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Background: Graft vascular disease (GVD), which limits the long-term survival of patients
after solid-organ transplantation, is associated with both immune responses and
nonimmune factors, including dyslipidemia. Recent studies have shown that inhibition
of proprotein convertase subtilisin/kexin type 9 (PCSK9), a U.S. Federal Drug
Administration-approved treatment for hyperlipidemia, reduces cardiovascular events,
regulates inflammatory responses, and enhances the efficacy of immune checkpoint
therapy in cancer treatment through a cholesterol-independent mechanism. However,
whether targeting PCSK9 is a potential therapeutic strategy for GVD remains unknown.

Methods: Serum samples and grafts were harvested from male mice undergoing
abdominal aortic transplantation. The pathological alterations in the aortic grafts were
detected by hematoxylin and eosin staining, Verhoeff’s Van Gieson staining, and Masson
staining. Inflammatory cell infiltration and proinflammatory cytokine expression in the aortic
grafts were detected by immunohistochemistry and quantitative real-time polymerase
chain reaction (qRT-PCR), respectively. The regulatory effects of PCSK9 on vascular
smooth muscle cell (VSMC) migration and proliferation were examined by transwell, EdU,
and western blot assays. The effect of Evolocumab, a PCSK9 inhibitor, on GVD in
humanized PCSK9 mice was also evaluated.

Results: PCSK9 was upregulated in the serum, grafts, and liver of mice in the allograft
group subjected to abdominal aortic transplantation. Pcsk9 knockout significantly
reduced vascular stenosis, the intimal hyperplasia area and collagen deposition. Pcsk9
depletion also inhibited macrophage recruitment and the mRNA expression of
proinflammatory cytokines in aortic grafts. Furthermore, Pcsk9 knockout suppressed
the migration and proliferation of VSMCs, which was related to the inhibition of NLRP3
inflammasome activation. Meanwhile, Evolocumab significantly ameliorated GVD in
humanized PCSK9 mice.
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Conclusion: PCSK9 is upregulated in a mouse model of GVD, and Pcsk9 knockout
reduces vascular occlusion, suggesting that PCSK9 may be a promising target for the
treatment of GVD.
Keywords: proprotein convertase subtilisin/kexin type 9, graft vascular disease, NLRP3, vascular smooth muscle
cells, transplantation
BACKGROUND

With the advances in surgical techniques for organ
transplantation and the application of immunosuppressive
drugs (tacrolimus, cyclosporine, mycophenolate mofetil,
azathioprine, everolimus, sirolimus, etc.), the short-term
survival of solid-organ transplantation patients has been
greatly improved (1). However, the long-term survival of
transplantation patients is still limited. Graft vascular disease
(GVD) is a major problem limiting the long-term survival of
solid-organ transplantation patients (2). According to the thirty-
sixth adult heart transplantation report-2019, the cumulative
experienced morbidity rates of cardiac allograft vasculopathy
were 8%, 29%, and 47% at 1, 5, and 10 years after heart
transplantation, respectively (3). The main pathological
features of GVD are vascular intimal hyperplastic lesions
composed of smooth muscle-like cells and extracellular matrix,
as well as inflammatory cell infiltration (2). The thickening and
narrowing of the lumen lead to complete occlusion and
eventually graft failure.

Mutations in the proprotein convertase subtilisin/kexin type 9
(Pcsk9) gene were initially reported in patients with autosomal
dominant hypercholesterolemia (4). Circulating PCSK9 binds to
hepatic low-density lipoprotein receptor (LDLR) and mediates
its degradation (5). Over-degradation of LDLR impairs
cholesterol transport. Recently, the FOURIER and ODYSSEY
clinical trials reported the therapeutic efforts of PCSK9 inhibitor
(i.e., Evolocumab and alirocumab) on reducing the occurrence of
cardiovascular events (6, 7). Although liver is the major source of
PCSK9, it can also be secreted by extrahepatic organs (e.g.,
intestine, neurons, and kidney), tissues (e.g., adipose tissue),
and cells (e.g., vascular endothelial cells, macrophages, and
vascular smooth muscle cells) (8, 9). Moreover, a recent
investigation has suggested that PCSK9 plays an important role
in atherosclerotic plaque development through a cholesterol-
independent mechanism (10). PCSK9 is also involved in the
pathogenesis of acute vascular injury (11), and the expression of
-derived macrophages; Ccl2, C-C
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PCSK9 is significantly increased in mouse aneurysms and
human aortic dissection (12). Ding et al. have demonstrated
that lipopolysaccharide increases the expression of PCSK9 in
human endothelial cells and smooth muscle cells in a
concentration-dependent manner (13, 14). Additionally, the
combination of anti-programmed cell death protein 1
monoclonal antibody and Evolocumab has been shown to
promote infiltration of cytotoxic T cells and inhibit tumor
growth (15). In brief, these studies have shown that inhibition
of PCSK9, a Federal Drug Administration-approved treatment
for hyperlipidemia, reduces cardiovascular events, regulates
inflammatory responses, and enhances the efficacy of immune
checkpoint therapy in cancer treatment through a cholesterol-
independent mechanism. However, the role of PCSK9 in GVD
remains unclear.

The purpose of this study was to explore the role of PCSK9 in
a mouse model of GVD. The serum level of PCSK9 in the
allograft group was upregulated at 8 weeks after vascular
transplantation compared to the isograft group. In addition,
Pcsk9 knockout (Pcsk9-/-) mice were tested for their
development of graft vasculopathy compared to the wild-type
(WT) mice. The pathological alterations, inflammatory cell
infiltration, and proinflammatory cytokine expression in aortic
grafts were detected, and the regulatory effects of PCSK9 on
vascular smooth muscle cell (VSMC) migration and proliferation
were examined. The effect of Evolocumab, a PCSK9 inhibitor, on
GVD in humanized PCSK9 mice was also evaluated. The results
of this study may be useful to find a treatment for GVD.
MATERIALS AND METHODS

Mice
Male C57BL/6 (H-2b) and BALB/c (H-2d) mice (8–10 weeks
old) were purchased from Charles River (Beijing, China). Pcsk9-/-

mice (C57BL/6-Pcsk9eml1Smoc, stock no. NM-KO-200408) and
hPCSK9 mice (C57BL/6-Pcsk9em2/(hPCSK9)/Smoc, stock no. NM-
HU-00075) were generated by Shanghai Model Organisms
(Shanghai, China). All animal experiments were approved by
the Animal Care and Use Committee of Huazhong University of
Science and Technology. All procedures were performed
according to the NIH Guide for the Care and Use of
Laboratory Animals.

Abdominal Aortic Transplantation
Abdominal aortic transplantation was performed as previously
described (16). For the allograft group, abdominal aortas of male
BALB/c (H-2d) mice were orthotopically transplanted into fully
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major histocompatibility complex (MHC)-mismatched male
C57BL/6 (H-2b) recipients, B6 background hPCSK9 or Pcsk9-/-

recipients. For the isograft group, abdominal aortas of C57BL/6
(H-2b) mice were orthotopically transplanted into MHC-
matched C57BL/6 (H-2b) recipients. To investigate the role of
PCSK9 in GVD, Isograft group (WT B6 to WT B6), WT
Allograft group (BALB/c to WT B6), and Pcsk9-/- Allograft
group (BALB/c to Pcsk9-/- B6) were constructed. We also
performed abdominal aortic transplantation on humanized
PCSK9 mice to explore the role of PCSK9 inhibitors
(Evolocumab) in GVD, and the following groups were
included: Isograft group (hPCSK9 B6 to hPCSK9 B6 treatment
with vehicle), IgG Group (BALB/c to hPCSK9 B6 treatment with
isotype IgG), and Evolocumab group (BALB/c to hPCSK9 B6
treatment with Evolocumab).

Enzyme-Linked Immunosorbent Assay
Serum samples were harvested from recipients at 8 weeks after
surgery. The serum level of PCSK9 was measured by an ELISA
kit according to the manufacturer’s protocol. The absorbance
was measured at 450 nm. The concentration of PCSK9 was
calculated based on the optical density value and the
standard curve.

Quantitative Real-Time Polymerase
Chain Reaction
qRT-PCR was performed as previously described (17). Total
RNA was isolated from graft vessels using Total RNA
Extraction Kit (Solarbio, R1200, China) according to the
manufacturer’s protocol. cDNA was synthesized by the cDNA
synthesis kit (Abclonal, RK20400, China), according to the
manufacturer’s instructions. Q-PCR were then performed
using RealSYBR Mixture kit (CWBIO, CW0760M, China)
according to the protocol. Gapdh was used as an internal
control. The primer sequences are shown in Table Sl. Detailed
information of critical commercial kits are showed in
Supplementary Table S2.

Tissue Histology and Morphometric
Analysis
Graft vessels, liver, small intestine, and kidney were harvested at 2 or
8 weeks (time points have been explained in figure legends of each
figure) after transplantation. And these samples were used
for difference experiments, including Hematoxylin & eosin (H&E)
staining, Masson’s staining, EVG staining, immunohistochemical
staining, and immunofluorescent staining as previously
described (18). ImageJ software was used to determine the
intima-media (I/M) ratio, areas of intimal hyperplasia, areas of
Masson’s staining and immunohistochemical quantitative analysis.
During the quantitative analysis of collagen deposition and
immunohistochemical, entire area has been measured.

Western Blot
Western blot was performed as previously described (17). Total
protein was extracted from cells or tissue samples using RIPA
lysing buffer. The protein concentration of each sample was
Frontiers in Immunology | www.frontiersin.org 3
measured using the bicinchoninic acid protein assay kit. Western
blot was performed according to a protocol of our laboratory.
The membranes were separately incubated with the following
primary antibodies. The antibodies used for Western blot are
shown in Table S2.

Isolation and Culture of Mouse Primary
VSMCs and Bone Marrow-Derived
Macrophages
VSMCs and BMDMs were cultured as previously described (19).
Descending thoracic aortas were collected from mice at 8–10
weeks under sterile conditions. The aortas were then minced, and
treated with 1% type I, II, IV collagenase (Worthington
Biochemical Corporation) and 1% dispase for 1 h at 37°C. The
cells were then harvested and resuspended in Dulbecco’s
modified Eagle’s medium (DMEM) containing 20% fetal
bovine serum (FBS) and 1% penicillin/streptomycin. Cells at
passage 4–8 were used for the in vitro experiments. The purity of
VSMCs was identified. Born marrow were extracted from the
femurs and tibias of age-matched WT and Pcsk9-/-mice and then
flushed with cold DMEM. After lysis of red blood cells, the
BMDMs were harvested and resuspended in DMEM medium
containing 10% FBS, 1% penicillin/streptomycin, and 20 ng/mL
macrophage colony-stimulating factor (M-CSF; Peprotech, 315-
02-10UG). The culture medium was replaced every other day
with fresh medium containing 20 ng/mL M-CSF. After seven
days of differentiation, the cells were counted and plated for
further experiments.

Transwell Assay
A transwell assay was performed to detect the migration capacity
of VSMCs and BMDMs. Cells (three replicates per group) were
added to the upper chamber (filled with serum-free medium) of a
24-well transwell plate (Corning 3422) at a density of 2 × 104

cells/well. Serum samples were collected from allograft or isograft
mice at 2 weeks after transplantation. A volume of 600 mL of
culture medium supplemented with 10% serum was used for cell
chemotaxis. After incubation for 48 h, the cells were fixed with
4% paraformaldehyde. Then, the cells on the upper side were
wiped off. The invaded cells were stained with crystal violet
(0.1%) solution for 10 min. Subsequently, the cells were
visualized under a fluorescence microscope. Five random fields
per slide were photographed. All experiments were performed at
least three times, with each performed in duplicate.

Cell Proliferation Assay
The proliferation rates of BMDMs and VSMCs were examined
using a BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor
488 (Beyotime, C0071S), according to the manufacturer’s protocol.
Briefly, serum was collected from allograft or isograft mice at 2
weeks after transplantation. Cells at a density of 5 × 104 were plated
in 24-well plates and incubated with 10% serum for 48 h. Then, the
cells were incubated with 10 mM Edu for 6 h, fixed in 4%
paraformaldehyde, and stained with Hoechst 33342. Finally, EdU-
positive cells were counted by fluorescence microscopy.
May 2022 | Volume 13 | Article 894789
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Statistical Analysis
Data are expressed as the mean ± SD (standard deviation).
Unpaired t-test was used to compare two independent groups.
One way ANOVA followed by Turkey’s post-hoc test or two-way
ANOVA was used for comparisons among multiple groups. All
statistical analyses were performed using SPSS 19.0 software.
Plots were generated using GraphPad Prism 7.0a software
(GraphPad Software, Inc., San Diego, CA) for Mac OS X. The
significance level was determined at p < 0.05.
RESULTS

PCSK9 is Upregulated in a Mouse Model
of GVD
To explore whether PCSK9 is related to GVD, we measured the
expression of PCSK9 in mice undergoing abdominal aorta
transplantation. The abdominal aortas of BALB/c or C57BL/6
(B6) mice were orthotopically transplanted into B6 recipients.
Serum samples and graft vessels were harvested at 8 weeks after
surgery when allograft vasculopathy occurred. The allograft
group showed a significantly higher level of PCSK9 in the
serum compared to the isograft group (252.41 ± 68.32 ng/mL
vs. 657.19 ± 198.34 ng/mL; p < 0.05). Similarly, in the graft
vessels, the expression of PCSK9 in the allograft group was
significantly greater than that of the isograft group
(Figure 1A). PCSK9 is mainly secreted by the liver, but it is
also expressed in extrahepatic tissues such as the intestine and
kidney. Therefore, we further assessed the expression of PCSK9
in the liver, small intestine, and kidney of mice. The allograft
group showed higher PCSK9 expression in the liver compared to
the isograft group (Figures 1B–D), while no significant
difference was observed in PCSK9 expression in the small
intestine or kidney between the two groups (Figure S1;
Figures 1E, F). The immunohistochemical staining results
were consistent with those of western blot analysis
(Figure 1G). These findings indicate that PCSK9 is involved in
the pathogenesis of GVD.

Pcsk9 Depletion Ameliorates GVD in Mice
To investigate the role of PCSK9 in GVD, we generated Pcsk9-/-

mice. The abdominal aortas of BALB/c mice were orthotopically
transplanted into Pcsk9-/- mice. Graft vessels were harvested at 8
weeks after surgery (Figure 2A). The histological analysis
revealed that the Pcsk9-/- group had significantly less allograft
vasculopathy (Figure 2B, I/M ratio: 4.34 ± 0.52 vs. 1.51 ± 0.50;
p < 0.05) and a significantly smaller neointimal area (Figure 2C,
15.88 ± 2.09 × 104 mm2 vs. 8.29 ± 1.35 × 104 mm2; p < 0.05)
compared with the WT group. Masson’s trichrome staining
showed that collagen deposition in the allograft group was
dramatically increased relative to the isograft group, whereas
Pcsk9 knockout significantly reduced the collagen deposition in
the allograft mice (Figure 2D, 24.11 ± 5.72 × 104 mm2 vs. 9.98 ±
1.82 × 104 mm2; p < 0.05). Altogether, these data suggest that
Pcsk9 depletion attenuates allograft vasculopathy in a mouse
model of GVD.
Frontiers in Immunology | www.frontiersin.org 4
Pcsk9 Knockout Inhibits Macrophage
Infiltration and Proinflammatory
Cytokine Production
T cells and macrophages play a dominant role in GVD (20, 21).
The infiltration of T cells and macrophages into the graft was
detected by immunohistochemistry. Pcsk9 knockout significantly
reduced the infiltration of F4/80+ macrophages into the graft
vessels (Figure 3A). However, there was no significant difference
in CD3+ T cell infiltration between the Pcsk9-/- and WT groups
(Figure 3B). We further analyzed the mRNA expression levels of
proinflammatory cytokines, including Il1b (Figure 3C), Il6
(Figure 3D), Il18 (Figure 3E), Ifng (Figure 3F), Tnf
(Figure 3G), Tgfb (Figure 3H), Ccl2, (Figure 3I), and Vcam1
(Figure 3J), in graft vessels. Il1b, Il6, Il18, Ifng, Tgfb, Ccl2, and
Vcam1 were downregulated in the Pcsk9-/-group compared with
the WT group. These findings indicate that Pcsk9 knockout
reduced the infiltration of macrophage and inhibited the
expression of proinflammatory factors in graft vessels.

Pcsk9 Knockout Decreases the Migration
and Proliferation of VSMCs
The migration and proliferation of VSMCs are key factors in
allograft vasculopathy (22, 23). In addition, neointimal smooth
muscle cells are mainly derived from the host (24). To explore
the effect of PCSK9 on VSMCs migration and proliferation, we
extracted VSMCs from WT and Pcsk9-/- mice. VSMCs were
stimulated with the serum collected from recipient mice for 48 h.
Transwell assay was performed to determine the migration
capacity of VSMCs (Figure 4A). Pcsk9 knockout significantly
inhibited the migration of VSMCs (Figures 4B, C, 238.80 ±
21.94 vs. 148.60 ± 27.19; p < 0.05). Moreover, EdU staining
showed that Pcsk9 depletion inhibited the proliferation of
VSMCs (Figures 4D, E, 185.40 ± 13.24 vs. 110.60 ± 17.89;
p < 0.05). We also found that PCNA and MMP9 were
downregulated in Pcsk9-knockout VSMCs (Figures 4F, G).
However, Pcsk9 knockout did not affect the migration or
proliferation of macrophages compared with the control group
(Figure S2). These results demonstrate that Pcsk9 knockout
inhibits the migration and proliferation of VSMCs stimulated
with the serum collected from post-transplant mice.

Pcsk9 Knockout Represses NLRP3
Inflammasome Signaling in VSMCs
To further explore whether PCSK9 is involved in the signaling
pathways related to proliferation and inflammation, we isolated
VSMCs from WT and Pcsk9-/- mice and treated them with control
or allograft serum for 24 h. Western blot analysis (Figures 5A, B)
suggested that Pcsk9 depletion did not affect the MAPK-MEK1/2
pathway and the TGF-b/Smad3 pathway. However, Pcsk9 knockout
inhibited the NLRP3 inflammasome pathway and phenotypic
modulation of VSMCs (Figures 5C–E). Furthermore, graft vessels
were harvested at 8 weeks after transplantation and analyzed by
western blot and immunohistochemistry examination. The results
showed that the expression levels of NLRP3 and IL-1b in the
Pcsk9-/- group were lower than those in the WT group
(Figures 5F–H). Collectively, these data imply that Pcsk9
May 2022 | Volume 13 | Article 894789
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knockout inhibited the activation of NLRP3 inflammasomes
in VSMCs.

Evolocumab Attenuates GVD in
Humanized Pcsk9 Mice
Evolocumab, a neutralizing antibody to human PCSK9, has been
tested in clinical trials for familial hypercholesterolemia or
hyperlipidemia that cannot be controlled by statins (25). To
Frontiers in Immunology | www.frontiersin.org 5
investigate whether Evolocumab would be an effective treatment
for GVD, we performed allogeneic abdominal aorta
transplantation surgery, during which the abdominal aortas of
BALB/c mice were orthotopically transplanted into B6
background humanized PCSK9 mice (hPCSK9) recipients.
After transplantation, the recipients were subcutaneously
injected with Evolocumab (10 mg/kg) or IgG (10 mg/kg) every 2
weeks for 8 weeks (Figure 6A).Western blot (Figures S3A, B) and
BA

DC

G

FE

FIGURE 1 | PCSK9 is increased in a mouse model of GVD. (A) The serum concentration of PCSK9 in isograft and allograft mice at 8 weeks after abdominal aortic
transplantation was analyzed by ELISA (n = 8 per group). (B) PCSK9 expression in graft and liver of recipient mice was detected by Western blot. Samples were
collected at 8 weeks after abdominal aortic transplantation. (C–F) The histogram shows the quantitative analysis of PCSK9 expression in the graft, liver, intestine,
and kidney (n = 4, Isograft group was used as the control). (G) Immunohistochemical analysis of the graft, liver, intestine, and kidney from isograft group and allograft
group (n = 4 per group, Scale bars: 50 mm). Bar graphs shown as mean ± SD. *p < 0.05; ns, not statistically significant. Unpaired Student’s t-test was used to
compare two independent groups (ISO vs. ALLO). ISO, Isograft group; ALLO, Allograft group.
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immunofluorescence analyses (Figures 6B, C) showed that LDLR
was significantly upregulated in the Evolocumab-treated group at
8 weeks after transplantation. Graft vessels were collected for
histological staining (Figure 6D), and the histological analyses
showed that Evolocumab-treated mice had significantly reduced
vascular stenosis (Figure 6E, I/M ratio: 5.16 ± 1.16 vs. 2.86 ± 1.43;
p < 0.05) and a significantly smaller area of intimal hyperplasia
(Figure 6F, 17.10 ± 1.28 × 104 mm2 vs. 8.15 ± 1.46 × 104 mm2;
p < 0.05) compared with the IgG-treated group. Masson’s
trichrome staining showed that Evolocumab treatment
significantly decreased collagen deposition in the hPCSK9 mice
(Figure 6G, 19.16 ± 1.74 × 104 mm2 vs. 9.86 ± 3.39 × 104 mm2;
p < 0.05). Taken together, Evolocumab inhibited the progression
of GVD in hPCSK9 mice.
DISCUSSION

GVD remains the Achilles’ heel of long-term survival after solid-
organ transplantation, including cardiac allograft vasculopathy
after heart transplantation. Multiple factors have been shown to
contribute to the development of GVD, such as hyperlipidemia,
ischemia-reperfusion injury, and immunosuppressive
Frontiers in Immunology | www.frontiersin.org 6
pharmacotherapy (26–28). Clinical studies have also
demonstrated that statins and mTOR inhibitors can protect
GVD and have been effectively used in clinical practice
(29, 30). However, more effective and specific targets are still
urgently needed. The mouse model of aortic transplantation has
been widely used to simulate vascular pathology in GVD (31),
mainly in cardiac allograft vasculopathy (32, 33). As accelerated
transplant vasculopathy and chronic allograft nephropathy are
the pathological features of chronic kidney allograft rejection,
this model could potentially be used to mimic transplant
vasculopathy in chronic kidney allograft rejection. In this
study, we found that PCSK9 was upregulated in the serum,
graft vessels, and liver of mice with GVD. Morphologically, Pcsk9
knockout significantly reduced vascular stenosis, the area of
intimal hyperplasia, and collagen deposition in the mouse
model of GVD. Depletion of the Pcsk9 gene also inhibited
macrophage recruitment and the mRNA expression of
proinflammatory cytokines in graft vessels. We further showed
that Pcsk9 knockout reduced the migration and proliferation of
VSMCs in vitro. Meanwhile, Pcsk9 knockout inhibited activation
of the NLRP3 inflammasome signaling pathway in VSMCs both
in vivo and in vitro. Additionally, Evolocumab significantly
ameliorated the progression of GVD in hPCSK9-recipient mice.
B

C

D

A

FIGURE 2 | Pcsk9 knockout ameliorates allograft vasculopathy in mice. (A) The sections of graft from the experimental group at 8 weeks after transplantation.
Histogram analysis of the intima-media (I/M) ratio (B), neointimal area (C), and collagen deposition area (D). (n = 6 per group. Scale bars: 200 mm). Bar graphs
shown as mean ± SD. *p < 0.05. ISO, Isograft group; WT, allograft transplantation, recipients are WT mice; Pcsk9-/-: allograft transplantation, recipients are Pcsk9-/-

mice. One way ANOVA followed by Turkey’s post-hoc test was used for comparisons among multiple groups.
May 2022 | Volume 13 | Article 894789

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zou et al. Targeting PCSK9 Ameliorates GVD
It has been shown that PCSK9 is upregulated in VSMCs
stimulated with lipopolysaccharide, which is important in
inflammation (34). Here, we simulated GVD-induced vascular
stenosis by establishing a mouse model of abdominal aortic
transplantation and found that PCSK9 was highly expressed
not only in the serum and liver of allogenic mice but also in the
Frontiers in Immunology | www.frontiersin.org 7
lesion site of the graft. Furthermore, Pcsk9 knockout significantly
ameliorated graft vascular disease in mice. These results suggest
the involvement of PCSK9 in the process of graft vascular
vasculopathy. As both immune and nonimmune pathways
contribute to vascular injury in solid-organ transplants,
macrophages and T lymphocytes are implicated in the chronic
B

A

DC FE

HG JI

FIGURE 3 | Pcsk9 knockout inhibits macrophage infiltration and proinflammatory cytokine production. (A) Representative immunohistochemical staining results of F4/80+

macrophages. The histogram shows quantitative analysis of the percentages of F4/80+ macrophages per high-power field (n = 4). (B) Representative immunohistochemical
staining results of CD3+ T cells. The histogram shows quantitative analysis of the percentages of CD3+ T cells per high-power field (n = 4). Graft used for immunohistochemical
staining collected at 2 weeks after abdominal aortic transplantation. (C7–J) The mRNA levels of Il1b, Il6, Il18, Ifng, Tnf, Tgfb, Ccl2, and Vcam1 in graft vessels were analyzed
by qRT-PCR at 2 weeks after abdominal aortic transplantation (The isograft group was used as control. n = 3). One way ANOVA followed by Turkey’s post-hoc test was used
for comparisons among multiple groups. Bar graphs shown as mean ± SD. *p < 0.05. ns, not statistically significant.
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FIGURE 4 | Pcsk9 knockout decreases the migration and proliferation of VSMCs. (A) Schematic design of the VSMCs transwell assay. (B) VSMCs isolated from WT
and Pcsk9-/- mice were seeded on the upper chamber of a transwell plate. Ctrl-serum or Allo-serum was used to stimulate cell migration to the bottom chamber for
48 h (scale bars: 200 mm). (C) The number of cells per high-power field was counted (n = 3). (D) The proliferative ability of VSMCs was detected by an EdU assay.
VSMCs isolated from WT and Pcsk9-/- mice were stimulated with control or allogenic serum for 48 h (scale bars: 100 mm). (E) The number of EdU-positive cells per
high-power field was counted (n = 3). (F) Western blot analysis of Cyclin D, MMP9, and PCNA expression in VSMCs isolated from WT and Pcsk9-/- mice after
stimulation with control or allogenic serum for 24 h. (G) The histogram shows the quantitative analysis of Cyclin D, MMP9, and PCNA expression (n = 3, WT+ Ctrl-
serum group was used as control). Two-way ANOVA and Simple effects tests were used for comparisons among multiple groups. Bar graphs shown as mean ± SD.
*p < 0.05. ns, not statistically significant. Ctrl-serum, serum isolated from recipients received isograft transplantation; Allo-serum, serum isolated from recipients
received allograft transplantation.
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FIGURE 5 | Pcsk9 knockout represses NLRP3 inflammasome signaling in VSMCs. (A) Expression of p-MEK1/2 and p-Smad3 in VSMCs detected by Western blot.
VSMCs were isolated from WT or Pcsk9-/- mice, and treated with Ctrl-serum or Allo-serum for 24 h. (B) The graphs show the quantitative analysis of p-MEK1/2 and
p-Smad3 expression (n = 3, WT+ Ctrl-serum group was used as control). (C) Expression of NLRP3, Caspase-1, and IL-1b, a-SMA and OPN in VSMCs detected by
Western blot. VSMCs were isolated from WT or Pcsk9-/- mice, and treated with Ctrl-serum or Allo-serum for 24 h. (D) The histogram shows the quantitative analysis
of NLRP3, IL-1b, and Caspase-1expression (n = 3, WT+ Ctrl-serum group was used as control). (E) The histogram shows the quantitative analysis of a-SMA and
OPN expression (n = 3, WT+ Ctrl-serum group was used as control). (F) Expression of NLRP3 and IL-1b in graft detected by western blot. Graft vessels were
obtained at 8 weeks after abdominal aortic transplantation. (G) The graphs show the quantitative analysis of NLRP3 and IL-1b expression (n = 6, WT group was
used as control). (H) Representative immunohistochemical staining results of NLRP3 and IL-1b in the graft vessels at 8 weeks after abdominal aortic transplantation
(n = 6, Scale bars: 50 mm). Bar graphs shown as mean ± SD. *p < 0.05. ns, not statistically significant. Two-way ANOVA and Simple effects tests were used for
comparisons among multiple groups (B, D, E). Unpaired Student’s t-test was used to compare two independent groups (G). Ctrl-serum, serum isolated from
recipients received isograft transplantation; Allo-serum, serum isolated from recipients received allograft transplantation.
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FIGURE 6 | Evolocumab attenuates GVD in humanized PCSK9 mice. (A) Experimental design of Evolocumab intervention and tissue collection. (B) Immunofluorescence
staining was performed to detect LDLR expression in the liver of recipient mice treated with different drugs (Scale bars: 100 mm). (C) The graphs show the quantitative
immunofluorescence analysis of LDLR in the liver (n = 6, Isograft group was used as control). (D) H&E staining, Verhoeff’s Van Gieson, and Masson’s staining of graft
vessels. Grafts were collected from recipient mice at 8 weeks after abdominal aortic transplantation (Scale bars: 200 mm). Histogram analysis of (E) the I/M ratio, (F)
neointimal area, and (G) collagen deposition area (n = 6). One way ANOVA followed by Turkey’s post-hoc test was used for comparisons among multiple groups. Bar
graphs shown as mean ± SD. *p < 0.05. ISO, Isograft group; IgG, allograft transplantation recipients treated with IgG; Evolocumab, allograft transplantation recipients
treated with Evolocumab.
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rejection of organ transplantation (21, 35). Cytokines, including
proinflammatory molecules, cell adhesion molecules, and
chemokines, are essential for the recruitment of inflammatory
cells and phenotypic transformation of smooth muscle cells (36).
In this study, Pcsk9 depletion significantly inhibited macrophage
recruitment and proinflammatory cytokine production.

Vascular graft stenosis refers to the migration of receptor-
derived smooth muscle-like cells to the lesion site and subsequent
hyperproliferation (24). In this study, we showed that Pcsk9
knockout inhibited the proliferation of VSMCs as measured by
the EdU assay, which was related to the downregulation of PCNA.
Pcsk9 knockout might also inhibit the migration of VSMCs, and
the transwell result is influenced by various factors, not only the
cell migration ability, but also cell viability (proliferation,
apoptosis, necrosis). PCSK9 is also expressed in macrophages.
Badimon et al. have demonstrated that PCSK9 upregulates TLR4/
NF-kB, favors inflammation, and participates in lipid uptake in
human macrophages (37). However, we found that Pcsk9
knockout did not affect the migration and proliferation of
BMDMs. The differences in these results may be due to the
different sources of macrophages. The MAPK-MEK1/2 pathway
has been shown to regulate the proliferation of smooth muscle
cells and tumor cells (38, 39). Furthermore, Li et al. have
confirmed that the MAPK-MEK1/2 pathway is highly expressed
in graft vasculopathy and that MEK1/2 inhibitors can alleviate
graft vascular stenosis (40). Our previous study also has shown
that the TGF-b/Smad3 pathway regulates the proliferation of
smooth muscle-like cells and promotes the production of
extracellular matrix (17). Here, we demonstrated that PSCK9
depletion in VSMCs did not affect these pathways. However, a
number of studies have reported an interaction between PCSK9
and NLRP3. Ding et al. have found that NLRP3 inflammasomes
regulate the secretion of PCSK9 in peritoneal macrophages (41). In
addition, the knockout of Pcsk9 in cardiomyocytes has been
demonstrated to inhibit NLRP3 inflammatory signaling (NLRP3,
ASC, caspase-1, IL-1b, and IL-18) and chronic myocardial
ischemia (42). Previous studies also have shown that NLRP3
inflammasomes play an important role in migration,
proliferation, phenotypic transformation, and other
inflammatory responses of VSMCs (41, 43, 44). In this study,
we showed that Pcsk9 knockout inhibited the expression levels of
NLRP3, caspase-1, and IL-1b in VSMCs. Mature VSMCs are
quiescent and express contractile genes (e.g., a-SMA). They
transform to proinflammatory phenotype (e.g., OPN) in
response to vascular injury (45). Pcsk9 knockout increased the
a-SMA expression and repressed the OPN expression in VSMCs
treated with allograft serum. These results indicated that Pcsk9
knockout might promote contractile phenotype but repress
proinflammatory phenotype of VSMCs. Meanwhile, NLRP3 and
IL-1b were also downregulated in the neointimal grafts of Pcsk9-/-

recipient mice. These results suggest that PCSK9 could regulate
inflammatory responses in VSMCs probably through NLRP3
inflammasomes. However, Guo, Y., et al. proved that PCSK9
inhibited proliferation, and ultimately leaded to vascular stiffness
in arterial ligation mouse model. As GVD GVD is associated with
both immune responses and nonimmune factors, which
Frontiers in Immunology | www.frontiersin.org 11
dramatically different from the pathological process of arterial
ligation induced arterial stiffness. In addition, PCSK9 is a protein
with multiple biological effects (46–48). Therefore, PCSK9 may
exert different effects on VSMCs in the different animal models.

Evolocumab (a PCSK9 inhibitor) is a novel lipid-lowering
drug that has been shown to decrease the incidence of
myocardial infarction and stroke (49). In addition,
Evolocumab has also been used in heart transplantation
recipient on a small scale (25, 50, 51). Here, we found that
Evolocumab, similar with Pcsk9 knockout, reduced allograft
vasculopathy in hPCSK9 mice. The preventive effect of
Evolocumab on cardiac allograft vasculopathy in heart
transplant recipients is also being investigated (Clinical Trials.
gov Identifier: NCT03734211). These studies focused on the
lipid-lowering function of Evolocumab. However, the roles of
PCSK9 in immune regulation and inflammatory response might
also contribute to the development of GVD after organ-
transplantation. Our results desmonstrated that PCSK9
participated in the development of GVD through a cholesterol-
independent mechanism. However, larger-scale clinical trials are
needed to evaluate the potential clinical use of Evolocumab for
the treatment of GVD. In addition, the protective effect of Pcsk9
knockout or Evolocumab in GVD model may be related with the
lipid-lowering function. There are some limitations in this
current study. This study is exclusively performed in mice and
with murine cells, and human data is lacked, as the integration of
human data and murine data can improve the level of study and
add a more translational aspect of the findings. Then, whether
Evolocumab affect the recruitment of macrophages and the
changes of inflammatory factors after transplantation has not
been evaluated in our study.

In conclusion, this study confirms the upregulation of PCSK9
in a mouse model of GVD. In addition, Pcsk9 knockout inhibits
NLRP3 inflammasome signaling in VSMCs and reduces allograft
vasculopathy. These findings suggest that PCSK9 is a promising
target for the treatment of GVD.
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