung. In addition, in most
models of airway inflammation for Yml study, mice were
sensitized by OVA. LPS challenge, however, was suggested to
realize the pathological state with strong Th17 response and
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modest Th2 response (64), thus might be a worth tool for
studying the relationship between IL-17 and Yml in allergic
inflammation, which has not gained enough attention.

Fibrosis is subject to Th2 and Th17 responses at the end
stage of chronic inflammation like asthma, where M2 plays a
vital role (65). Although no evidence has showed direct
connection between Yml and fibrosis, J2, a pulmonary fibrosis
suppressor, was found to upregulate Ym1 expression of M2 in
the anti-fibrosis progress (51), which elucidated a possibility that
Yml alleviates pulmonary fibrosis.

Parasitic infection

Anti-parasitic immunity is characterized by eosinophilia and
Th2 cytokines. In most anti-parasitic response studies in mice,
Yml is regarded as a bridge between M2a cells and eosinophils,
that is, Ym1 is secreted by Mo activated by parasite antigens, and
then participates in the recruitment of eosinophils to the injury
site. For example, Bm-MIF-1 secreted by Brugia malayi was
found involved in activating M, inducing the upregulation of
Ym1l expression, and cooperating with IL-5 to recruit eosinophils
in a manner that is partially dependent on IL-4 (29). In another
case, the larvae of A.cantonensis breaking into brain, was reported
to induce M2 polarization of microglia and infiltrating M¢ within
the CNS which then synthesized and secreted Yml in large
quantities, accompanied by an increase in eosinophils (30). This
idea was reinforced by an earlier study which confirmed the direct
chemotactic effect of Ym on eosinophils in vitro (18). In this study
recombinant Ym protein was applied to the back of mice
subcutaneously in parasitic settings, and the result was
consistent as Ym protein caused an abundant local recruitment
of eosinophils. Nevertheless, people have not yet clarified the
specific mechanism by which Ym1 protein “recruits” eosinophils.
In the peritonitis, the expression of Ym1 was not proposed as a
precondition for the recruitment of eosinophils, which means a
possible substitutability of Yml1 in mice (10). In addition, an
overexpression model through plasmid transfection showed that
the exogenous expression of Yml protein in the lungs led to a
decrease in the number of eosinophils but an increase in
neutrophils (7). The differences among above studies might
resulted from different situation (overexpression and different
inflammatory models), but it at least indicates that inflammatory
microenvironment could convert Ym1’s chemoattractant state.

Interestingly, in terms of Th2 cytokine response, Ym1 can
play diametrically opposite roles in different stages of parasite
response. After injecting anti-Yml antibodies into the
peritoneal cavity, mice infected with N. brasiliensis were
found that blocking Yml in the early innate immune stage
could reduce the amount of Th2 cytokines in mice; after the
establishment of an adaptive type 2 response, blocking Ym1l
did not inhibit their expression, but significantly increased the
number of cells expressing these factors (4). Although the
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reason why the effect of Ym1 changes with the course of the
immune response has not yet been discovered, it again
supports the multifaceted function of Yml in different
inflammatory microenvironment.

In recent years, the role of neutrophils in the immune
response against parasitic infection as well as its relationship
with Ym1 has drawn researchers’ attention. Similar to
eosinophils, as the “forerunner” of innate immunity,
neutrophils also play a dual role in anti-parasitic immunity
besides phagocytosis and initiation of Th2 response, and need
to be contained in the later stage for inflammation resolution
and tissue repair (66). In N. brasiliensis-infected mice, it was
found that IL-17 and neutrophilic inflammation induced by
YmlI could impair parasite survival but at the cost of enhanced
lung injury (7). This result suggested that Ym1 could be cursed
blessing as well, and showed a possibility of Yml in
the recruitment of neutrophils through regulating IL-
17 production.

Autoimmune diseases

Autoimmune diseases are a pathophysiological state,
wherein the immune responses are directed against and
damage the body’s own tissues, such as rheumatoid arthritis
(RA) and psoriasis (Ps). Ym1 had been positionally identified
to be associated with autoimmune arthritis, using collagen-
induced arthritis (CIA) mouse model (67, 68). Later, a
protective effect due to Ym1 deficiency using Ym1 congenic
mice absent in Ym1 expression (6), was confirmed in collagen
antibody induced arthritis (CAIA) model and mannan induced
Ps model, both of which are M@ dependent, and adaptive
immune independent (69-71). The study also discovered that
Yml protein i.n. supplement could reverse this effect in
mannan induced Ps model of YmI-low-expression mice,
while AM depletion attenuated the disease. These results
proved that Yml is one of the factors responsible for the
development of skin and joint inflammation, and strongly
suggested that Ym1 may participate in the diseases through
regulating M@ and innate immunity. However, how the M2
regulation from Ym1 in lung can ripple through the systemic
autoimmunity remains unclear.

As for autoimmune neuroinflammatory diseases, the
experimental autoimmune encephalomyelitis (EAE), which
models the pathology of multiple sclerosis (MS) in mice, is
often used to study the corresponding molecular mechanisms
and treatment strategies. It was clarified that Ym1 was able to
activate epidermal growth factor receptor (EGFR) and affected
the directional differentiation of endogenous neural stem cells
(NSCs) through the CLPs-EGFR-Pyk2 pathway by using EAE
model mice (8). Therefore, drugs targeting the CLPs-EGFR-
Pyk2 signaling axis may be used to treat acute demyelinating
diseases such as neuromyelitis optica and relapsing multiple
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sclerosis. However, whether there is a direct interaction between
Yml and EGFR as well as the proteins involved in the
subsequent cascade needs to be further confirmed at the
molecular level.

Nervous system diseases

In the context of nervous system diseases, most studies
related to Ym1 fail to uncover its detailed function, where
Ym1 usually takes the supporting role for marking M2. This is
because the immune response compared with diseases
occurring in other tissues and organs is more sophisticated,
considering the difficulty of distinguishing resident microglia
from recruited macrophages and outlining the temporal
change in their polarization change under various stimuli
(72). Meanwhile, it is still debatable whether YmI1 is a bona
fide marker of M2-like cells or not, since Ym1 was observed to
be upregulated with LPS exposure (a kind of M1 stimulation)
alone (73). By far, Ym1 and its expression in traumatic injury
and ischemic stroke is more recognizable. Therefore, the
following section will focus primarily on these two types
of diseases. Figure 5 helped summarize the proposed
functions of Yml from some key findings, which also
included the aforementioned demyelinating diseases and
bacterial infection.

Ischemic stroke is the primary type of cerebrovascular
insult with high mortality risk. To unravel the mechanism of
its immune response, Yml has greatly aided in the
identification of microglia/M¢ polarization and a novel
subpopulation of neutrophils (32). Researchers using the
upregulated Ym1 expression to represent the neuroprotective
cell phenotype, generally agreed on an increased M2-like state
in the acute phase followed by an M1-like one in the subacute
and chronic phase, though they didn’t specify the cellular
origin of Ym1 until they started to analyze the cell specificity
of each phenotype. Some pieces of research consistently
suggested that recruited M@ contributed remarkably to the
gene expression of Ym1 at the early stage of ischemic stroke
(74-76), whereas microglia was more pro-inflammatory and
suppressive until about one week after stroke induction (76),
with its Chil3 promoter activity elevated for at least 14 days
(31). In terms of Ym1’s function, the correlation between the
upregulated Chil3 mRNA and better post-stroke recovery was
observed, including more neurovascular units (31), reduced
infarct volume (75, 76), improved sensorimotor ability (74, 76),
which could justify the protective role of Ym1. Besides, several
intriguing findings of Ym1 are worth digging into, like its
distribution was spatiotemporal (77) and its maximal
expression and the time to peak didn’t seem to correlate with
the lesion size (31). Hence, further investigations should
monitor the actions of Yml protein over different regions
and with different severity of stroke.
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Putative functions of Ym1 in the central nervous system diseases. Various inflammatory stimuli promote the expression of Ym1, including
bacterial infection, traumatic injury, ischemic stroke, aging and certain cytokines released from the surrounding cells. In the CNS, Ym1

is expressed and secreted by alternatively activated myeloid cells, including resident microglia, recruited macrophages, and even a
subpopulation of neutrophils. Ym1 is proposed to facilitate extracellular matrix (ECM) remodeling for its binding specificity to particular
components like heparan sulfate. In demyelinating diseases, Ym1 may bind to epidermal growth factor receptor (EGFR) of the neural
stem cells (NSCs) and activate the Ym1-EGFR-Pyk2 pathway, leading to oligodendrogenesis. The Yml-expressing neutrophils display
increased ability to infiltrate the ischemic core and undergo phagocytosis, thereby contributing to inflammation resolution and

neuroprotection.

In response to traumatic injury, a series of orchestrated
events occur in the peripheral nervous system (PNS) and CNS,
where the activation and polarization of microglia/M¢ play a
crucial role. Early studies found that Ym1 was heterogeneously
expressed in penetrating brain injury and epileptic seizures (19),
and it has been gradually used to mark M2-like microglia/Me,
guiding us to learn the actions of immune cells in turn (78).
Indeed, an increasing body of research has centered on the
temporal profile of microglia/M¢ polarization, enabling us to
determine which phenotype to enhance or suppress. Yml,
although typically represented the M2 phenotype (specifically
the M2a (79) and M2c (72) marker) and upregulated both in the
early inflammation stage and the later remodeling stage, has not
been adequately studied yet. YmI’s putative function in
neuroinflammation and tissue repair is essentially based on its
binding specificity to N-unsubstituted GIcN polymers and HS
(2). Hence Yml is likely to antagonize inflammation by slowing
down leukocyte adhesion and promote tissue repair by
preventing HS from damage. In addition to its help in
remyelination (8), only a few studies focused on its
involvement in post-injury reactions. For instance, it was
found that the accumulation of Yml protein within the
injured olfactory epithelia was closely related to the
inflammatory and healing process, with its level decreasing
once tissue regeneration was achieved (24). In sum, to define
Ym1’s function as neuroprotective still requires closer
observations in its protein interactions with surrounding cells
and tissues during the progression of neurotrauma.

Frontiers in Immunology

09

Crystallization of Ym1 in vivo

Crystals rarely spontaneously form in animals, but some
proteins do spontaneously crystallize in animals under certain
conditions. The typical example in the human body is Charcot-
Leyden Crystals (CLCs), found by Ernst Viktor von Leyden in
the sputum of patients with asthma in 1872. Subsequent studies
found that the blood separated from patients with bronchial
asthma was easy to form CLCs after lysis (80). Besides,
eosinophilic crystals with similar morphology were observed in
mice with lung cancer and mutant mice infected with
Pneumocystis carinii. These crystals were finally confirmed to
be Yml, with similar morphology but different biochemical
properties to CLCs (81).

In vivo crystallization of Ym1 was observed in many mouse
models (see Table 1). In 1999, transgenic mice with over-
expression of IL-13 had crystals similar to that of Charcot-
Leyden crystals in the lungs, which were later confirmed as Ym1
(86, 90). In the same year, eosinophilic crystals with different
shapes and sizes were observed in alveolar macrophages and
multinucleated giant cells of a variety of immunodeficient mice,
including Moth-eaten mice (viable motheaten mice, me'/me"),
SPCTNFRIIFc transgenic mice, and CD40L-deficient mice
spontaneously infected with Pneumocystis carinii. These
crystals were distributed in the activated alveolar macrophages
and dispersed in the lungs of young mice, while crystals located
both intracellular and extracellular in the dying me'/me” mice
and SPCTNFRIIFc transgenic mice (81). It is worth noting that
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TABLE 1 Crystals formed in mice.

10.3389/fimmu.2022.891220

Mouse Model Characters Crystals Reference
Models
Strain  Type of Gene Primary Diseases/Abnormal Location Morphology
of Gene Effects Effects
Origin  Editing
me'/me’ mice  C57BL/  Spontaneous Ptpn6 gene, SHP-1 protein Severe autoimmune disease, M2 and matrix in  Long, rectangular (81-83)
(viable 6] mutation motheaten tyrosine premature death of lungs crystals in tissues,
motheaten (recessive, (me) locus on  phosphatase pneumonitis, hematopoietic flat crystals (10-um?)
mice) single point)  Chr6 activity deficiency disorders, immune cell and multifaceted
abnormality (hyperactivity of crystals (20-120 um)
AM, lymphocytes, in BAL fluid of me"/
granulocytes in the lungs) me” mice
CD40L- C57BL/  Gene CD40L gene CD40 ligand of X-linked hyper-IgM M2 in lungs (81, 84)
deficient mice  6C57BL/ knockout activated T-cells ~ syndrome, severe respiratory
infected with 6NTac x deficiency infection (cannot defend
P. carinii Sv/129 (immunoglobulin  against P. carinii)
isotype switching
failure)
SPCTNFRIIFc C57BL/  Transgenic Surfactant lung-specific Depression on TNF-o. M2 and (81, 85)
transgenic 6NTac x apoprotein C  protein responses in lungs occasionally
mice Sv/129 promotor/ sTNFRIIFc matrix in lungs
soluble TNF expression (a
receptor p75  soluble TNF
(type II)-Fc inhibitor)
fusion protein
mice with CBA x  Transgenic Clara cell 10-  IL-13 over- Asthma-like inflammatory Eosinophils and Needle-like crystals (86)
over- C57BL/6 kDa protein expression in responses in lungs AM in alveoli and
expression of (CC10) airway occasionally in
1L-13 promoter/IL- airways
13
C57BL/6 C57BL/6 - - - Eosinophilic pneumonia Me-originated Needle-like crystals (87)
infected with (immune responses to large (protruded through
C. neoformans microorganisms containing ~ multinucleated the membrane of
chitin) cells in lungs some cells)*without
strict determination
of Ym1
pa7Phex 129 Gene 47" gene  p47phox subunit  Chronic granulomatous Lung matrix in Multifaceted crystals (5)
mice knockout defect of NADPH disease aged mice (related (10-100 pm)
oxidase in to giant cells and
phagocytes Mo)Bile
ductsSpontaneous
skin abscesses
Hpse / C57BL/  Gene Heparanase Heparanase- Normally no major AM Needle-like crystals (88)
transgenic 6] knockout gene deficient abnormalities
mice
ddY mice ddy - - - Spontaneous IgA Mg in bone Needle-like (16, 89)
nephropathy morrow crystals*without
(frequently with strict determination
several of Yml
erythroblasts)

AM, alveolar macrophages; M2, alternatively activated macrophages.

14 days after C57BL/6 mice are infected with Cryptococcus
neoformans, the crystal structure was also visible in the lungs,
which is similar to that of Ym1. Studies also found some crystals,
whose composition was not strictly analyzed, formed at the edge
of the polysaccharide membrane, and the progress was closely
related to the deposition of intracellular polysaccharide CNPS,
suggesting that bacterial capsular polysaccharides contributed to
the protein enrichment of this crystal (87). Given that
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Cryptococcus neoformans also contain chitin and that Yml
may be part of the host’s response to microorganisms
containing chitin, this crystal is likely to be Yml. Shortly
afterward, Ym1 crystal was also found in p47phox
(p47phox subunit defect of NADPH oxidase) mice. This
multifaceted crystal appeared outside the lung of mice older
than two months and increased with age (5). Also, p47phox
deficiency will cause macrophage dysfunction and eventually
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lead to progressive crystalline macrophage pneumonia (91). In
tissue sections, the morphology of these Ym1 crystals has been
described as intracellular fine needle-like crystals and flat,
faceted crystals in BALF (5, 16, 81), thus providing new clues
when similar crystals arise under some cases. In 2010, needle-
like crystals were observed in the lung macrophages of the
constructed heparanase-deficient mice (Hpse™"), which were
surrounded by membranes, suggesting that they are developed
in capsule organelles such as lysosomes, endoplasmic
reticulum or Golgi bodies. It is conclusively demonstrated
that Ym1 is the crystal formation unit of Hpse” alveolar
macrophages, and heparanase regulates the accumulation and
crystal formation of Ym1 in the airway (88). At the same time,
in addition to various models or mice under specific
conditions, several studies pointed out that Yml crystals or
Yml protein accumulation existed in normal mouse lung
macrophages (81, 88).

In line with the tissue expression of Yml protein, Yml
crystals were primarily found in the lungs, while they could also
present outside the lungs. Membrane-encapsulated needle Ym1-
immunoreactive crystals have been detected in macrophages in
the bone marrow of ddY mice with spontaneous IgA
nephropathy. The study also found that Ym1 was produced
mainly by immature neutrophils and Ym1 may be phagocytosed
by macrophages after forming crystals outside the cells, or
directly absorbed by macrophages and crystallized in the
cytoplasm (16).

In the above studies, there seems to be no clear relationship
between the crystallization of Yml protein, but when crystals
appear, Yml tends to show a state of high expression or
abnormal protein degradation, resulting in the accumulation
of Ym1 protein. At the same time, environmental factors are
conducive to the formation of crystals. The high expression of
Ym1 may be related to the function of Ym1 or the function of its
ancestral genes (such as interaction with heparin, chitin and
other substances). The pathological changes of tissues under
different diseases may also provide similar environments for
Ym1 crystallization (such as pH), which may be a new idea to
study the causes of crystals.

Ym1 crystallization is a strong signal of lung inflammation
and injury. As mentioned above, after purifying and identifying
the Ym1 protein crystal in the BALF of me“/me” mice, plenty of
eosinophils were also observed in lungs (81). Collectively, Ym1
crystal was considered to be a reflection of the response to
severe parasitic eosinophilic pneumonia. Besides, the
formation of Yml crystal itself could also damage cell
membrane mechanically and lead to cell death (87).
Bronchial epithelial rupture directly leads to lung injury, and
macrophage rupture death interferes with host defense
mechanisms and causes persistent infection. Some studies
suggested that Yml crystal might directly activate
inflammatory bodies in vivo, resulting in lung injury (7).
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However, similar to CLCs in human body, relevant studies
usually only observed the presence of Yml crystals in severe
inflammatory environments. The role of crystals remains to be
dug out.

Discussion

In sum, Yml is expressed or upregulated under various
pathological conditions, particularly the lung diseases. As a
traditional M2 marker, YmlI itself has not received adequate
attention, given that most relevant studies focused on the Ym1-
producing cells, including macrophages and microglia.
However, we could comb out some intriguing clues to Ym1’s
functions from previous literature resources. Current models
demonstrate that the role of Yml, albeit pleiotropic and
dynamic, lays parallels between allergic lung inflammation and
pulmonary parasite infection. Ym1 participates in these
inflammatory responses generally in two ways, the modulation
of M@ polarization and the recruitment of eosinophils and
neutrophils. And in both diseases, Ym1 generally shows
association with two trends, the enhancement of Th2 response
and IL-17 production, and the latter is gathering more attention.
However, it is worth-noting that Ym1 displays time-dependent
function in tissue repair and inflammation resolution. Ym1 not
only promotes reparative Th2 response in the early phase of
inflammation (34), but can reduce IL-5/IL-13 expression and
regulate Th2 balance once the repair initiate (4). For skin and
joint autoimmune inflammation, Yml contributes to its
development through innate immunity, especially M2. In
respect to the nervous system diseases, although existing
research hardly distinguishes the cellular origins of Yml, it
generally agrees that Ymls upregulation correlates with
improved prognosis in most cases. A few Yml-centered
studies attempted to map the possible signal pathways for
oligodendrogenesis, and to understand the relationships of
Yml protein accumulation with olfactory epithelium injury,
but the follow-up research is still lacking.

Considering that abundant C/CLPs exist in human bodies,
despite no real homologous gene for Ym1, research on Ym1 has
significance in facilitating the understanding of human C/CLPs
in diseases. In addition, Ym1 is one of the only proteins that can
form crystals in mice. Ym1 crystals are still poorly unraveled, but
further explorations may help decipher the confusing
eosinophilic crystals in human bodies, like CLCs in lungs.
Previous work has not furnished details on how Ym1 exerts
influence on other immune mediators like Th2 and Th17
cytokines or on the hierarchy of their actions in inflammatory
responses. Thus, figuring out the position of Yml on these
interactive networks is beneficial for revealing disease
pathogenesis and finding optimal treatment targets and
strategies. Besides, the kinetics of Yml expression is rather
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complex, depending on the site, mode and severity of injury.
And recent research has cast doubt on whether Ym1 is a bona
fide M2 marker. Hence future work should give the expression
patterns of Ym1 upon different stimuli sufficient consideration.
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